1
|
Zhang G, Huang X, Gong Y, Ding Y, Wang H, Zhang H, Wu L, Su R, Yang C, Zhu Z. Fingerprint Profiling of Glycans on Extracellular Vesicles via Lectin-Induced Aggregation Strategy for Precise Cancer Diagnostics. J Am Chem Soc 2024; 146:29053-29063. [PMID: 39235449 DOI: 10.1021/jacs.4c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Extracellular vesicles (EVs) harbor abundant glycans that mediate various functions, such as intercellular communication and disease advancement, which play significant roles in disease progression. However, the presence of EV heterogeneity in body fluids and the complex nature of the glycan structures have posed challenges for the detection of EV glycans. In this study, we provide a streamlined method integrated, membrane-specific separation with lectin-induced aggregation strategy (MESSAGE), for multiplexed profiling of EV glycans. By leveraging a rationally designed lectin-induced aggregation strategy, the expression of EV glycans is converted to size-based signals. With the assistance learning machine algorithms, the MESSAGE strategy with high sensitivity, specificity, and simplicity can be used for early cancer diagnosis and classification, as well as monitoring cancer metastasis via 20 μL plasma sample within 2 h. Furthermore, our platform holds promise for advancing the field of EV-based liquid biopsy for clinical applications, opening new possibilities for the profiling of EV glycan signatures in various disease states.
Collapse
Affiliation(s)
- Guihua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaodan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanli Gong
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yue Ding
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hua Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences, Technologies of Energy Materials of Fujian Province, Xiamen 361000, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Rui Su
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|