1
|
Wang C, Chang CC, Chi JT, Yuan F. Sucrose Treatment Enhances the Electrotransfer of DNA by Activating Phospholipase A2. Pharmaceutics 2024; 16:475. [PMID: 38675136 PMCID: PMC11054232 DOI: 10.3390/pharmaceutics16040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Our previous study discovered that sucrose and other non-reducing sugars (e.g., trehalose and raffinose) could be used to improve the electrotransfer (ET) of molecular cargo, including DNA, mRNA, and ribonucleoprotein in various cell lines and primary human cells in vitro and in vivo. To understand the molecular mechanisms of this improvement, we used RNA sequencing technology to analyze changes in the cell transcriptome after sucrose treatment. The results from our analysis demonstrated that the sucrose treatment upregulated phospholipase A2 and V-ATPase gene families, which could potentially influence the acidity of intracellular vesicles through augmenting vesicle fusion and the influx of proton, respectively. To determine how this upregulation affects ET efficiency, we treated cells with pharmaceutical inhibitors of phospholipase A2 and V-ATPase. The data demonstrated that the treatment with the phospholipase A2 inhibitor could reverse the ET improvement elicited by the sucrose treatment. The V-ATPase inhibitor treatment either had little influence or further enhanced the effect of the sucrose treatment on the ET efficiency. These observations provide a molecular explanation for our previous findings, demonstrating that the sucrose treatment primarily enhanced the ET efficiency by promoting vesicle trafficking and fusion through the activation of phospholipase A2.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Wang C, Karlsson A, Oguin TH, Macintyre AN, Sempowski GD, McCarthy KR, Wang Y, Moody MA, Yuan F. Transient inhibition of lysosomal functions potentiates nucleic acid vaccines. Proc Natl Acad Sci U S A 2023; 120:e2306465120. [PMID: 37871214 PMCID: PMC10622924 DOI: 10.1073/pnas.2306465120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023] Open
Abstract
Nucleic acid vaccines have shown promising results in the clinic against infectious diseases and cancers. To robustly improve the vaccine efficacy and safety, we developed an approach to increase the intracellular stability of nucleic acids by transiently inhibiting lysosomal function in targeted tissues using sucrose. To achieve efficient and localized delivery of sucrose in animals, we designed a biomimetic lipid nanoparticle (LNP) to target the delivery of sucrose into mouse muscle cells. Using this approach, viral antigen expression in mouse muscle after DNA vaccination was substantially increased and prolonged without inducing local or systemic inflammation or toxicity. The same change in antigen expression would be achieved if the vaccine dose could be increased by 3,000 folds, which is experimentally and clinically impractical due to material restrictions and severe toxicity that will be induced by such a high dose of nucleic acids. The increase in antigen expression augmented the infiltration and activation of antigen-presenting cells, significantly improved vaccine-elicited humoral and T cell responses, and fully protected mice against the viral challenge at a low dose of vaccine. Based on these observations, we conclude that transient inhibition of lysosome function in target tissue by sucrose LNPs is a safe and potent approach to substantially improve nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Amelia Karlsson
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
| | - Thomas H. Oguin
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
- Department of Medicine, Duke University School of Medicine, Durham, NC27708
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
- Department of Medicine, Duke University School of Medicine, Durham, NC27708
| | - Kevin R. McCarthy
- Center for vaccine research, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Yifei Wang
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
- Department of Pediatrics, Duke University School of Medicine, Durham, NC27708
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| |
Collapse
|
3
|
Wang Y, Chang CC, Yuan F. Copy number of naked DNA delivered into nucleus of mammalian cells by electrotransfection. Bioelectrochemistry 2023; 153:108491. [PMID: 37356265 PMCID: PMC10527462 DOI: 10.1016/j.bioelechem.2023.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Electrotransfection is a non-viral method for delivery of nucleic acids into cells. In our previous study, we have determined the minimal copy number of plasmid DNA (pDNA) per cell required for transgene expression post electrotransfection, and developed a statistical framework to predict the pDNA copy number in the nucleus. To experimentally verify the prediction, the current study was designed to quantify the average copy number of pDNA per nucleus post electrotransfection. To achieve it, we developed a novel approach to effectively obtain isolated nuclei with minimal contamination by extranuclear pDNA. This sample preparation method enabled us to accurately measure intranuclear pDNA using quantitative real-time PCR. The data showed that the copy number of pDNA per nucleus was dependent on the period of cell culture post pulsing and the pDNA dose for electrotransfection. Additionally, the data were used to improve the statistical framework for understanding kinetics of pDNA transport in cells, and predicting how the kinetics depended on different factors. It is expected that the framework and the methodology developed in the current study will be useful for evaluating factors that may affect kinetics and mechanisms of pDNA transport in cells.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
