1
|
Zhang Z, Hu Y, Ding Y, Zhang X, Dong X, Xie L, Yang Z, Hu ZW. Dual-Enzyme-Instructed Peptide Self-Assembly to Boost Immunogenic Cell Death by Coordinating Intracellular Calcium Overload and Chemotherapy. ACS NANO 2025; 19:488-503. [PMID: 39754594 DOI: 10.1021/acsnano.4c10119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of CPMC (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection. Although CPT and Caps respectively prevent tumor progression by inhibiting type-I DNA topoisomerase and activating transient receptor potential cation channel subfamily V member 1 (TRPV1) for intracellular calcium overload, neither alone effectively stimulates sufficient ICD signaling to meet immunotherapeutic needs. CPMC, sequentially allowing an active Caps derivative of VRK-Caps and CPT to release extracellularly and intracellularly, can synergize two distinct apoptosis pathways stimulated by Caps and CPT to increase tumor immunogenicity and elicit systemic T-cell-based immunity. Consequently, CPMC facilitates the generation of improved tumor-specific cytotoxic T-cell responses and sustained immunological memory, successfully suppressing both primary and distant tumors. Moreover, CPMC can render tumors susceptible to PD-L1 blockade and synergize with an antiprogrammed cell death-ligand 1 (aPDL1) antibody for tumor inhibition. Combining two cancer chemotherapeutic drugs with low ICD-stimulating capacity using a peptide self-assembly strategy was demonstrated to boost ICD responses and potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yuhan Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yinghao Ding
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Dong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Limin Xie
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Lee Y, Min J, Kim S, Park W, Ko J, Jeon NL. Recapitulating the Cancer-Immunity Cycle on a Chip. Adv Healthc Mater 2025; 14:e2401927. [PMID: 39221688 DOI: 10.1002/adhm.202401927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/11/2024] [Indexed: 09/04/2024]
Abstract
The cancer-immunity cycle is a fundamental framework for understanding how the immune system interacts with cancer cells, balancing T cell recognition and elimination of tumors while avoiding autoimmune reactions. Despite advancements in immunotherapy, there remains a critical need to dissect each phase of the cycle, particularly the interactions among the tumor, vasculature, and immune system within the tumor microenvironment (TME). Innovative platforms such as organ-on-a-chip, organoids, and bioprinting within microphysiological systems (MPS) are increasingly utilized to enhance the understanding of these interactions. These systems meticulously replicate crucial aspects of the TME and immune responses, providing robust platforms to study cancer progression, immune evasion, and therapeutic interventions with greater physiological relevance. This review explores the latest advancements in MPS technologies for modeling various stages of the cancer-immune cycle, critically evaluating their applications and limitations in advancing the understanding of cancer-immune dynamics and guiding the development of next-generation immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yujin Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehong Min
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Solbin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wooju Park
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Jihoon Ko
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Qureator, Inc., San Diego, CA, 92110, USA
| |
Collapse
|
3
|
Lee G, Kim SJ, Choi Y, Park J, Park JK. Bioprinting of a multi-composition array to mimic intra-tumor heterogeneity of glioblastoma for drug evaluation. MICROSYSTEMS & NANOENGINEERING 2024; 10:186. [PMID: 39663377 PMCID: PMC11634888 DOI: 10.1038/s41378-024-00843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Microextrusion printing is widely used to precisely manufacture microdevices, microphysiological systems, and biological constructs that feature micropatterns and microstructures consisting of various materials. This method is particularly useful for creating biological models that recapitulate in vivo-like cellular microenvironments. Although there is a recent demand for high-throughput data from a single in vitro system, it remains challenging to fabricate multiple models with a small volume of bioinks in a stable and precise manner due to the spreading and evaporation issues of the extruded hydrogel. As printing time increases, the extruded bioink spreads and evaporates, leading to technical problems that decrease printing resolution and stability, as well as biological problems that affect 3D culture space and cell viability. In this study, we describe a novel microextrusion bioprinting technique to stably fabricate a multi-composition array consisting of massive and nanoliter-scale hydrogel dots by using multi-bioink printing and aerosol-based crosslinking techniques to prevent spreading and evaporation issues. We confirmed that the crosslinking aerosol effectively prevented spreading and evaporation by analyzing the morphological changes of the extruded hydrogel. By adjusting the extruding ratio of the bioinks, we were able to print a multi-composition array. This stable and massive array printing technique allowed us to improve the replicates of biological models and provide various data from a single culture system. The array printing technique was applied to recapitulate the intra-tumor heterogeneity of glioblastoma and assess temozolomide efficacy on the array model.