1
|
Khaliq NU, Lee J, Kim Y, Kim J, Kim T, Yu S, Seo D, Sung D, Kim H. Tumor cell loaded thermosensitive hydrogel for photodynamic therapy associated tumor antigens release. Biochim Biophys Acta Gen Subj 2024; 1868:130703. [PMID: 39163944 DOI: 10.1016/j.bbagen.2024.130703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Immunotherapy is a powerful strategy for treating cancer and can be used to inhibit the post-surgical relapse of tumors. METHODS To achieve this, a Cell@hydrogel was developed as a template using a mixture of CT26 tumor cells and Pluronic® F-127/gelatin. RESULTS The proposed mixture has a solution-to-gelation functionality and vice versa. The morphology of the Cell@hydrogel was characterized by scanning electron microscopy and confocal microscopy. For photodynamic immunotherapy, the Cell@hydrogel was functionalized with Cy7 (Cy7-Cell@hydrogel) to quantify reactive oxygen species in CT26 tumor cells. Gel electrophoresis and membrane integrity tests were performed to determine the efficiency of the Cy7-Cell@hydrogel following photodynamic therapy. CONCLUSIONS This protocol provides an alternative approach that mechanistically inhibits the post-surgical relapse of solid tumors based on immunotherapy.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea.
| | - Juyeon Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Yejin Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Joohyeon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Taeho Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Sohyeon Yu
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dongseong Seo
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea.
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea.
| |
Collapse
|
2
|
Almeida-Pinto J, Moura BS, Gaspar VM, Mano JF. Advances in Cell-Rich Inks for Biofabricating Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313776. [PMID: 38639337 DOI: 10.1002/adma.202313776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities. On this focus, herein the overarching challenges in the bioprocessing of cell-rich living inks into clinically grade engineered tissues are discussed, as well as the most recent advances in cell-rich living ink formulations and their processing technologies are highlighted. Additionally, an overview of the foreseen developments in the field is provided and critically discussed.
Collapse
Affiliation(s)
- José Almeida-Pinto
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Beatriz S Moura
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
3
|
Khaliq NU, Lee J, Kim S, Sung D, Kim H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023; 15:2102. [PMID: 37631316 PMCID: PMC10458801 DOI: 10.3390/pharmaceutics15082102] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pluronics are amphiphilic triblock copolymers composed of two hydrophilic poly (ethylene oxide) (PEO) chains linked via a central hydrophobic polypropylene oxide (PPO). Owing to their low molecular weight polymer and greater number of PEO segments, Pluronics induce micelle formation and gelation at critical micelle concentrations and temperatures. Pluronics F-68 and F-127 are the only United States (U.S.) FDA-approved classes of Pluronics and have been extensively used as materials for living bodies. Owing to the fascinating characteristics of Pluronics, many studies have suggested their role in biomedical applications, such as drug delivery systems, tissue regeneration scaffolders, and biosurfactants. As a result, various studies have been performed using Pluronics as a tool in nanomedicine and targeted delivery systems. This review sought to describe the delivery of therapeutic cargos using Pluronic F-68 and F-127-based cancer nanomedicines and their composites for combination therapy.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| |
Collapse
|
4
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Ueda N, Sawada S, Yuasa F, Kato K, Nagahama K. Covalent Stem Cell-Combining Injectable Materials with Enhanced Stemness and Controlled Differentiation In Vivo. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52618-52633. [PMID: 36398375 DOI: 10.1021/acsami.2c12918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biohybrid materials, which are defined as engineered functional materials combining living components with nonliving synthetic materials, are considered promising bioactive materials for applications in in vivo tissue engineering. However, the rational design of biohybrid materials applicable to in vivo tissue engineering faces major challenges associated with techniques for combining living cells with nonliving synthetic materials and cell sources. Here, we report injectable covalent stem cell-combing biohybrid materials prepared via a bio-orthogonal click cross-linking reaction of azide-modified adipose-derived stem cells (N3[+]ADSCs), one of the most promising cell sources utilized clinically, with alkyne-modified biocompatible alginate polymers. The mechanical properties of the covalent stem cell-combining biohybrid materials can be adapted to the mechanical properties of the surrounding environment in which they are transplanted by alternating the number of N3[+]ADSCs, the concentration of alkyne-modified alginate, and the number of alkyne groups. Importantly, ADSCs in the covalent biohybrid materials expressed a high level of CD-105, a marker for undifferentiated mesenchymal stem cells, in the body in the absence of differentiation signals, whereas very little CD-105 was expressed in the control physical cell-loading materials, demonstrating that this covalent stem cell-combining approach results in enhanced retention of the material's "stemness" and controlled differentiation in the body. We assessed the potential utility of the covalent stem cell-combining biohybrid materials for in vivo tissue engineering using a murine severe skeletal muscle defect-healing model. Importantly, all of the tissues regenerated by the covalent biohybrid material treatment expressed MYH3, a myogenic marker protein, whereas no expression of MYH3 was detected in the tissues reconstructed by treatment with control physical stem cell-loading materials and Matrigel, indicating that this covalent stem cell-combining approach results in controlled differentiation in the body. Our data demonstrate the potential utility of covalent stem cell-combining biohybrid materials with host tissue-integrative and controlled differentiation capabilities available for in vivo tissue engineering.
Collapse
Affiliation(s)
- Natsumi Ueda
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shiho Sawada
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Fumiya Yuasa
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Karen Kato
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Koji Nagahama
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
6
|
Nagahama K, Aoyama S, Ueda N, Kimura Y, Katayama T, Ono K. Biological Tissue-Inspired Living Self-Healing Hydrogels Based on Cadherin-Mediated Specific Cell-Cell Adhesion. ACS Macro Lett 2021; 10:1073-1079. [PMID: 35549121 DOI: 10.1021/acsmacrolett.1c00359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Regarding synthetic self-healing materials, as healing reactions occur at the molecular level, bond formation occurs when healing chemicals are nanometer distances apart. However, motility of healing chemicals in materials is quite limited, permitting only passive diffusion, which reduces the chance of bond formation. By contrast, biological-tissues exhibit significant high-performance self-healing, and cadherin-mediated cell-cell adhesion is a key mechanism in the healing process. This is because cells are capable of a certain level of motility and actively migrate to damage sites, thereby achieving cell-cell adhesion with high efficacy. Here, we report biological-tissue-inspired, self-healing hydrogels in which azide-modified living cells are covalently cross-linked with alkyne-modified alginate polymers via bioorthogonal reactions. As a proof-of-concept, we demonstrate their unique self-healing capabilities originating from cadherin-mediated adhesion between cells incorporated into the gels as mobile healing mechanism. This study provides an example of self-healing material incorporating living components into a synthetic material to promote self-healing.
Collapse
Affiliation(s)
- Koji Nagahama
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Seika Aoyama
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Natsumi Ueda
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Yuka Kimura
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Tokitaka Katayama
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Kimika Ono
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| |
Collapse
|