1
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
2
|
Zhu Y, Zhang X, You Q, Jiang Z. Recent applications of CBT-Cys click reaction in biological systems. Bioorg Med Chem 2022; 68:116881. [PMID: 35716587 DOI: 10.1016/j.bmc.2022.116881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Click chemistry is a hot topic in many research fields. A biocompatible reaction from fireflies has attracted increasing attention since 2009. Herein, we focus on the firefly-sourced click reaction between cysteine (Cys) and 2-cyanobenzothiazole (2-CBT). This reaction has many excellent properties, such as rapidity, simplicity and high selectivity, which make it successfully applied in protein labeling, molecular imaging, drug discovery and other fields. Meanwhile, its unique ability to form nanoparticles expands its applications in biological systems. We review its principle, development, and latest applications in the past 5 years and hope this review provides more profound and comprehensive insights to its further application.
Collapse
Affiliation(s)
- Yuechao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Jin M, Koçer G, Paez JI. Luciferin-Bioinspired Click Ligation Enables Hydrogel Platforms with Fine-Tunable Properties for 3D Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5017-5032. [PMID: 35060712 DOI: 10.1021/acsami.1c22186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is an increasing interest in coupling reactions for cross-linking of cell-encapsulating hydrogels under biocompatible, chemoselective, and tunable conditions. Inspired by the biosynthesis of luciferins in fireflies, here we exploit the cyanobenzothiazole-cysteine (CBT-Cys) click ligation to develop polyethylene glycol hydrogels as tunable scaffolds for cell encapsulation. Taking advantage of the chemoselectivity and versatility of CBT-Cys ligation, a highly flexible gel platform is reported here. We demonstrate luciferin-inspired hydrogels with important advantages for cell encapsulation applications: (i) gel precursors derived from inexpensive reagents and with good stability in aqueous solution (>4 weeks), (ii) adjustable gel mechanics within physiological ranges (E = 180-6240 Pa), (iii) easy tunability of the gelation rate (seconds to minutes) by external means, (iv) high microscale homogeneity, (v) good cytocompatibility, and (iv) regulable biological properties. These flexible and robust CBT-Cys hydrogels are proved as supportive matrices for 3D culture of different cell types, namely, fibroblasts and human mesenchymal stem cells. Our findings expand the toolkit of click chemistries for the fabrication of tunable biomaterials.
Collapse
Affiliation(s)
- Minye Jin
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Gülistan Koçer
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
| | - Julieta I Paez
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Gao Y, Vogus D, Zhao Z, He W, Krishnan V, Kim J, Shi Y, Sarode A, Ukidve A, Mitragotri S. Injectable hyaluronic acid hydrogels encapsulating drug nanocrystals for long-term treatment of inflammatory arthritis. Bioeng Transl Med 2022; 7:e10245. [PMID: 35111947 PMCID: PMC8780912 DOI: 10.1002/btm2.10245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023] Open
Abstract
Antiproliferative chemotherapeutic agents offer a potential effective treatment for inflammatory arthritis. However, their clinical application is limited by high systemic toxicity, low joint bioavailability as well as formulation challenges. Here, we report an intra-articular drug delivery system combining hyaluronic acid hydrogels and drug nanocrystals to achieve localized and sustained delivery of an antiproliferative chemotherapeutic agent camptothecin for long-term treatment of inflammatory arthritis. We synthesized a biocompatible, in situ-forming injectable hyaluronic acid hydrogel using a naturally occurring click chemistry: cyanobenzothiazole/cysteine reaction, which is the last step reaction in synthesizing D-luciferin in fireflies. This hydrogel was used to encapsulate camptothecin nanocrystals (size of 160-560 nm) which released free camptothecin in a sustained manner for 4 weeks. In vivo studies confirmed that the hydrogel remained in the joint over 4 weeks. By using the collagen-induced arthritis rat model, we demonstrate that the hydrogel-camptothecin formulation could alleviate arthritis severity as indicated by the joint size and interleukin-1β level in the harvested joints, as well as from histological and microcomputed tomography evaluation of joints. The hydrogel-nanocrystal formulation strategy described here offers a potential solution for intra-articular therapy for inflammatory arthritis.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Douglas Vogus
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Zongmin Zhao
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Wei He
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Vinu Krishnan
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Jayoung Kim
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Yujie Shi
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Apoorva Sarode
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Anvay Ukidve
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Samir Mitragotri
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
5
|
Moussa Z, Judeh ZMA, Alzamly A, Ahmed SA, Tomah Al-Masri H, Al-Hindawi B, Rasool F, Saada S. Iodine-DMSO mediated conversion of N-arylcyanothioformamides to N-arylcyanoformamides and the unexpected formation of 2-cyanobenzothiazoles. RSC Adv 2022; 12:6133-6148. [PMID: 35424574 PMCID: PMC8981512 DOI: 10.1039/d2ra00049k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/21/2022] Open
Abstract