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soo Jee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yejin Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jongho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KI for Health Science and Technology, KAIST Institutes (KI), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KI for NanoCentury, KAIST Institutes (KI), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Kim MH, Singh YP, Celik N, Yeo M, Rizk E, Hayes DJ, Ozbolat IT. High-throughput bioprinting of spheroids for scalable tissue fabrication. Nat Commun 2024; 15:10083. [PMID: 39572584 PMCID: PMC11582690 DOI: 10.1038/s41467-024-54504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Tissue biofabrication mimicking organ-specific architecture and function requires physiologically-relevant cell densities. Bioprinting using spheroids can achieve this, but is limited due to the lack of practical, scalable techniques. This study presents HITS-Bio (High-throughput Integrated Tissue Fabrication System for Bioprinting), a multiarray bioprinting technique for rapidly positioning multiple spheroids simultaneously using a digitally-controlled nozzle array (DCNA). HITS-Bio achieves an unprecedented speed, ten times faster compared to existing techniques while maintaining high cell viability ( > 90%). The utility of HITS-Bio was exemplified in multiple applications, including intraoperative bioprinting with microRNA transfected human adipose-derived stem cell spheroids for calvarial bone regeneration ( ~ 30 mm3) in a rat model achieving a near-complete defect closure (bone coverage area of ~ 91% in 3 weeks and ~96% in 6 weeks). Additionally, the successful fabrication of scalable cartilage constructs (1 cm3) containing ~600 chondrogenic spheroids highlights its high-throughput efficiency (under 40 min per construct) and potential for repairing volumetric defects.
Collapse
Affiliation(s)
- Myoung Hwan Kim
- Department of Biomedical Engineering, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
| | - Nazmiye Celik
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
| | - Miji Yeo
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
| | - Ibrahim T Ozbolat
- Department of Biomedical Engineering, Penn State University, University Park, PA, USA.
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA.
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA.
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
- Materials Research Institute, Penn State University, University Park, PA, USA.
- Department of Medical Oncology, Cukurova University, Adana, Turkey.
| |
Collapse
|
5
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Alioglu MA, Yilmaz YO, Singh YP, Nagamine M, Celik N, Kim MH, Pal V, Gupta D, Ozbolat IT. Nested Biofabrication: Matryoshka-Inspired Intra-Embedded Bioprinting. SMALL METHODS 2024; 8:e2301325. [PMID: 38111377 PMCID: PMC11187694 DOI: 10.1002/smtd.202301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Engineering functional tissues and organs remains a fundamental pursuit in bio-fabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, here a new method called "Intra-Embedded Bioprinting (IEB)" is introduced building upon existing embedded bioprinting methods. a xanthan gum-based material is used which served a dual role as both a bioprintable ink and a support bath, due to its unique shear-thinning and self-healing properties. IEB's capabilities in organ modeling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite is demonstrated. Further, a head phantom and a Matryoshka doll are 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Toward the use case of IEB and employing an innovative coupling strategy between extrusion-based and aspiration-assisted bioprinting, a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity is developed. Validation using a clinically-available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex-shaped organs with internal anatomical features.
Collapse
Affiliation(s)
- Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Yasar Ozer Yilmaz
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Momoka Nagamine
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Chemistry, Penn State University, University Park, PA, 16802, USA
| | - Nazmiye Celik
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Myoung Hwan Kim
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA, 16802, USA
| | - Vaibhav Pal
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Chemistry, Penn State University, University Park, PA, 16802, USA
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA
- Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey
| |
Collapse
|
7
|
Almeida-Pinto J, Moura BS, Gaspar VM, Mano JF. Advances in Cell-Rich Inks for Biofabricating Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313776. [PMID: 38639337 DOI: 10.1002/adma.202313776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities. On this focus, herein the overarching challenges in the bioprocessing of cell-rich living inks into clinically grade engineered tissues are discussed, as well as the most recent advances in cell-rich living ink formulations and their processing technologies are highlighted. Additionally, an overview of the foreseen developments in the field is provided and critically discussed.
