1
|
Ruggeri M, Nomicisio C, Taviot-Guého C, Vigani B, Boselli C, Grisoli P, Icaro Cornaglia A, Bianchi E, Viseras C, Rossi S, Sandri G. Smart copper-doped clays in biomimetic microparticles for wound healing and infection control. Mater Today Bio 2024; 29:101292. [PMID: 39483391 PMCID: PMC11525154 DOI: 10.1016/j.mtbio.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Chronic wounds are non-healing lesions characterized by a high degree of inflammation, posing significant challenges in clinical management due to the increased risk of severe infection. This study focuses on developing a powder for cutaneous application to enhance the healing and prevent infections in chronic wounds. The smart nanocomposites-based biomimetic microparticles here developed combine the properties of chitosan and of clays and represent a significant innovation in the field of biomaterials for skin regeneration since they possess enhanced antimicrobial properties, are multi-functional scaffolds and promote cell proliferation, support tissue reconstruction by mimicking the natural extracellular matrix, and provide hemostatic properties to control bleeding during wound closure. The microparticles were made of chitosan and doped with clay minerals, specifically montmorillonite or layered double hydroxides, containing copper ions. The synergistic combination of biomimetic polymers and clays aims to regulate cellular responses, angiogenesis, and extracellular matrix (ECM) deposition, leveraging the bioactive properties of both components to promote wound healing. Montmorillonite and layered double hydroxides were enriched with copper ions through intercalation or coprecipitation methods, respectively. The water-insoluble microparticles were prepared using a chitosan derivative, chitosan carbamate, synthesized to obtain chitosan-based microparticles via spray-drying without crosslinkers. Physico-chemical characterization confirmed the successful doping of Cu-clay interaction products in the microparticles. In addition to enhanced cell proliferation and hemostatic properties, the presence of Cu-clays boosted the microparticles' antibacterial properties. Encouraging preclinical in vitro and in vivo results suggest that these smart nanocomposite biomimetic microparticles doped with Cu-enriched clay minerals could be promising candidates for simultaneously enhancing healing and controlling infections in chronic wounds.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Christine Taviot-Guého
- Institut de Chimie de Clermont-Ferrand, Université Clermont-Auvergne, UMR CNRS 6296, 24 av Blaise Pascal, 63171, Aubière, France
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100, Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
2
|
Zhu Z, Lin Y, Li L, Liu K, Wen W, Ding S, Liu M, Lu L, Zhou C, Luo B. 3D Printing Drug-Free Scaffold with Triple-Effect Combination Induced by Copper-Doped Layered Double Hydroxides for the Treatment of Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58196-58211. [PMID: 38079497 DOI: 10.1021/acsami.3c13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Tissue-engineered poly(l-lactide) (PLLA) scaffolds have been widely used to treat bone defects; however, poor biological activities have always been key challenges for its further application. To address this issue, introducing bioactive drugs or factors is the most commonly used method, but there are often many problems such as high cost, uncontrollable and monotonous drug activity, and poor bioavailability. Here, a drug-free 3D printing PLLA scaffold with a triple-effect combination induced by surface-modified copper-doped layered double hydroxides (Cu-LDHs) is proposed. In the early stage of scaffold implantation, Cu-LDHs exert a photothermal therapy (PTT) effect to generate high temperature to effectively prevent bacterial infection. In the later stage, Cu-LDHs can further have a mild hyperthermia (MHT) effect to stimulate angiogenesis and osteogenic differentiation, demonstrating excellent vascularization and osteogenic activity. More importantly, with the degradation of Cu-LDHs, the released Cu2+ and Mg2+ provide an ion microenvironment effect and further synergize with the MHT effect to stimulate angiogenesis and osteogenic differentiation, thus more effectively promoting the healing of bone tissue. This triple-effect combined scaffold exhibits outstanding antibacterial, osteogenic, and angiogenic activities, as well as the advantages of low cost, convenient procedure, and long-term efficacy, and is expected to provide a promising strategy for clinical repair of bone defects.
