1
|
Refaat A, Thomas P, Zhang W, Esser L, Tong Z, Beer M, Mawdsley D, Thirkettle-Watts D, Shields KA, Nicolazzo JA, Voelcker NH. An In Vitro-In Vivo Comparative Study Using Highly Sensitive Radioisotopic Assays to Assess the Predictive Power of Emerging Blood-Brain Barrier Models. SMALL METHODS 2024:e2401400. [PMID: 39663724 DOI: 10.1002/smtd.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Microfluidic BBB-on-a-chip models (μBBB) aim to recapitulate the organotypic features of the human BBB with great potential to model CNS diseases and advance CNS therapeutics. Nevertheless, their predictive capacity for drug uptake into the brain remains uncertain due to limited evaluation with only a small number of model drugs. Here, the in vivo brain uptake of a panel of nine radiolabeled compounds is evaluated in Swiss-outbred mice following a single intravenously administered dose and compared against results from the microfluidic μBBB platform and the conventional Transwell BBB model. Radioisotopic measurements are employed to calculate brain-to-plasma concentration ratios (B/P) of the compounds both in vivo and in vitro. The in vitro-in vivo correlation plots of the B/P ratios revealed a strong positive correlation (r = 0.8081, R2 = 0.6530) for the μBBB, suggesting a high degree of predictive ability for drug permeability into the brain. In contrast, the Transwell assay showed a weaker in vitro-in vivo correlation (r = 0.6467, R2 = 0.4182). Finally, brain uptake of radiolabeled, brain-targeted, angiopep2-conjugated nanoparticles (ANG2-NP) is assessed in the μBBB and results mirrored the in vivo uptake, while the Transwell model failed to resolve the differences between the targeted and non-targeted NPs.
Collapse
Affiliation(s)
- Ahmed Refaat
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
| | - Patrick Thomas
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - Weisen Zhang
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC, 3168, Australia
| | - Lars Esser
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC, 3168, Australia
| | - Ziqiu Tong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
| | - Michael Beer
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - David Mawdsley
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - David Thirkettle-Watts
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - Katherine A Shields
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - Joseph A Nicolazzo
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
| | - Nicolas H Voelcker
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Rd, Melbourne, VIC, 3168, Australia
- Department of Materials Science & Engineering, Faculty of Engineering, Monash University, 14 Alliance Ln, Melbourne, VIC, 3168, Australia
| |
Collapse
|
2
|
Pucci C, De Pasquale D, Degl'Innocenti A, Montorsi M, Desii A, Pero M, Martinelli C, Bartolucci M, Petretto A, Ciofani G. Chlorin e6-Loaded Nanostructured Lipid Carriers Targeted by Angiopep-2: Advancing Photodynamic Therapy in Glioblastoma. Adv Healthc Mater 2024:e2402823. [PMID: 39344523 DOI: 10.1002/adhm.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor known for its resistance to standard treatments. Despite surgery being a primary option, it often leads to incomplete removal and high recurrence rates. Photodynamic therapy (PDT) holds promise as an adjunctive treatment, but safety concerns and the need for high-power lasers have limited its widespread use. This research addresses these challenges by introducing a novel PDT approach, using chlorin e6 (Ce6) enclosed in nanostructured lipid carriers (Ang-Ce6-NLCs) and targeted to GBM with the angiopep-2 peptide. Remarkably, a single 5-min irradiation session with LEDs at 660 nm and low power density (10 mW cm- 2) proves effective against GBM, while reducing safety risks associated with high-power lasers. Encapsulation improves Ce6 stability and performance in physiological environments, while angiopep-2 targeting enhances delivery to GBM cells, maximizing treatment efficacy and minimizing off-target effects. The findings demonstrate that Ang-Ce6-NLCs-mediated PDT brings about a significant reduction in GBM cell viability, increases oxidative stress, reduces tumor migration, and enhances apoptosis. Overall, such treatment holds potential as a safe and efficient intraoperative removal of GBM infiltrating cells that cannot be reached by surgery, using low-power LED light to minimize harm to surrounding healthy tissue while maximizing tumor treatment.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Marta Pero
- Politecnico di Torino, DIMEAS, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
3
|
Cai X, Refaat A, Gan PY, Fan B, Yu H, Thang SH, Drummond CJ, Voelcker NH, Tran N, Zhai J. Angiopep-2-Functionalized Lipid Cubosomes for Blood-Brain Barrier Crossing and Glioblastoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12161-12174. [PMID: 38416873 DOI: 10.1021/acsami.3c14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer with high malignancy and resistance to conventional treatments, resulting in a bleak prognosis. Nanoparticles offer a way to cross the blood-brain barrier (BBB) and deliver precise therapies to tumor sites with reduced side effects. In this study, we developed angiopep-2 (Ang2)-functionalized lipid cubosomes loaded with cisplatin (CDDP) and temozolomide (TMZ) for crossing the BBB and providing targeted glioblastoma therapy. Developed lipid cubosomes showed a particle size of around 300 nm and possessed an internal ordered inverse primitive cubic phase, a high conjugation efficiency of Ang2 to the particle surface, and an encapsulation efficiency of more than 70% of CDDP and TMZ. In vitro models, including BBB hCMEC/D3 cell tight monolayer, 3D BBB cell spheroid, and microfluidic BBB/GBM-on-a-chip models with cocultured BBB and glioblastoma cells, were employed to study the efficiency of the developed cubosomes to cross the BBB and showed that Ang2-functionalized cubosomes can penetrate the BBB more effectively. Furthermore, Ang2-functionalized cubosomes showed significantly higher uptake by U87 glioblastoma cells, with a 3-fold increase observed in the BBB/GBM-on-a-chip model as compared to that of the bare cubosomes. Additionally, the in vivo biodistribution showed that Ang2 modification could significantly enhance the brain accumulation of cubosomes in comparison to that of non-functionalized particles. Moreover, CDDP-loaded Ang2-functionalized cubosomes presented an enhanced toxic effect on U87 spheroids. These findings suggest that the developed Ang2-cubosomes are prospective for improved BBB crossing and enhanced delivery of therapeutics to glioblastoma and are worth pursuing further as a potential application of nanomedicine for GBM treatment.
