1
|
Wang C, Zhou Y. Sacrificial biomaterials in 3D fabrication of scaffolds for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35312. [PMID: 37572033 DOI: 10.1002/jbm.b.35312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Three-dimensional (3D) printing technology has progressed exceedingly in the area of tissue engineering. Despite the tremendous potential of 3D printing, building scaffolds with complex 3D structure, especially with soft materials, still exist as a challenge due to the low mechanical strength of the materials. Recently, sacrificial materials have emerged as a possible solution to address this issue, as they could serve as temporary support or templates to fabricate scaffolds with intricate geometries, porous structures, and interconnected channels without deformation or collapse. Here, we outline the various types of scaffold biomaterials with sacrificial materials, their pros and cons, and mechanisms behind the sacrificial material removal, compare the manufacturing methods such as salt leaching, electrospinning, injection-molding, bioprinting with advantages and disadvantages, and discuss how sacrificial materials could be applied in tissue-specific applications to achieve desired structures. We finally conclude with future challenges and potential research directions.
Collapse
Affiliation(s)
- Chi Wang
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| | - Yingge Zhou
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
2
|
Jin S, Fu X, Zeng W, Chen A, Luo Z, Li Y, Zhou Z, Li J. Chopped fibers and nano-hydroxyapatite enhanced silk fibroin porous hybrid scaffolds for bone augmentation. J Mater Chem B 2023; 11:1557-1567. [PMID: 36692356 DOI: 10.1039/d2tb02510h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chopped fiber (CF)- and nano-hydroxyapatite (n-HA)-enhanced silk fibroin (SF) porous hybrid scaffolds (SHCF) were prepared by freeze-drying for bone augmentation. Compared with pristine SF scaffolds, the incorporation of CF and n-HA can significantly enhance the mechanical properties of the composite scaffold. The results of cell experiments and mouse subcutaneous implantation indicated that the SHCF could alleviate foreign body reactions (FBR) led by macrophages and neutrophils, promote the polarization of RAW264.7 cells to anti-inflammatory M2 macrophages, and inhibit the secretion of pro-inflammatory cytokine TNF-α. A rat femoral defect repair model and bulk-RNA-seq analysis indicated that the CF- and n-HA-enhanced SHCF promoted the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) by the upregulation of Capns1 expression and regulated the calcium signaling pathway to mediate osteogenesis-related cell behavior, subsequently promoting bone regeneration.
Collapse
Affiliation(s)
- Shue Jin
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Xiaoxue Fu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Weinan Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Anjing Chen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Zhenyu Luo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, P. R. China.
| | - Zongke Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
3
|
Nun N, Joy A. Fabrication and Bioactivity of Peptide-Conjugated Biomaterial Tissue Engineering Constructs. Macromol Rapid Commun 2023; 44:e2200342. [PMID: 35822458 DOI: 10.1002/marc.202200342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Indexed: 01/11/2023]
Abstract
Tissue engineering combines materials engineering, cells and biochemical factors to improve, restore or replace various types of biological tissues. A nearly limitless combination of these strategies can be combined, providing a means to augment the function of a number of biological tissues such as skin tissue, neural tissue, bones, and cartilage. Compounds such as small molecule therapeutics, proteins, and even living cells have been incorporated into tissue engineering constructs to influence biological processes at the site of implantation. Peptides have been conjugated to tissue engineering constructs to circumvent limitations associated with conjugation of proteins or incorporation of cells. This review highlights various contemporary examples in which peptide conjugation is used to overcome the disadvantages associated with the inclusion of other bioactive compounds. This review covers several peptides that are commonly used in the literature as well as those that do not appear as frequently to provide a broad scope of the utility of the peptide conjugation technique for designing constructs capable of influencing the repair and regeneration of various bodily tissues. Additionally, a brief description of the construct fabrication techniques encountered in the covered examples and their advantages in various tissue engineering applications is provided.