Collapse
Affiliation(s)
- Zelin Zhu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Yating Lin
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Lu Lu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| |
Collapse
|
3
|
Bian Y, Cai X, Lv Z, Xu Y, Wang H, Tan C, Liang R, Weng X. Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301806. [PMID: 37329200 PMCID: PMC10460877 DOI: 10.1002/advs.202301806] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Indexed: 06/18/2023]
Abstract
Bone diseases including bone defects, bone infections, osteoarthritis, and bone tumors seriously affect life quality of the patient and bring serious economic burdens to social health management, for which the current clinical treatments bear dissatisfactory therapeutic effects. Biomaterial-based strategies have been widely applied in the treatment of orthopedic diseases but are still plagued by deficient bioreactivity. With the development of nanotechnology, layered double hydroxides (LDHs) with adjustable metal ion composition and alterable interlayer structure possessing charming physicochemical characteristics, versatile bioactive properties, and excellent drug loading and delivery capabilities arise widespread attention and have achieved considerable achievements for bone disease treatment in the last decade. However, to the authors' best knowledge, no review has comprehensively summarized the advances of LDHs in treating bone disease so far. Herein, the advantages of LDHs for orthopedic disorders treatment are outlined and the corresponding state-of-the-art achievements are summarized for the first time. The potential of LDHs-based nanocomposites for extended therapeutics for bone diseases is highlighted and perspectives for LDHs-based scaffold design are proposed for facilitated clinical translation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Xuejie Cai
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong KongP. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
4
|
Fernandes CJDC, Cassiano AFB, Henrique-Silva F, Cirelli JA, de Souza EP, Coaguila-Llerena H, Zambuzzi WF, Faria G. Recombinant sugarcane cystatin CaneCPI-5 promotes osteogenic differentiation. Tissue Cell 2023; 83:102157. [PMID: 37451011 DOI: 10.1016/j.tice.2023.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Cysteine proteases orchestrate bone remodeling, and are inhibited by cystatins. In reinforcing our hypothesis that exogenous and naturally obtained inhibitors of cysteine proteases (cystatins) act on bone remodeling, we decided to challenge osteoblasts with sugarcane-derived cystatin (CaneCPI-5) for up to 7 days. To this end, we investigated molecular issues related to the decisive, preliminary stages of osteoblast biology, such as adhesion, migration, proliferation, and differentiation. Our data showed that CaneCPI-5 negatively modulates both cofilin phosphorylation at Ser03, and the increase in cytoskeleton remodeling during the adhesion mechanism, possibly as a prerequisite to controlling cell proliferation and migration. This is mainly because CaneCPI-5 also caused the overexpression of the CDK2 gene, and greater migration of osteoblasts. Extracellular matrix remodeling was also evaluated in this study by investigating matrix metalloproteinase (MMP) activities. Our data showed that CaneCPI-5 overstimulates both MMP-2 and MMP-9 activities, and suggested that this cellular event could be related to osteoblast differentiation. Additionally, differentiation mechanisms were better evaluated by investigating Osterix and alkaline phosphatase (ALP) genes, and bone morphogenetic protein (BMP) signaling members. Altogether, our data showed that CaneCPI-5 can trigger biological mechanisms related to osteoblast differentiation, and broaden the perspectives for better exploring biotechnological approaches for bone disorders.
Collapse
Affiliation(s)
- Célio Junior da Costa Fernandes
- Bioassays and Cell Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University - UNESP, Botucatu, São Paulo, Brazil; Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil; Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Ana Flávia Balestrero Cassiano
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Flavio Henrique-Silva
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, São Paulo, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University -UNESP, Araraquara, São Paulo, Brazil
| | - Eduardo Pereira de Souza
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, São Paulo, Brazil
| | - Hernán Coaguila-Llerena
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Bioassays and Cell Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University - UNESP, Botucatu, São Paulo, Brazil.
| | - Gisele Faria
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| |
Collapse
|
5
|
Peng W, Zhang S, Zhou W, Zhao X, Wang K, Yue C, Wei X, Pang S, Dong W, Chen S, Chen C, Yang Q, Wang W. Layered Double Hydroxides-Loaded Sorafenib Inhibit Hepatic Stellate Cells Proliferation and Activation In Vitro and Reduce Fibrosis In Vivo. Front Bioeng Biotechnol 2022; 10:873971. [PMID: 35711641 PMCID: PMC9196193 DOI: 10.3389/fbioe.2022.873971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
A core feature of liver fibrosis is the activation of hepatic stellate cells (HSCs), which are transformed into myofibroblasts and lead to the accumulation of extracellular matrix (ECM) proteins. In this study, we combined in vitro cellular efficacy with in vivo antifibrosis performance to evaluate the outcome of sorafenib (SRF) loaded layered double hydroxide (LDH) nanocomposite (LDH-SRF) on HSCs. The cellular uptake test has revealed that sorafenib encapsulated LDH nanoparticles were efficiently internalized by the HSC-T6 cells, synergistically inducing apoptosis of hepatic stellate cells. Moreover, the apoptosis rate and the migration inhibition rate induced by LDHs-SRF were 2.5 and 1.7 times that of SRF. Western Blot showed that the TGF-β1/Smad/EMT and AKT signaling pathway was significantly inhibited in HSC-T6 cells treated with LDHs-SRF. For the in vivo experiment, LDHs-SRF were administered to rat models of CCl4-induced liver fibrosis. H&E, masson and sirius red staining showed that LDHs-SRF could significantly reduce inflammatory infiltrate and collagen fiber deposition and immunohistochemical results found that LDHs-SRF treatment significantly inhibited the protein expressions of α-SMA in the liver, these results suggesting that LDHs-SRF exhibited better anti-fibrotic effect than SRF alone and significantly inhibited the proliferation and activation of rat hepatic stellate cells and collagen fiber synthesis.