Collapse
Affiliation(s)
- José Almeida-Pinto
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Beatriz S Moura
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
8
|
Zhao Y, Wu Y, Islam K, Paul R, Zhou Y, Qin X, Li Q, Liu Y. Microphysiologically Engineered Vessel-Tumor Model to Investigate Vascular Transport Dynamics of Immune Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22839-22849. [PMID: 38652824 PMCID: PMC11082852 DOI: 10.1021/acsami.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Cancer immunotherapy has emerged as a promising therapeutic strategy to combat cancer effectively. However, it is hard to observe and quantify how this in vivo process happens. Three-dimensional (3D) microfluidic vessel-tumor models offer valuable capability to study how immune cells transport during cancer progression. We presented an advanced 3D vessel-supported tumor model consisting of the endothelial lumen and vessel network for the study of T cells' transportation. The process of T cell transport through the vessel network and interaction with tumor spheroids was represented and monitored in vitro. Specifically, we demonstrate that the endothelial glycocalyx serving in the T cells' transport can influence the endothelium-immune interaction. Furthermore, after vascular transport, how programmed cell death protein 1 (PD-1) immune checkpoint inhibition influences the delivered activated-T cells on tumor killing was evaluated. Our in vitro vessel-tumor model provides a microphysiologically engineered platform to represent T cell vascular transportation during tumor immunotherapy. The reported innovative vessel-tumor platform is believed to have the potential to explore the tumor-induced immune response mechanism and preclinically evaluate immunotherapy's effectiveness.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Khayrul Islam
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ratul Paul
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Xiaochen Qin
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Qiying Li
- Department
of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
9
|
Ruchika, Bhardwaj N, Yadav SK, Saneja A. Recent advances in 3D bioprinting for cancer research: From precision models to personalized therapies. Drug Discov Today 2024; 29:103924. [PMID: 38401878 DOI: 10.1016/j.drudis.2024.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Cancer remains one of the most devastating diseases, necessitating innovative and precise therapeutic solutions. The emergence of 3D bioprinting has revolutionized the platform of cancer therapy by offering bespoke solutions for drug screening, tumor modeling, and personalized medicine. The utilization of 3D bioprinting enables the fabrication of complex tumor models that closely mimic the in vivo microenvironment, facilitating more accurate drug testing and personalized treatment strategies. Moreover, 3D bioprinting also provides a platform for the development of implantable scaffolds as a therapeutic solution to cancer. In this review, we highlight the application of 3D bioprinting for cancer therapy along with current advancements in cancer 3D model development with recent case studies.
Collapse
Affiliation(s)
- Ruchika
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Bhardwaj
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudesh Kumar Yadav
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Ravi K, Manoharan TJM, Wang KC, Pockaj B, Nikkhah M. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment. Biomaterials 2024; 305:122428. [PMID: 38147743 PMCID: PMC11098715 DOI: 10.1016/j.biomaterials.2023.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Cancer thrives in a complex environment where interactions between cellular and acellular components, surrounding the tumor, play a crucial role in disease development and progression. Despite significant progress in cancer research, the mechanism driving tumor growth and therapeutic outcomes remains elusive. Two-dimensional (2D) cell culture assays and in vivo animal models are commonly used in cancer research and therapeutic testing. However, these models suffer from numerous shortcomings including lack of key features of the tumor microenvironment (TME) & cellular composition, cost, and ethical clearance. To that end, there is an increased interest in incorporating and elucidating the influence of TME on cancer progression. Advancements in 3D-engineered ex vivo models, leveraging biomaterials and microengineering technologies, have provided an unprecedented ability to reconstruct native-like bioengineered cancer models to study the heterotypic interactions of TME with a spatiotemporal organization. These bioengineered cancer models have shown excellent capabilities to bridge the gap between oversimplified 2D systems and animal models. In this review article, we primarily provide an overview of the immune and stromal cellular components of the TME and then discuss the latest state-of-the-art 3D-engineered ex vivo platforms aiming to recapitulate the complex TME features. The engineered TME model, discussed herein, are categorized into three main sections according to the cellular interactions within TME: (i) Tumor-Stromal interactions, (ii) Tumor-Immune interactions, and (iii) Complex TME interactions. Finally, we will conclude the article with a perspective on how these models can be instrumental for cancer translational studies and therapeutic testing.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
11
|
Alioglu MA, Yilmaz YO, Gerhard EM, Pal V, Gupta D, Rizvi SHA, Ozbolat IT. A Versatile Photocrosslinkable Silicone Composite for 3D Printing Applications. ADVANCED MATERIALS TECHNOLOGIES 2024; 9:2301858. [PMID: 38883438 PMCID: PMC11178280 DOI: 10.1002/admt.202301858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 06/18/2024]
Abstract
Embedded printing has emerged as a valuable tool for fabricating complex structures and microfluidic devices. Currently, an ample of amount of research is going on to develop new materials to advance its capabilities and increase its potential applications. Here, we demonstrate a novel, transparent, printable, photocrosslinkable, and tuneable silicone composite that can be utilized as a support bath or an extrudable ink for embedded printing. Its properties can be tuned to achieve ideal rheological properties, such as optimal self-recovery and yield stress, for use in 3D printing. When used as a support bath, it facilitated the generation microfluidic devices with circular channels of diameter up to 30 μm. To demonstrate its utility, flow focusing microfluidic devices were fabricated for generation of Janus microrods, which can be easily modified for multitude of applications. When used as an extrudable ink, 3D printing of complex-shaped constructs were achieved with integrated electronics, which greatly extends its potential applications towards soft robotics. Further, its biocompatibility was tested with multiple cell types to validate its applicability for tissue engineering. Altogether, this material offers a myriad of potential applications (i.e., soft robotics, microfluidics, bioprinting) by providing a facile approach to develop complicated 3D structures and interconnected channels.