Collapse
Affiliation(s)
- Nicholas Nun
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44321, USA
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44321, USA
| |
Collapse
|
4
|
Dos Santos DM, de Annunzio SR, Carmello JC, Pavarina AC, Fontana CR, Correa DS. Combining Coaxial Electrospinning and 3D Printing: Design of Biodegradable Bilayered Membranes with Dual Drug Delivery Capability for Periodontitis Treatment. ACS APPLIED BIO MATERIALS 2022; 5:146-159. [PMID: 35014831 DOI: 10.1021/acsabm.1c01019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Periodontitis is a chronic inflammatory disease that can lead to significant destruction of tooth-supporting tissues, compromising dental function and patient's health. Although the currently employed treatment approaches can limit the advance of the disease, the development of multifunctional and hierarchically structured materials is still in demand for achieving successful tissue regeneration. Here, we combine coaxial electrospinning and 3D printing techniques to prepare bilayered zein-based membranes as a potential dual drug delivery platform for periodontal tissue regeneration. A layer of core-sheath electrospun nanofibers consisting of poly(ethylene oxide) (PEO)/curcumin (Curc)/tetracycline hydrochloride (TH) as the core and zein/poly(ε-caprolactone)(PCL)/β-glycerolphosphate (β-GP) as the sheath was deposited over a 3D printed honeycomb PLA/zein/Curc platform in order to render a bilayered structure that can mimic the architecture of periodontal tissue. The physicochemical properties of engineered constructs as well as the release profiles of distinct drugs were mainly controlled by varying the concentration of zein (10, 20, 30%, w/w relative to dry PCL) on the sheath layer of nanofibers, which displayed average diameters ranging from 150 to 400 nm. In vitro experiments demonstrated that the bilayered constructs provided sustained release of distinct drugs over 8 days and exhibited biocompatibility toward human oral keratinocytes (Nok-si) (cell viability >80%) as well as antibacterial activity against distinct bacterial strains including those of the red complex such as Porphyromonas gingivalis and Treponema denticola, which are recognized to elicit aggressive and chronic periodontitis. Our study reveals the potential of zein-based bilayered membranes as a dual drug delivery platform for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Danilo M Dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Sarah R de Annunzio
- UNESP - São Paulo State University, School of Pharmaceutical Sciences - Department of Clinical Analysis, Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara, São Paulo 14801-903, Brazil
| | - Juliana C Carmello
- UNESP - São Paulo State University, School of Dentistry - Department of Dental Materials and Prosthodontics, Rua Humaitá, 1680-Centro, Araraquara, São Paulo 14801-903, Brazil
| | - Ana C Pavarina
- UNESP - São Paulo State University, School of Dentistry - Department of Dental Materials and Prosthodontics, Rua Humaitá, 1680-Centro, Araraquara, São Paulo 14801-903, Brazil
| | - Carla R Fontana
- UNESP - São Paulo State University, School of Pharmaceutical Sciences - Department of Clinical Analysis, Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara, São Paulo 14801-903, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| |
Collapse
|
5
|
Romero-Araya P, Pino V, Nenen A, Cárdenas V, Pavicic F, Ehrenfeld P, Serandour G, Lisoni JG, Moreno-Villoslada I, Flores ME. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites. Polymers (Basel) 2021; 13:polym13213806. [PMID: 34771361 PMCID: PMC8588263 DOI: 10.3390/polym13213806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
The design of scaffolds to reach similar three-dimensional structures mimicking the natural and fibrous environment of some cells is a challenge for tissue engineering, and 3D-printing and electrospinning highlights from other techniques in the production of scaffolds. The former is a well-known additive manufacturing technique devoted to the production of custom-made structures with mechanical properties similar to tissues and bones found in the human body, but lacks the resolution to produce small and interconnected structures. The latter is a well-studied technique to produce materials possessing a fibrillar structure, having the advantage of producing materials with tuned composition compared with a 3D-print. Taking the advantage that commercial 3D-printers work with polylactide (PLA) based filaments, a biocompatible and biodegradable polymer, in this work we produce PLA-based composites by blending materials obtained by 3D-printing and electrospinning. Porous PLA fibers have been obtained by the electrospinning of recovered PLA from 3D-printer filaments, tuning the mechanical properties by blending PLA with small amounts of polyethylene glycol and hydroxyapatite. A composite has been obtained by blending two layers of 3D-printed pieces with a central mat of PLA fibers. The composite presented a reduced storage modulus as compared with a single 3D-print piece and possessing similar mechanical properties to bone tissues. Furthermore, the biocompatibility of the composites is assessed by a simulated body fluid assay and by culturing composites with 3T3 fibroblasts. We observed that all these composites induce the growing and attaching of fibroblast over the surface of a 3D-printed layer and in the fibrous layer, showing the potential of commercial 3D-printers and filaments to produce scaffolds to be used in bone tissue engineering.
