1
|
Zayka P, Parr B, Robichaud H, Hickey S, Topping A, Holt E, Watts DBE, Soto N, Stein DC, DeShong P, Hurley M. Evaluating methods to create protein functionalized catanionic vesicles. SOFT MATTER 2023; 19:1429-1439. [PMID: 36723251 PMCID: PMC10103230 DOI: 10.1039/d2sm01205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catanionic surfactant vesicles (SVs) composed of sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium tosylate (CTAT) have potential applications as targeted drug delivery systems, vaccine platforms, and diagnostic tools. To facilitate these applications, we evaluated various methods to attach proteins to the surface of SDBS/CTAT vesicles. Acid phosphatase from wheat germ was used as a model protein. Acid phosphatase was successfully conjugated to vesicles enriched with a Triton-X 100 derivative containing an unsaturated ester. Enzymatic activity of acid phosphatase attached to vesicles was assessed using an acid phosphatase assay. Results from the acid phosphatase assay indicated that 15 ± 3% of the attached protein remained functional but the presence of vesicles interferes with the assay. DLS and zeta potential results correlated with the protein functionalization studies. Acid phosphatase functionalized vesicles had an average diameter of 175 ± 85 nm and an average zeta potential of -61 ± 5 mV in PBS. As a control, vesicles enriched with Triton-X 100 were prepared and analyzed by DLS and zeta potential measurements. Triton X-100 enriched vesicles had an average diameter of 140 ± 67 nm and an average zeta potential of -49 ± 2 mV in PBS. Functionalizing the surface of SVs with proteins may be a key step in developing vesicle-based technologies. For drug delivery, antibodies could be used as targeting molecules; for vaccine formulation, functionalizing the surface with spike proteins may produce novel vaccine platforms.
Collapse
Affiliation(s)
- Paul Zayka
- Chemistry Department, Saint Anselm College, Manchester, NH 03102, USA.
| | - Brendan Parr
- Chemistry Department, Saint Anselm College, Manchester, NH 03102, USA.
| | - Hannah Robichaud
- Chemistry Department, Saint Anselm College, Manchester, NH 03102, USA.
| | - Skyler Hickey
- Chemistry Department, Saint Anselm College, Manchester, NH 03102, USA.
| | - Amber Topping
- Chemistry Department, Saint Anselm College, Manchester, NH 03102, USA.
| | - Elizabeth Holt
- Chemistry Department, Saint Anselm College, Manchester, NH 03102, USA.
| | - David B E Watts
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Nicholas Soto
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Daniel C Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Philip DeShong
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Matthew Hurley
- Chemistry Department, Saint Anselm College, Manchester, NH 03102, USA.
| |
Collapse
|
2
|
Donahue TC, Zong G, Ou C, DeShong P, Wang LX. Catanionic Vesicles as a Facile Scaffold to Display Natural N-Glycan Ligands for Probing Multivalent Carbohydrate-Lectin Interactions. Bioconjug Chem 2023; 34:392-404. [PMID: 36642983 PMCID: PMC10349922 DOI: 10.1021/acs.bioconjchem.2c00560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Multivalent interactions are a key characteristic of protein-carbohydrate recognition. Phospholipid-based liposomes have been explored as a popular platform for multivalent presentation of glycans, but this platform has been plagued by the instability of typical liposomal formulations in biological media. We report here the exploitation of catanionic vesicles as a stable lipid-based nanoparticle scaffold for displaying large natural N-glycans as multivalent ligands. Hydrophobic insertion of lipidated N-glycans into the catanionic vesicle bilayer was optimized to allow for high-density display of structurally diverse N-glycans on the outer membrane leaflet. In an enzyme-linked competitive lectin-binding assay, the N-glycan-coated vesicles demonstrated a clear clustering glycoside effect, with significantly enhanced affinity for the corresponding lectins including Sambucus nigra agglutinin (SNA), concanavalin A (ConA), and human galectin-3, in comparison with their respective natural N-glycan ligands. Our results showed that relatively low density of high-mannose and sialylated complex type N-glycans gave the maximal clustering effect for binding to ConA and SNA, respectively, while relatively high-density display of the asialylated complex type N-glycan provided maximal clustering effects for binding to human galectin 3. Moreover, we also observed a macromolecular crowding effect on the binding of ConA to high-mannose N-glycans when catanionic vesicles bearing mixed high-mannose and complex-type N-glycans were used. The N-glycan-coated catanionic vesicles are stable and easy to formulate with varied density of ligands, which could serve as a feasible vehicle for drug delivery and as potent inhibitors for intervening protein-carbohydrate interactions implicated in disease.