Collapse
Affiliation(s)
- Wei Peng
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Zhou
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Xinchen Zhao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Kexue Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Chengxu Yue
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Xinyu Wei
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Siyan Pang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Dong
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sulian Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Changjie Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Qingling Yang
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| |
Collapse
|
6
|
Nanohydroxyapatite-Blasted Bioactive Surface Drives Shear-Stressed Endothelial Cell Growth and Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1433221. [PMID: 35252440 PMCID: PMC8890866 DOI: 10.1155/2022/1433221] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 12/22/2022]
Abstract
Nanosized crystalline hydroxyapatite coating (HAnano®) accelerates the osteointegration of dental implants which is hypothesized to drive angiogenesis. In order to test this hypothesis, we have subjected shear-stressed human umbilical vein endothelial cells (HUVECs) to a HAnano®-enriched medium, as well as to surface presenting dual acid etching (DAE) as a control. To note, the titanium implants were coated with 10 nm in diameter HA particles using the Promimic HAnano method. Our data reveals that HAnano® modulates higher expression of genes related with endothelial cell performance and viability, such as VEGF, eNOS, and AKT, and further angiogenesis in vitro by promoting endothelial cell migration. Additionally, the data shows a significant extracellular matrix (ECM) remodeling, and this finding seems developing a dual role in promoting the expression of VEGF and control endothelial cell growth during angiogenesis. Altogether, these data prompted us to further validate this phenomenon by exploring genes related with the control of cell cycle and in fact our data shows that HAnano® promotes higher expression of CDK4 gene, while p21 and p15 genes (suppressor genes) were significantly lower. In conjunction, our data shows for the first time that HAnano®-coated surfaces drive angiogenesis by stimulating a proliferative and migration phenotype of endothelial cells, and this finding opens novel comprehension about osseointegration mechanism considering nanosized hydroxyapatite coating dental implants.
Collapse
|
7
|
Izbudak B, Cecen B, Anaya I, Miri AK, Bal-Ozturk A, Karaoz E. Layered double hydroxide-based nanocomposite scaffolds in tissue engineering applications. RSC Adv 2021; 11:30237-30252. [PMID: 35480250 PMCID: PMC9041101 DOI: 10.1039/d1ra03978d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Layered double hydroxides (LDHs), when incorporated into biomaterials, provide a tunable composition, controllable particle size, anion exchange capacity, pH-sensitive solubility, high-drug loading efficiency, efficient gene and drug delivery, controlled release and effective intracellular uptake, natural biodegradability in an acidic medium, and negligible toxicity. In this review, we study potential applications of LDH-based nanocomposite scaffolds for tissue engineering. We address how LDHs provide new solutions for nanostructure stability and enhance in vivo studies' success.
Collapse
Affiliation(s)
- Burcin Izbudak
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University Istanbul Turkey
| | - Berivan Cecen
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University Glassboro NJ 08028 USA.,School of Medical Engineering, Science and Health, Rowan University Camden NJ 08103 USA.,Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University 34010 Zeytinburnu Istanbul Turkey
| | - Ingrid Anaya
- Department of Bioengineering, Tecnológico de Monterrey, Campus Monterrey CP 64849 Monterrey Nuevo León México
| | - Amir K Miri
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University Glassboro NJ 08028 USA.,School of Medical Engineering, Science and Health, Rowan University Camden NJ 08103 USA
| | - Ayca Bal-Ozturk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University Istanbul Turkey .,Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University Istanbul Turkey
| | - Erdal Karaoz
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University Istanbul Turkey .,Department of Histology and Embryology, Faculty of Medicine, Istinye University Istanbul Turkey.,Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell) Istanbul Turkey
| |
Collapse
|
8
|
Argentati C, Morena F, Fontana C, Tortorella I, Emiliani C, Latterini L, Zampini G, Martino S. Functionalized Silica Star-Shaped Nanoparticles and Human Mesenchymal Stem Cells: An In Vitro Model. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:779. [PMID: 33803869 PMCID: PMC8003255 DOI: 10.3390/nano11030779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
The biomedical translational applications of functionalized nanoparticles require comprehensive studies on their effect on human stem cells. Here, we have tested neat star-shaped mesoporous silica nanoparticles (s-MSN) and their chemically functionalized derivates; we examined nanoparticles (NPs) with similar dimensions but different surface chemistry, due to the amino groups grafted on silica nanoparticles (s-MSN-NH2), and gold nanoseeds chemically adsorbed on silica nanoparticles (s-MSN-Au). The different samples were dropped on glass coverslips to obtain a homogeneous deposition differing only for NPs' chemical functionalization and suitable for long-term culture of human Bone Marrow-Mesenchymal stem cells (hBM-MSCs) and Adipose stem cells (hASCs). Our model allowed us to demonstrate that hBM-MSCs and hASCs have comparable growth curves, viability, and canonical Vinculin Focal adhesion spots on functionalized s-MSN-NH2 and s-MSN-Au as on neat s-MSN and control systems, but also to show morphological changes on all NP types compared to the control counterparts. The new shape was stem-cell-specific and was maintained on all types of NPs. Compared to the other NPs, s-MSN-Au exerted a small genotoxic effect on both stem cell types, which, however, did not affect the stem cell behavior, likely due to a peculiar stem cell metabolic restoration response.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Chiara Fontana
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (C.F.); (L.L.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (C.F.); (L.L.)