Collapse
Affiliation(s)
- Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Ahmed Refaat
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, VIC, Australia
| | - Poh-Yi Gan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, 246 Clayton Rd, Clayton 3168, VIC, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton 3168, Victoria, Australia
- Department of Materials Science & Engineering, Monash University, Clayton 3168, Victoria, Australia
| | - Nhiem Tran
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| |
Collapse
|
4
|
Deli MA, Porkoláb G, Kincses A, Mészáros M, Szecskó A, Kocsis AE, Vigh JP, Valkai S, Veszelka S, Walter FR, Dér A. Lab-on-a-chip models of the blood-brain barrier: evolution, problems, perspectives. LAB ON A CHIP 2024; 24:1030-1063. [PMID: 38353254 DOI: 10.1039/d3lc00996c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A great progress has been made in the development and use of lab-on-a-chip devices to model and study the blood-brain barrier (BBB) in the last decade. We present the main types of BBB-on-chip models and their use for the investigation of BBB physiology, drug and nanoparticle transport, toxicology and pathology. The selection of the appropriate cell types to be integrated into BBB-on-chip devices is discussed, as this greatly impacts the physiological relevance and translatability of findings. We identify knowledge gaps, neglected engineering and cell biological aspects and point out problems and contradictions in the literature of BBB-on-chip models, and suggest areas for further studies to progress this highly interdisciplinary field. BBB-on-chip models have an exceptional potential as predictive tools and alternatives of animal experiments in basic and preclinical research. To exploit the full potential of this technique expertise from materials science, bioengineering as well as stem cell and vascular/BBB biology is necessary. There is a need for better integration of these diverse disciplines that can only be achieved by setting clear parameters for characterizing both the chip and the BBB model parts technically and functionally.
Collapse
Affiliation(s)
- Mária A Deli
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Gergő Porkoláb
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - András Kincses
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Mária Mészáros
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Anikó Szecskó
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - Anna E Kocsis
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Judit P Vigh
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - Sándor Valkai
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Szilvia Veszelka
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Fruzsina R Walter
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - András Dér
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| |
Collapse
|
5
|
Park SR, Kook MG, Kim SR, Lee JW, Yu YS, Park CH, Lim S, Oh BC, Jung Y, Hong IS. A microscale 3D organ on a chip for recapitulating reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland. Biofabrication 2024; 16:025011. [PMID: 38277677 DOI: 10.1088/1758-5090/ad22f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Conventional 2D or even recently developed 3Din vitroculture models for hypothalamus and pituitary gland cannot successfully recapitulate reciprocal neuroendocrine communications between these two pivotal neuroendocrine tissues known to play an essential role in controlling the body's endocrine system, survival, and reproduction. In addition, most currentvitroculture models for neuroendocrine tissues fail to properly reflect their complex multicellular structure. In this context, we developed a novel microscale chip platform, termed the 'hypothalamic-pituitary (HP) axis-on-a-chip,' which integrates various cellular components of the hypothalamus and pituitary gland with biomaterials such as collagen and hyaluronic acid. We used non-toxic blood coagulation factors (fibrinogen and thrombin) as natural cross-linking agents to increase the mechanical strength of biomaterials without showing residual toxicity to overcome drawbacks of conventional chemical cross-linking agents. Furthermore, we identified and verified SERPINB2 as a reliable neuroendocrine toxic marker, with its expression significantly increased in both hypothalamus and pituitary gland cells following exposure to various types of toxins. Next, we introduced SERPINB2-fluorescence reporter system into loaded hypothalamic cells and pituitary gland cells within each chamber of the HP axis on a chip, respectively. By incorporating this SERPINB2 detection system into the loaded hypothalamic and pituitary gland cells within our chip platform, Our HP axis-on-chip platform can better mimic reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland in the brain microenvironments with improved efficiency in evaluating neuroendocrine toxicities of certain drug candidates.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Myung Geun Kook
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Young Soo Yu
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Soyi Lim
- Gachon University Gil Hospital VIP Health Promotion Center, Incheon, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| |
Collapse
|
6
|