4
|
Wang Y, Wang C, Sylvers J, Segura T, Yuan F. Nanoenhancer for improving naked DNA electrotransfection In vivo. Front Bioeng Biotechnol 2023; 11:1181795. [PMID: 37229498 PMCID: PMC10203387 DOI: 10.3389/fbioe.2023.1181795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Electrotransfection (ET) is a non-viral approach widely used for delivery of naked nucleic acids. Its efficiency can be increased in vitro by treatment of cells with various small molecule enhancers. However, these enhancers often fail to improve ET in vivo, presumably due to rapid clearance in tissues after local injection, reducing their cellular uptake. To this end, we propose to develop a new type of ET enhancers, which we term nanoenhancer, that diffuse slowly in tissues and are poorly absorbed by blood and lymph microvessels. Methods: Two nanoenhancers were synthesized with alginate (Alg) and chitosan (Chi) with or without poly (ethylene imine) (PEI). They were used to treat cells in vitro or mouse muscle in the hind leg in vivo prior to ET of plasmid DNA coding reporter genes. At 24 hours post ET, the efficiency of ET was quantified, and compared with that in the untreated controls. Changes in lysosomal size and acidity post nanoenhancer treatment were measured with fluorescence microscopy techniques. Results and discussion: We observed that the pretreatment of cells with the nanoenhancers could enhance the ET efficiency and cell viability in both C2C12 and HCT116 cells in vitro, and the nanoenhancer pretreatment had similar effects on the ET efficiency in vivo. Mechanisms of the enhancement were related to transient inactivation of lysosomal functions triggered by the nanoenhancer treatment. The concept of nanoenhancer will lead to development of new enhancers that can be used to improve ET efficiency in vivo, highlighting its potential in clinical applications.
Collapse
|
5
|
Muralidharan A, Pesch GR, Hubbe H, Rems L, Nouri-Goushki M, Boukany PE. Microtrap array on a chip for localized electroporation and electro-gene transfection. Bioelectrochemistry 2022; 147:108197. [PMID: 35810498 DOI: 10.1016/j.bioelechem.2022.108197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/09/2022] [Accepted: 06/25/2022] [Indexed: 11/19/2022]
Abstract
We developed a localized single-cell electroporation chip to deliver exogenous biomolecules with high efficiency while maintaining high cell viability. In our microfluidic device, the cells are trapped in a microtrap array by flow, after which target molecules are supplied to the device and electrotransferred to the cells under electric pulses. The system provides the ability to monitor the electrotransfer of exogenous biomolecules in real time. We reveal through numerical simulations that localized electroporation is the mechanism of permeabilization in the microtrap array electroporation device. We demonstrate the simplicity and accuracy of this microtrap technology for electroporation by delivery of both small molecules using propidium iodide and large molecules using plasmid DNA for gene expression, illustrating the potential of this minimally invasive method to be widely used for precise intracellular delivery purposes (from bioprocess engineering to therapeutic applications).
Collapse
Affiliation(s)
- Aswin Muralidharan
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| | - Georg R Pesch
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hendrik Hubbe
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000 Ljubljana, Slovenia
| | - Mahdiyeh Nouri-Goushki
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
6
|
Wang L, Chang CC, Sylvers J, Yuan F. A statistical framework for determination of minimal plasmid copy number required for transgene expression in mammalian cells. Bioelectrochemistry 2020; 138:107731. [PMID: 33434786 DOI: 10.1016/j.bioelechem.2020.107731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Plasmid DNA (pDNA) has been widely used for non-viral gene delivery. After pDNA molecules enter a mammalian cell, they may be trapped in subcellular structures or degraded by nucleases. Only a fraction of them can function as templates for transcription in the nucleus. Thus, an important question is, what is the minimal amount of pDNA molecules that need to be delivered into a cell for transgene expression? At present, it is technically a challenge to experimentally answer the question. To this end, we developed a statistical framework to establish the relationship between two experimentally quantifiable factors - average copy number of pDNA per cell among a group of cells after transfection and percent of the cells with transgene expression. The framework was applied to the analysis of electrotransfection under different experimental conditions in vitro. We experimentally varied the average copy number per cell and the electrotransfection efficiency through changes in extracellular pDNA dose, electric field strength, and pulse number. The experimental data could be explained or predicted quantitatively by the statistical framework. Based on the data and the framework, we could predict that the minimal number of pDNA molecules in the nucleus for transgene expression was on the order of 10. Although the prediction was dependent on the cell and experimental conditions used in the study, the framework may be generally applied to analysis of non-viral gene delivery.
Collapse
Affiliation(s)
- Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Justin Sylvers
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|