Cyanoformamides are ubiquitous as useful components for assembling key intermediates and bioactive molecules. The development of an efficient and simple approach to this motif is a challenge. Herein, we demonstrate the effectiveness of the I2-DMSO oxidative system in the preparation of N-arylcyanoformamides from N-arylcyanothioformamides. The synthetic method features mild conditions, broad substrate scope, and high reaction efficiency. Furthermore, this method provides an excellent entry to exclusively afford 2-cyanobenzothiazoles which are useful substrates to access new luciferin analogs. The structures of all new products were elucidated by multinuclear NMR spectroscopy and high accuracy mass spectral analysis. Crystal-structure determination by means of single-crystal X-ray diffraction was carried out on (4-bromophenyl)carbamoyl cyanide, 5,6-dimethoxybenzo[d]thiazole-2-carbonitrile, 5-(benzyloxy)benzo[d]oxazole-2-carbonitrile, 4,7-dimethoxybenzo[d]thiazole-2-carbonitrile, and (5-iodo-2,4-dimethoxyphenyl)carbamoyl cyanide, a key intermediate with mechanistic implications. Conversion of N-arylcyanothioformamides to N-arylcyanoformamides and 2-cyanobenzothiazoles has been achieved with I2-DMSO oxidative system.![]()
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Zaher M. A. Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2–B1-14, Singapore, 637459, Singapore
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P. O. Box 130040, Mafraq, 25113, Jordan
| | - Bassam Al-Hindawi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Faisal Rasool
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Sara Saada
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Joyner K, Yang S, Duncan GA. Microrheology for biomaterial design. APL Bioeng 2020; 4:041508. [PMID: 33415310 PMCID: PMC7775114 DOI: 10.1063/5.0013707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022] Open
Abstract
Microrheology analyzes the microscopic behavior of complex materials by measuring the diffusion and transport of embedded particle probes. This experimental method can provide valuable insight into the design of biomaterials with the ability to connect material properties and biological responses to polymer-scale dynamics and interactions. In this review, we discuss how microrheology can be harnessed as a characterization method complementary to standard techniques in biomaterial design. We begin by introducing the core principles and instruments used to perform microrheology. We then review previous studies that incorporate microrheology in their design process and highlight biomedical applications that have been supported by this approach. Overall, this review provides rationale and practical guidance for the utilization of microrheological analysis to engineer novel biomaterials.
Collapse
Affiliation(s)
- Katherine Joyner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
8
|
Ghorbani F, Zamanian A, Behnamghader A, Daliri Joupari M. Bioactive and biostable hyaluronic acid-pullulan dermal hydrogels incorporated with biomimetic hydroxyapatite spheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110906. [DOI: 10.1016/j.msec.2020.110906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
|
9
|
Lee SY, Park JH, Yang M, Baek MJ, Kim MH, Lee J, Khademhosseini A, Kim DD, Cho HJ. Ferrous sulfate-directed dual-cross-linked hyaluronic acid hydrogels with long-term delivery of donepezil. Int J Pharm 2020; 582:119309. [PMID: 32278055 DOI: 10.1016/j.ijpharm.2020.119309] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
|
10
|
Liu Y, Liu M, Zhang Y, Cao Y, Pei R. Fabrication of injectable hydrogels via bio-orthogonal chemistry for tissue engineering. NEW J CHEM 2020. [DOI: 10.1039/d0nj02629h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Injectable hydrogels via bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Yuanshan Liu
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
11
|
Cho HJ. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00448-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Yan B, Huang J, Han L, Gong L, Li L, Israelachvili JN, Zeng H. Duplicating Dynamic Strain-Stiffening Behavior and Nanomechanics of Biological Tissues in a Synthetic Self-Healing Flexible Network Hydrogel. ACS NANO 2017; 11:11074-11081. [PMID: 28956900 DOI: 10.1021/acsnano.7b05109] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biological tissues can accurately differentiate external mechanical stresses and actively select suitable strategies (e.g., reversible strain-stiffening, self-healing) to sustain or restore their integrity and related functionalities as required. Synthetic materials that can imitate the characteristics of biological tissues have a wide range of engineering and bioengineering applications. However, no success has been demonstrated to realize such strain-stiffening behavior in synthetic networks, particularly using flexible polymers, which has remained a great challenge. Here, we present one such synthetic hydrogel material prepared from two flexible polymers (polyethylene glycol and branched polyethylenimine) that exhibits both strain-stiffening and self-healing capabilities. The developed synthetic hydrogel network not only mimics the main features of biological mechanically responsive systems but also autonomously self-heals after becoming damaged, thereby recovering its full capacity to perform its normal physiological functions.
Collapse
Affiliation(s)
- Bin Yan
- College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu 610065, China
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, AB T6G 1H9, Canada
| | - Jun Huang
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, AB T6G 1H9, Canada
| | - Linbo Han
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, AB T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, AB T6G 1H9, Canada
| | - Lin Li
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, AB T6G 1H9, Canada
| | - Jacob N Israelachvili
- Department of Chemical Engineering, Materials Department, Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, AB T6G 1H9, Canada
| |
Collapse
|