1
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Lin M, Wang X. Natural Biopolymer-Based Delivery of CRISPR/Cas9 for Cancer Treatment. Pharmaceutics 2023; 16:62. [PMID: 38258073 PMCID: PMC10819213 DOI: 10.3390/pharmaceutics16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Over the last decade, the clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the most promising gene editing tool and is broadly utilized to manipulate the gene for disease treatment, especially for cancer, which involves multiple genetic alterations. Typically, CRISPR/Cas9 machinery is delivered in one of three forms: DNA, mRNA, or ribonucleoprotein. However, the lack of efficient delivery systems for these macromolecules confined the clinical breakthrough of this technique. Therefore, a variety of nanomaterials have been fabricated to improve the stability and delivery efficiency of the CRISPR/Cas9 system. In this context, the natural biopolymer-based carrier is a particularly promising platform for CRISPR/Cas9 delivery due to its great stability, low toxicity, excellent biocompatibility, and biodegradability. Here, we focus on the advances of natural biopolymer-based materials for CRISPR/Cas9 delivery in the cancer field and discuss the challenges for their clinical translation.
Collapse
Affiliation(s)
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Yang J, Bai L, Shen M, Gou X, Xiang Z, Ma S, Wu Q, Gong C. A Multiple Stimuli-Responsive NanoCRISPR Overcomes Tumor Redox Heterogeneity to Augment Photodynamic Therapy. ACS NANO 2023. [PMID: 37310989 DOI: 10.1021/acsnano.3c00940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Redox heterogeneity of tumor cells has become one of the key factors leading to the failure of conventional photodynamic therapy (PDT). Exploration of a distinctive therapeutic strategy addressing heterogeneous predicaments is an appealing yet highly challenging task. Herein, a multiple stimuli-responsive nanoCRISPR (Must-nano) with spatial arrangement peculiarities in nanostructure and intracellular delivery is fabricated to overcome redox heterogeneity at both genetic and phenotypic levels for tumor-specific activatable PDT. Must-nano consists of a redox-sensitive core loading CRISPR/Cas9 targeting hypoxia-inducible factors-1α (HIF-1α) and a rationally designed multiple-responsive shell anchored by chlorin e6 (Ce6). Benefiting from the perfect coordination of structure and function, Must-nano avoids enzyme/photodegradation of the CRISPR/Cas9 system and exerts prolonged circulation, precise tumor recognition, and cascade-responsive performances to surmount tumor extra/intracellular barriers. After internalization into tumor cells, Must-nano could undergo hyaluronidase-triggered self-disassembly with charge reversal and rapid endosomal escape, followed by site-specific release and spatially asynchronous delivery of Ce6 and CRISPR/Cas9 under stimulations of redox signals, which not only improves tumor vulnerability to oxidative stress by complete HIF-1α disruption but also destroys the intrinsic antioxidant mechanism through glutathione depletion, thereby homogenizing redox-heterogeneous cells into oxidative stress-sensitive cell subsets. Under laser irradiation, Must-nano eventually exhibits optimal potency to amplify oxidative damage, effectively inhibiting the growth and hypoxia survival of redox-heterogeneous tumor in vitro and in vivo. Overall, our redox homogenization tactic significantly maximizes PDT efficacy and offers a promising strategy to overcome tumor redox heterogeneity in the development of antitumor therapies.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liping Bai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xinyu Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhongzheng Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuang Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
4
|
Zhu H, Zhou Y, Wang Y, Xu S, James TD, Wang L. Stepwise-Enhanced Tumor Targeting of Near-Infrared Emissive Au Nanoclusters with High Quantum Yields and Long-Term Stability. Anal Chem 2022; 94:13189-13196. [PMID: 36106565 PMCID: PMC9591319 DOI: 10.1021/acs.analchem.2c02717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We developed an in situ coordination-driven
spatially
confined strategy for preparing near-infrared emissive gold nanoclusters
encapsulated by fluorinated polymers (AuNCs@PF, λmax = 810 nm) with good stability and high quantum yields (27.7%), far
higher than those previously reported for NIR AuNCs (>800 nm).
Based
on the stepwise enhancements including long blood circulation-induced
passive tumor targeting, fluoro-enhanced tumor permeation, and tumor
microenvironment (weak acid)-induced aggregation retention in cells,
these AuNCs demonstrated bright and stable NIR fluorescence imaging
ability in tumors. Additionally, the AuNCs@PF were capable of fluorine
magnetic resonance imaging and computed tomographic imaging. The multimodal
imaging of tumor-bearing mice clearly implied the potential of AuNCs@PF
in biomedical fields.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Luo R, Ou C, Li X, Wang Y, Du W, Liang G, Gong C. An Acidity-Initiated Self-Assembly/Disassembly Nanoprobe to Switch on Fluorescence for Tumor-Targeted Near-Infrared Imaging. NANO LETTERS 2021; 22:151-156. [PMID: 34958593 DOI: 10.1021/acs.nanolett.1c03534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The deep penetration, real-time monitoring ability, and high resolution of near-infrared (NIR) fluorescence imaging make it suitable for tumor diagnosis. However, the lack of specificity and selectivity restricts its further application. Here, for the first time, we applied a CBT-Cys click condensation reaction to synthesize an acidity-initiated molecular probe (AIM-Probe, Cys(StBu)-Lys(Cy 5.5)-EDA-PMA-CBT), which could self-assemble into nanoparticles (AIM-NP) with self-quenched fluorescence under glutathione (GSH) reduction. AIM-NP could accumulate in tumors after intravenous injection. Subsequently, the EDA-PMA part of AIM-Probe in AIM-NP is fractured by the unique subacid condition in the tumor microenvironment, and AIM-NP disassembles into a small AIM-cleaved molecule (PMA-CBT-Cys-Lys(Cy5.5)-EDA) along with fluorescence switching on. As a result, AIM-NP could switch on fluorescence at the tumor site, thereby achieving tumor-targeted imaging. To our knowledge, utilizing tumor acidity to initiate the disassembly of self-assembled nanoparticles through a CBT-Cys click condensation reaction has not been reported.
Collapse
Affiliation(s)
- Rui Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chunqing Ou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xinchao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yanfang Wang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Wei Du
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, People's Republic of China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|