Collapse
Affiliation(s)
- Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Philip DeShong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
3
|
Evans SE, Harrington T, Rodriguez Rivero MC, Rognin E, Tuladhar T, Daly R. 2D and 3D inkjet printing of biopharmaceuticals - A review of trends and future perspectives in research and manufacturing. Int J Pharm 2021; 599:120443. [PMID: 33675921 DOI: 10.1016/j.ijpharm.2021.120443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
There is an ongoing global shift in pharmaceutical business models from small molecule drugs to biologics. This increase in complexity is in response to advancements in our diagnoses and understanding of diseases. With the more targeted approach coupled with its inherently more costly development and manufacturing, 2D and 3D printing are being explored as suitable techniques to deliver more personalised and affordable routes to drug discovery and manufacturing. In this review, we explore first the business context underlying this shift to biopharmaceuticals and provide an update on the latest work exploring discovery and pharmaceutics. We then draw on multiple disciplines to help reveal the shared challenges facing researchers and firms aiming to develop biopharmaceuticals, specifically when using the most commonly explored manufacturing routes of drop-on-demand inkjet printing and pneumatic extrusion. This includes separating out how to consider mechanical and chemical influences during manufacturing, the role of the chosen hardware and the challenges of aqueous formulation based on similar challenges being faced by the printing industry. Together, this provides a review of existing work and guidance for researchers and industry to help with the de-risking and rapid development of future biopharmaceutical products.
Collapse
Affiliation(s)
| | | | | | - Etienne Rognin
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK
| | | | - Ronan Daly
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK.
| |
Collapse
|
4
|
Sharma B, Thakur V, Kaur G, Chaudhary GR. Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using Rose Bengal Encapsulated in Metallocatanionic Vesicles in the Presence of Visible Light. ACS APPLIED BIO MATERIALS 2020; 3:8515-8524. [PMID: 35019621 DOI: 10.1021/acsabm.0c00901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significant consumption of antibiotics has generated multidrug resistance in bacteria, which is a major menace to human beings. Antibacterial photodynamic therapy (aPDT) is a progressing technique for inhibition of bacterial infection with minimal side effects. Metals and delivering agents play a major role in aPDT efficiency. Herein, we report a formulation to enrich the antibacterial photodynamic therapy utilizing metallocatanionic vesicles (MCVs) against both Gram-positive and Gram-negative bacteria. These MCVs were synthesized by utilizing iron-based double-chain metallosurfactant [FeCPC(II)] as a cationic surfactant and AOT, a double-chain anionic surfactant. These synthesized MCV fractions were characterized by distinct techniques like DLS, zeta potential, FE-SEM, confocal microscopy, SAXS, and UV-Visible spectroscopy. Polyhedral-shaped MCVs with a size of 200 nm were formed, wherein the charge and size of the catanionic vesicle can be controlled by varying the mixing ratios. Both Gram-positive bacteria, i.e., methicillin-resistant Staphylococcus aureus (MRSA), and Gram-negative bacteria, i.e., Escherichia coli (E. coli), were used for aPDT using Rose Bengal (RB) as a photosensitizer (PS) encapsulated in MCVs in the presence of a 532 nm wavelength laser. The aPDT against bacterial cells was evaluated for both dark and light toxicities. Pure MCVs also exhibited good antibacterial properties; however, much enhancement was observed in the presence of RB encapsulated in MCVs under light, where eradication of bacteria (E. coli and MRSA) was achieved in 30 min. The observations demonstrated that it is the presence of metal that enhances the singlet oxygen quantum yield of RB and MCVs help in retarding self-quenching and enhanced solubilization of RB. The cationic surfactant-rich fraction shows strong adhesion toward bacteria via electrostatic interactions. The outcome of this research shows that these newly fabricated metal-based metallocatanionic vesicles were effective against both Gram-positive and Gram-negative bacteria using aPDT and must be exploited for clinical applications as well as an alternative for antibiotics in the future.
Collapse
Affiliation(s)
- Bunty Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vipul Thakur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
5
|
Duan S, Jiang Y, Geng T, Ju H, Wang Y. Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A new type of catanionic surfactant phosphonium benzene sulfonate was synthesized by quaternization of triphenyl phosphine with dimethyl carbonate and followed by anion exchange with alkyl benzene sulfonic acid. The molecular structure was characterized by FT-IR, 1H-NMR, and 31P-NMR. The thermal stability of phosphonium benzene sulfonate was evaluated by thermogravimetric analysis (TGA). Its surface properties were studied systematically through equilibrium surface tension, electrical conductivity, and dynamic surface tension measurements. The wettability, foam properties, and emulsification of phosphonium benzene sulfonate were estimated in this paper. TGA results revealed that it has an excellent thermostability and could be used below 350 °C. Equilibrium surface tension results indicated that it has a low critical micelle concentration (CMC, about 0.10 mmol/L), lower than that of ammonium benzene sulfonate and sodium dodecyl benzene sulfonate. Furthermore, the micellization of phosphonium benzene sulfonate in aqueous solution is an entropy-driven spontaneous process. The adsorption process of phosphonium benzenesulfonate at the air-liquid interface is controlled by hybrid kinetic adsorption. Moreover, it has excellent wetting and emulsifying properties and low foam properties.
Collapse
|