Collapse
Affiliation(s)
- Pablo Romero-Araya
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
- Escuela de Odontología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Victor Pino
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
- Escuela de Odontología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ariel Nenen
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
| | - Verena Cárdenas
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
| | - Francisca Pavicic
- Facultad de Medicina, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.P.); (P.E.)
- Centro de Estudios Interdisciplinarios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pamela Ehrenfeld
- Facultad de Medicina, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.P.); (P.E.)
- Centro de Estudios Interdisciplinarios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Guillaume Serandour
- LeufüLAB, Facultad de Ciencias de la Ingeniería, Instituto de Diseño y Métodos Industriales, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Judit G. Lisoni
- Facultad de Ciencias, Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Ignacio Moreno-Villoslada
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
| | - Mario E. Flores
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
- Correspondence: ; Tel.: +56-63-2293521
| |
Collapse
|
6
|
Liaw C, Huynh S, Gedeon C, Ji S, D'souza C, Abaci A, Guvendiren M. Airbrushed nanofibrous membranes to control stem cell infiltration in
3D
‐printed scaffolds. AIChE J 2021. [DOI: 10.1002/aic.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chya‐Yan Liaw
- Otto H. York Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark New Jersey USA
| | - Shawn Huynh
- Otto H. York Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark New Jersey USA
| | - Christina Gedeon
- Otto H. York Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark New Jersey USA
| | - Shen Ji
- Otto H. York Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark New Jersey USA
| | - Caroline D'souza
- Otto H. York Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark New Jersey USA
| | - Alperen Abaci
- Otto H. York Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark New Jersey USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark New Jersey USA
- Department of Biomedical Engineering New Jersey Institute of Technology Newark New Jersey USA
| |
Collapse
|
7
|
Fibers by Electrospinning and Their Emerging Applications in Bone Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering (BTE) is an optimized approach for bone regeneration to overcome the disadvantages of lacking donors. Biocompatibility, biodegradability, simulation of extracellular matrix (ECM), and excellent mechanical properties are essential characteristics of BTE scaffold, sometimes including drug loading capacity. Electrospinning is a simple technique to prepare fibrous scaffolds because of its efficiency, adaptability, and flexible preparation of electrospinning solution. Recent studies about electrospinning in BTE are summarized in this review. First, we summarized various types of polymers used in electrospinning and methods of electrospinning in recent work. Then, we divided them into three parts according to their main role in BTE, (1) ECM simulation, (2) mechanical support, and (3) drug delivery system.
Collapse
|
8
|
Liu H, Jain S, Ahlinder A, Fuoco T, Gasser TC, Finne-Wistrand A. Pliable, Scalable, and Degradable Scaffolds with Varying Spatial Stiffness and Tunable Compressive Modulus Produced by Adopting a Modular Design Strategy at the Macrolevel. ACS POLYMERS AU 2021; 1:107-122. [PMID: 36855428 PMCID: PMC9954393 DOI: 10.1021/acspolymersau.1c00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinical results obtained when degradable polymer-based medical devices are used in breast reconstruction following mastectomy are promising. However, it remains challenging to develop a large scaffold structure capable of providing both sufficient external mechanical support and an internal cell-like environment to support breast tissue regeneration. We propose an internal-bra-like prototype to solve both challenges. The design combines a 3D-printed scaffold with knitted meshes and electrospun nanofibers and has properties suitable for both breast tissue regeneration and support of a silicone implant. Finite element analysis (FEA) was used to predict the macroscopic and microscopic stiffnesses of the proposed structure. The simulations show that introduction of the mesh leads to a macroscopic scaffold stiffness similar to the stiffness of breast tissue, and mechanical testing confirms that the introduction of more layers of mesh in the modular design results in a lower elastic modulus. The compressive modulus of the scaffold can be tailored within a range from hundreds of kPa to tens of kPa. Biaxial tensile testing reveals stiffening with increasing strain and indicates that rapid strain-induced softening occurs only within the first loading cycle. In addition, the microscopic local stiffness obtained from FEA simulations indicates that cells experience significant heterogeneous mechanical stimuli at different places in the scaffold and that the local mechanical stimulus generated by the strand surface is controlled by the elastic modulus of the polymer, rather than by the scaffold architecture. From in vitro experiments, it was observed that the addition of knitted mesh and an electrospun nanofiber layer to the scaffold significantly increased cell seeding efficiency, cell attachment, and proliferation compared to the 3D-printed scaffold alone. In summary, our results suggest that the proposed design strategy is promising for soft tissue engineering of scaffolds to assist breast reconstruction and regeneration.
