1
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
2
|
Oliveira JH, Gomes JS, Santos P, Pezarat-Correia P, Vaz JR. Effect of sleep deprivation on gait complexity. J Sleep Res 2025:e14478. [PMID: 39904824 DOI: 10.1111/jsr.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Gait complexity is considered an indicator of adaptability, reflecting the complex interaction between multiple components of the neuromuscular system. Previous research provided evidence that chronobiology, which reflects the individual expression of circadian rhythms, affects the regulation of gait dynamics. The literature also suggests the disruption of these circadian rhythms affects multiple human physiological systems. Considering the association between chronobiology and gait complexity, and its clinical relevance, it would be important to investigate whether the disruption of sleep-wake cycle could affect gait complexity. This study aimed to investigate the effect of 1 night of sleep deprivation on gait complexity and variability of healthy individuals, exploring potential implications for motor control. Seventeen healthy and young male adults underwent an in-lab supervised 24-hr sleep deprivation protocol, with gait complexity and variability assessed using detrended fluctuation analysis and coefficient of variation, respectively. Chronotype was also assessed through the Morningness-Eveningness Questionnaire. We observed a loss of gait complexity with sleep deprivation (PRE: 0.8 ± 0.13; POST24: 0.62 ± 0.08, p < 0.001), while gait variability remained unaltered (p = 0.132). Additionally, we demonstrated an association between gait complexity's relative changes and chronotype (r = -0.665, p = 0.004). Overall, our findings suggest sleep deprivation induces a decrease in the neuromuscular system's ability to flexibly adapt gait output. Moreover, we also highlight the importance of chronobiology in motor control, as we observed the more morning-type an individual is, the greater the loss of complexity following 1 night of sleep deprivation. Altogether, our findings underscore the potential impact of sleep deprivation on central processes underlying gait complexity.
Collapse
Affiliation(s)
- João Henriques Oliveira
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz-Quebrada-Dafundo, Portugal
| | - João Sá Gomes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Paulo Santos
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz-Quebrada-Dafundo, Portugal
| | - Pedro Pezarat-Correia
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - João R Vaz
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| |
Collapse
|
3
|
Oliveira JH, Santos P, Pezarat-Correia P, Vaz JR. Sleep deprivation increases the regularity of isometric torque fluctuations. Exp Brain Res 2024; 242:1037-1046. [PMID: 38451319 PMCID: PMC11078836 DOI: 10.1007/s00221-024-06810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
The regularity of the fluctuations present in torque signals represent the adaptability of the motor control. While previous research showed how it is affected by neuromuscular fatigue and ageing, the underlying mechanisms remain unclear. It is currently under debate whether these changes are explained by central or peripheral neuromuscular mechanisms. Here, we experimentally manipulated the sleep of thirteen young adults through a supervised 24 h-sleep deprivation protocol. This study aimed to investigate the effect of sleep deprivation on the regularity of torque fluctuations, and other standard torque-related outcomes (Peak Torque - PT - and Rate of Torque Development - RTD). The participants were asked to perform knee extension maximal voluntary contractions (MVC) and submaximal knee extensions at 40% of MVC for 30 s. PT and RTD were calculated from the MVC and the regularity of the torque fluctuations was determined on the submaximal task through Sample Entropy (SampEn). In addition, rate of perceived effort (RPE) was collected. We found no significant changes in PT and RTD. The regularity of torque fluctuations significantly increased (i.e., a decrease in SampEn) after 24 h-sleep deprivation (PRE = 1.76 ± 0.268, POS24 = 1.71 ± 0.306; p = 0.044). Importantly, we found a negative correlation between RPE and SampEn relative changes after sleep deprivation. This study brings new insights towards the understanding of the underlying mechanisms that explain changes in torque fluctuations, demonstrating that these changes are not limited to neuromuscular processes but are also likely to be affected by other domains, such as psychological profile, which can indirectly affect the neural drive to the muscles.
Collapse
Affiliation(s)
- João H Oliveira
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- CIPER,Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Paulo Santos
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- CIPER,Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- CIPER,Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - João R Vaz
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal.
| |
Collapse
|
4
|
Jordão S, Stergiou N, Brandão R, Pezarat-Correia P, Oliveira R, Cortes N, Vaz JR. Muscle activity variability patterns and stride to stride fluctuations of older adults are positively correlated during walking. Sci Rep 2023; 13:20721. [PMID: 38007498 PMCID: PMC10676363 DOI: 10.1038/s41598-023-47828-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023] Open
Abstract
It has been found that fractal-like patterns are present in the temporal structure of the variability of healthy biological rhythms, while pathology and disease lead to their deterioration. Interestingly, it has recently been suggested that these patterns in biological rhythms are related with each other, reflecting overall health or lack of it, due to their interaction. However, the underlying neurophysiological mechanisms responsible for such dependency remain unknown. In addition, this relationship between different elements needs to be first verified before we even pursue understanding their interaction. This study aimed to investigate the relationship between two elements of the neuromuscular system, gait and muscle activity variability patterns in older adults. Twenty-one older adults walked at their preferred walking speed on a treadmill. Inter-stride intervals were obtained through an accelerometer placed on the lateral malleoli to assess the temporal structure of variability of stride-to-stride fluctuations. Inter muscle peak intervals were obtained through the electromyographic signal of the gastrocnemius to assess the temporal structure of the variability of the simultaneous muscle activity. The temporal structure of variability from both signals was evaluated through the detrended fluctuation analysis, while their magnitude of variability was evaluated using the coefficient of variation. The Pearson's Correlation coefficient was used to identify the relationship between the two dependent variables. A significant strong positive correlation was found between the temporal structure of gait and muscle activity patterns. This result suggests that there is an interdependency between biological rhythms that compose the human neuromuscular system.
Collapse
Affiliation(s)
- Sofia Jordão
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, Monte da Caparica, 2829 - 511, Caparica, Portugal
- Hospital da Ordem Terceira Chiado, Lisbon, Portugal
| | - Nick Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Physical Education and Sport Science, Aristotle University, Thessaloniki, Greece
| | - Rita Brandão
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Pedro Pezarat-Correia
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Raúl Oliveira
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Nelson Cortes
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - João R Vaz
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal.
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, Monte da Caparica, 2829 - 511, Caparica, Portugal.
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|