Park W, Lee JS, Gao G, Kim BS, Cho DW. 3D bioprinted multilayered cerebrovascular conduits to study cancer extravasation mechanism related with vascular geometry. Nat Commun 2023; 14:7696. [PMID: 38001146 PMCID: PMC10673893 DOI: 10.1038/s41467-023-43586-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebral vessels are composed of highly complex structures that facilitate blood perfusion necessary for meeting the high energy demands of the brain. Their geometrical complexities alter the biophysical behavior of circulating tumor cells in the brain, thereby influencing brain metastasis. However, recapitulation of the native cerebrovascular microenvironment that shows continuities between vascular geometry and metastatic cancer development has not been accomplished. Here, we apply an in-bath 3D triaxial bioprinting technique and a brain-specific hybrid bioink containing an ionically crosslinkable hydrogel to generate a mature three-layered cerebrovascular conduit with varying curvatures to investigate the physical and molecular mechanisms of cancer extravasation in vitro. We show that more tumor cells adhere at larger vascular curvature regions, suggesting that prolongation of tumor residence time under low velocity and wall shear stress accelerates the molecular signatures of metastatic potential, including endothelial barrier disruption, epithelial-mesenchymal transition, inflammatory response, and tumorigenesis. These findings provide insights into the underlying mechanisms driving brain metastases and facilitate future advances in pharmaceutical and medical research.
Collapse
Affiliation(s)
- Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea.
- Medical Research Institute, Pusan National University, Yangsan, Republic of Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
7
|
Zhang B, Li X, Tang K, Xin Y, Hu G, Zheng Y, Li K, Zhang C, Tan Y. Adhesion to the Brain Endothelium Selects Breast Cancer Cells with Brain Metastasis Potential. Int J Mol Sci 2023; 24:ijms24087087. [PMID: 37108248 PMCID: PMC10138870 DOI: 10.3390/ijms24087087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the endothelium of a specific organ exhibit enhanced metastatic tropism to this target organ. This study tested this hypothesis and developed an in vitro model to mimic the adhesion between tumor cells and brain endothelium under fluid shear stress, which selected a subpopulation of tumor cells with enhanced adhesion strength. The selected cells up-regulated the genes related to brain metastasis and exhibited an enhanced ability to transmigrate through the blood-brain barrier. In the soft microenvironments that mimicked brain tissue, these cells had elevated adhesion and survival ability. Further, tumor cells selected by brain endothelium adhesion expressed higher levels of MUC1, VCAM1, and VLA-4, which were relevant to breast cancer brain metastasis. In summary, this study provides the first piece of evidence to support that the adhesion of circulating tumor cells to the brain endothelium selects the cells with enhanced brain metastasis potential.
Collapse
Affiliation(s)
- Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xueyi Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yufan Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
8
|
Bouhrira N, DeOre BJ, Tran KA, Galie PA. Transcriptomic analysis of a 3D blood-brain barrier model exposed to disturbed fluid flow. Fluids Barriers CNS 2022; 19:94. [PMID: 36434717 PMCID: PMC9700938 DOI: 10.1186/s12987-022-00389-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cerebral aneurysms are more likely to form at bifurcations in the vasculature, where disturbed fluid is prevalent due to flow separation at sufficiently high Reynolds numbers. While previous studies have demonstrated that altered shear stress exerted by disturbed flow disrupts endothelial tight junctions, less is known about how these flow regimes alter gene expression in endothelial cells lining the blood-brain barrier. Specifically, the effect of disturbed flow on expression of genes associated with cell-cell and cell-matrix interaction, which likely mediate aneurysm formation, remains unclear. RNA sequencing of immortalized cerebral endothelial cells isolated from the lumen of a 3D blood-brain barrier model reveals distinct transcriptional changes in vessels exposed to fully developed and disturbed flow profiles applied by both steady and physiological waveforms. Differential gene expression, validated by qRT-PCR and western blotting, reveals that lumican, a small leucine-rich proteoglycan, is the most significantly downregulated gene in endothelial cells exposed to steady, disturbed flow. Knocking down lumican expression reduces barrier function in the presence of steady, fully developed flow. Moreover, adding purified lumican into the hydrogel of the 3D blood-brain barrier model recovers barrier function in the region exposed to fully developed flow. Overall, these findings emphasize the importance of flow regimes exhibiting spatial and temporal heterogeneous shear stress profiles on cell-matrix interaction in endothelial cells lining the blood-brain barrier, while also identifying lumican as a contributor to the formation and maintenance of an intact barrier.
Collapse
Affiliation(s)
- Nesrine Bouhrira
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| | - Brandon J. DeOre
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| | - Kiet A. Tran
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| | - Peter A. Galie
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| |
Collapse
|