| | - Giulia Zampini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (C.F.); (L.L.)
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| |
Collapse
|
9
|
Abstract
Layered Double Hydroxides (LDHs) are a relevant class of inorganic lamellar nanomaterials that have attracted significant interest in life science-related applications, due to their highly controllable synthesis and high biocompatibility. Under a general point of view, this class of materials might have played an important role for the origin of life on planet Earth, given their ability to adsorb and concentrate life-relevant molecules in sea environments. It has been speculated that the organic–mineral interactions could have permitted to organize the adsorbed molecules, leading to an increase in their local concentration and finally to the emergence of life. Inspired by nature, material scientists, engineers and chemists have started to leverage the ability of LDHs to absorb and concentrate molecules and biomolecules within life-like compartments, allowing to realize highly-efficient bioinspired platforms, usable for bioanalysis, therapeutics, sensors and bioremediation. This review aims at summarizing the latest evolution of LDHs in this research field under an unprecedented perspective, finally providing possible challenges and directions for future research.
Collapse
|
10
|
Cunha VRR, Petersen PAD, Souza RB, Martins AMCRPF, Leroux F, Taviot-Gueho C, Petrilli HM, Koh IHJ, Constantino VRL. Phytochemical species intercalated into layered double hydroxides: structural investigation and biocompatibility assays. NEW J CHEM 2020. [DOI: 10.1039/d0nj00238k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The compound p-coumaric acid (HCou) is found in many foods and presents action in the suppression of chronic diseases and protective effects on neurodegenerative disorders.
Collapse
Affiliation(s)
- Vanessa R. R. Cunha
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- USP
- São Paulo
| | - Philippe A. D. Petersen
- Departamento de Física dos Materiais e Mecânica
- Instituto de Física
- Universidade de São Paulo
- USP
- São Paulo
| | - Rodrigo B. Souza
- Departamento de Morfologia e Genética
- Universidade Federal de São Paulo – UNIFESP
- São Paulo
- Brazil
| | | | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand ICCF
- CNRS
- Université Clermont Auvergne
- F-63000 Clermont-Ferrand
- France
| | - Christine Taviot-Gueho
- Institut de Chimie de Clermont-Ferrand ICCF
- CNRS
- Université Clermont Auvergne
- F-63000 Clermont-Ferrand
- France
| | - Helena M. Petrilli
- Departamento de Física dos Materiais e Mecânica
- Instituto de Física
- Universidade de São Paulo
- USP
- São Paulo
| | - Ivan H. J. Koh
- Departamento de Cirurgia
- Universidade Federal de São Paulo – UNIFESP
- São Paulo
- Brazil
| | - Vera R. L. Constantino
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- USP
- São Paulo
| |
Collapse
|
11
|
Abstract
Layered double hydroxides (LDHs) are an emergent class of biocompatible inorganic lamellar nanomaterials that have attracted significant research interest owing to their high surface-to-volume ratio, the capability to accumulate specific molecules, and the timely release to targets. Their unique properties have been employed for applications in organic catalysis, photocatalysis, sensors, drug delivery, and cell biology. Given the widespread contemporary interest in these topics, time-to-time it urges to review the recent progresses. This review aims to summarize the most recent cutting-edge reports appearing in the last years. It firstly focuses on the application of LDHs as catalysts in relevant chemical reactions and as photocatalysts for organic molecule degradation, water splitting reaction, CO2 conversion, and reduction. Subsequently, the emerging role of these materials in biological applications is discussed, specifically focusing on their use as biosensors, DNA, RNA, and drug delivery, finally elucidating their suitability as contrast agents and for cellular differentiation. Concluding remarks and future prospects deal with future applications of LDHs, encouraging researches in better understanding the fundamental mechanisms involved in catalytic and photocatalytic processes, and the molecular pathways that are activated by the interaction of LDHs with cells in terms of both uptake mechanisms and nanotoxicology effects.
Collapse
|