Collapse
Affiliation(s)
- Hailong Liu
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden,Department
of Engineering Mechanics, KTH Royal Institute
of Technology, 100 44, Stockholm, Sweden
| | - Shubham Jain
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden
| | - Astrid Ahlinder
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden
| | - Tiziana Fuoco
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden
| | - T. Christian Gasser
- Solid
Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden,Faculty
of Health Sciences, University of Southern
Denmark, 5230, Odense, Denmark,
| | - Anna Finne-Wistrand
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden,
| |
Collapse
|
9
|
Wang Z, Agrawal P, Zhang YS. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zongliang Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Prajwal Agrawal
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
10
|
Pishavar E, Luo H, Naserifar M, Hashemi M, Toosi S, Atala A, Ramakrishna S, Behravan J. Advanced Hydrogels as Exosome Delivery Systems for Osteogenic Differentiation of MSCs: Application in Bone Regeneration. Int J Mol Sci 2021; 22:ijms22126203. [PMID: 34201385 PMCID: PMC8228022 DOI: 10.3390/ijms22126203] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are known as water-swollen networks formed from naturally derived or synthetic polymers. They have a high potential for medical applications and play a crucial role in tissue repair and remodeling. MSC-derived exosomes are considered to be new entities for cell-free treatment in different human diseases. Recent progress in cell-free bone tissue engineering via combining exosomes obtained from human mesenchymal stem cells (MSCs) with hydrogel scaffolds has resulted in improvement of the methodologies in bone tissue engineering. Our research has been actively focused on application of biotechnological methods for improving osteogenesis and bone healing. The following text presents a concise review of the methodologies of fabrication and preparation of hydrogels that includes the exosome loading properties of hydrogels for bone regenerative applications.
Collapse
Affiliation(s)
- Elham Pishavar
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Mahshid Naserifar
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Maryam Hashemi
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
- Correspondence: (S.R.); (J.B.)
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
- School of Pharmacy, University of Waterloo, Waterloo, ON N2G 1C5, Canada
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2G 1C5, Canada
- Correspondence: (S.R.); (J.B.)
| |
Collapse
|
11
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
12
|
Potential Development of Sustainable 3D-Printed Meat Analogues: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13020938] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To mitigate the threat of climate change driven by livestock meat production, a multifaceted approach that incorporates dietary changes, innovative product development, advances in technologies, and reductions in food wastes/losses is proposed. The emerging technology of 3D printing (3DP) has been recognized for its unprecedented capacity to fabricate food products with intricate structures and reduced material cost and energy. For sustainable 3DP of meat substitutes, the possible materials discussed are derived from in vitro cell culture, meat byproducts/waste, insects, and plants. These material-based approaches are analyzed from their potential environmental effects, technological viability, and consumer acceptance standpoints. Although skeletal muscles and skin are bioprinted for medical applications, they could be utilized as meat without the additional printing of vascular networks. The impediments to bioprinting of meat are lack of food-safe substrates/materials, cost-effectiveness, and scalability. The sustainability of bioprinting could be enhanced by the utilization of generic/universal components or scaffolds and optimization of cell sourcing and fabrication logistics. Despite the availability of several plants and their byproducts and some start-up ventures attempting to fabricate food products, 3D printing of meat analogues remains a challenge. From various insects, powders, proteins (soluble/insoluble), lipids, and fibers are produced, which—in different combinations and at optimal concentrations—can potentially result in superior meat substitutes. Valuable materials derived from meat byproducts/wastes using low energy methods could reduce waste production and offset some greenhouse gas (GHG) emissions. Apart from printer innovations (speed, precision, and productivity), rational structure of supply chain and optimization of material flow and logistic costs can improve the sustainability of 3D printing. Irrespective of the materials used, perception-related challenges exist for 3D-printed food products. Consumer acceptance could be a significant challenge that could hinder the success of 3D-printed meat analogs.
Collapse
|
13
|
Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021; 9:535-573. [DOI: 10.1039/d0bm00973c] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, 3D bioprinting has received immense attention from research communities to bridge the divergence between artificially engineered tissue constructs and native tissues.
Collapse
Affiliation(s)
- Mohsen Askari
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Moqaddaseh Afzali Naniz
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Monireh Kouhi
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | - Azadeh Saberi
- Nanotechnology and Advanced Materials Department
- Materials and Energy Research Center
- Tehran
- Iran
| | | | - Mahdi Bodaghi
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| |
Collapse
|