Collapse
Affiliation(s)
- Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Yasar Ozer Yilmaz
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ethan Michael Gerhard
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Vaibhav Pal
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Syed Hasan Askari Rizvi
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey 17033, PA, USA
- Penn State Cancer Institute, Penn State University, Hershey 17033, PA, USA
- Department of Medical Oncology, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
12
|
Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater 2024; 32:356-384. [PMID: 37920828 PMCID: PMC10618244 DOI: 10.1016/j.bioactmat.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Three-dimensional bioprinting is an advanced tissue fabrication technique that allows printing complex structures with precise positioning of multiple cell types layer-by-layer. Compared to other bioprinting methods, extrusion bioprinting has several advantages to print large-sized tissue constructs and complex organ models due to large build volume. Extrusion bioprinting using sacrificial, support and embedded strategies have been successfully employed to facilitate printing of complex and hollow structures. Embedded bioprinting is a gel-in-gel approach developed to overcome the gravitational and overhanging limits of bioprinting to print large-sized constructs with a micron-scale resolution. In embedded bioprinting, deposition of bioinks into the microgel or granular support bath will be facilitated by the sol-gel transition of the support bath through needle movement inside the granular medium. This review outlines various embedded bioprinting strategies and the polymers used in the embedded systems with advantages, limitations, and efficacy in the fabrication of complex vascularized tissues or organ models with micron-scale resolution. Further, the essential requirements of support bath systems like viscoelasticity, stability, transparency and easy extraction to print human scale organs are discussed. Additionally, the organs or complex geometries like vascular constructs, heart, bone, octopus and jellyfish models printed using support bath assisted printing methods with their anatomical features are elaborated. Finally, the challenges in clinical translation and the future scope of these embedded bioprinting models to replace the native organs are envisaged.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
13
|
Alioglu MA, Yilmaz YO, Singh YP, Nagamine M, Celik N, Kim MH, Pal V, Gupta D, Ozbolat IT. Nested biofabrication: Matryoshka-inspired Intra-embedded Bioprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560028. [PMID: 37808743 PMCID: PMC10557751 DOI: 10.1101/2023.09.28.560028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Engineering functional tissues and organs remains a fundamental pursuit in biofabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, we here introduce a new method called 'Intra-Embedded Bioprinting (IEB),' building upon existing embedded bioprinting methods. We used a xanthan gum-based material, which served a dual role as both a bioprintable ink and a support bath, due to its unique shear-thinning and self-healing properties. We demonstrated IEB's capabilities in organ modelling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite. Further, a head phantom and a Matryoshka doll were 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Towards the use case of IEB and employing innovative coupling strategy between extrusion-based and aspiration-assisted bioprinting, we developed a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity. Validation using a clinically-available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex-shaped organs with internal anatomical features.
Collapse
|
14
|
Shi W, Mirza S, Kuss M, Liu B, Hartin A, Wan S, Kong Y, Mohapatra B, Krishnan M, Band H, Band V, Duan B. Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks. Adv Healthc Mater 2023; 12:e2300905. [PMID: 37422447 PMCID: PMC10592394 DOI: 10.1002/adhm.202300905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Bioinks for 3D bioprinting of tumor models should not only meet printability requirements but also accurately maintain and support phenotypes of tumor surrounding cells to recapitulate key tumor hallmarks. Collagen is a major extracellular matrix protein for solid tumors, but low viscosity of collagen solution has made 3D bioprinted cancer models challenging. This work produces embedded, bioprinted breast cancer cells and tumor organoid models using low-concentration collagen I based bioinks. The biocompatible and physically crosslinked silk fibroin hydrogel is used to generate the support bath for the embedded 3D printing. The composition of the collagen I based bioink is optimized with a thermoresponsive hyaluronic acid-based polymer to maintain the phenotypes of both the noninvasive epithelial and invasive breast cancer cells, as well as cancer-associated fibroblasts. Mouse breast tumor organoids are bioprinted using optimized collagen bioink to mimic in vivo tumor morphology. A vascularized tumor model is also created using a similar strategy, with significantly enhanced vasculature formation under hypoxia. This study shows the great potential of embedded bioprinted breast tumor models utilizing a low-concentration collagen-based bioink for advancing the understanding of tumor cell biology and facilitating drug discovery research.
Collapse
Affiliation(s)
- Wen Shi
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sameer Mirza
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of ChemistryCollege of ScienceUnited Arab Emirates UniversityAbu DhabiUnited Arab Emirates
| | - Mitchell Kuss
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Andrew Hartin
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shibiao Wan
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Yunfan Kong
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bhopal Mohapatra
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mena Krishnan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Hamid Band
- Eppley InstituteUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Vimla Band
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of SurgeryUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical EngineeringUniversity of Nebraska–LincolnLincolnNE68588USA
| |
Collapse
|
15
|
Chang J, Sun X. Laser-induced forward transfer based laser bioprinting in biomedical applications. Front Bioeng Biotechnol 2023; 11:1255782. [PMID: 37671193 PMCID: PMC10475545 DOI: 10.3389/fbioe.2023.1255782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Bioprinting is an emerging field that utilizes 3D printing technology to fabricate intricate biological structures, including tissues and organs. Among the various promising bioprinting techniques, laser-induced forward transfer (LIFT) stands out by employing a laser to precisely transfer cells or bioinks onto a substrate, enabling the creation of complex 3D architectures with characteristics of high printing precision, enhanced cell viability, and excellent technical adaptability. This technology has found extensive applications in the production of biomolecular microarrays and biological structures, demonstrating significant potential in tissue engineering. This review briefly introduces the experimental setup, bioink ejection mechanisms, and parameters relevant to LIFT bioprinting. Furthermore, it presents a detailed summary of both conventional and cutting-edge applications of LIFT in fabricating biomolecule microarrays and various tissues, such as skin, blood vessels and bone. Additionally, the review addresses the existing challenges in this field and provides corresponding suggestions. By contributing to the ongoing development of this field, this review aims to inspire further research on the utilization of LIFT-based bioprinting in biomedical applications.
Collapse
Affiliation(s)
- Jinlong Chang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Xuming Sun
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Gupta D, Chichkov B, Vereb ZJ, Ozbolat IT. Editorial: Innovative 3D technologies in cancer immunity research and therapy. Front Immunol 2023; 14:1235483. [PMID: 37409135 PMCID: PMC10319117 DOI: 10.3389/fimmu.2023.1235483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Affiliation(s)
- Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States
| | - Boris Chichkov
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Hannover, Germany
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Zoltan Janos Vereb
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States
- Department of Biomedical Engineering, Penn State University, University Park, PA, United States
- Materials Research Institute, Penn State University, University Park, PA, United States
- Department of Neurosurgery, Penn State University, Hershey, PA, United States
- Penn State Cancer Institute, Penn State University, Hershey, PA, United States
- Department of Medical Oncology, Cukurova University, Adana, Türkiye
| |
Collapse
|
17
|
Mi X, Su Z, Yue X, Ren Y, Yang X, Qiang L, Kong W, Ma Z, Zhang C, Wang J. 3D bioprinting tumor models mimic the tumor microenvironment for drug screening. Biomater Sci 2023; 11:3813-3827. [PMID: 37052182 DOI: 10.1039/d3bm00159h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cancer is a severe threat to human life and health and represents the main cause of death globally. Drug therapy is one of the primary means of treating cancer; however, most anticancer medications do not proceed beyond preclinical testing because the conditions of actual human tumors are not effectively mimicked by traditional tumor models. Hence, bionic in vitro tumor models must be developed to screen for anticancer drugs. Three-dimensional (3D) bioprinting technology can produce structures with built-in spatial and chemical complexity and models with accurately controlled structures, a homogeneous size and morphology, less variation across batches, and a more realistic tumor microenvironment (TME). This technology can also rapidly produce such models for high-throughput anticancer medication testing. This review describes 3D bioprinting methods, the use of bioinks in tumor models, and in vitro tumor model design strategies for building complex tumor microenvironment features using biological 3D printing technology. Moreover, the application of 3D bioprinting in vitro tumor models in drug screening is also discussed.
Collapse
Affiliation(s)
- Xuelian Mi
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Zhi Su
- School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Ya Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xue Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Lei Qiang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Weiqing Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong Province, 266000, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jinwu Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
18
|
Banerjee D, Singh YP, Datta P, Ozbolat V, O'Donnell A, Yeo M, Ozbolat IT. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials 2022; 291:121881. [DOI: 10.1016/j.biomaterials.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
|