1
|
Naik DA, Matonis S, Balakrishnan G, Bettinger CJ. Intestinal retentive systems - recent advances and emerging approaches. J Mater Chem B 2023; 12:64-78. [PMID: 38047746 DOI: 10.1039/d3tb01842c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Intestinal retentive devices (IRDs) are devices designed to anchor within the lumen of the intestines for long-term residence in the gastrointestinal tract. IRDs can enable impactful medical device technologies including sustained oral drug delivery systems, indwelling sensors, or real-time diagnostics. The design and testing of IRDs present a myriad of challenges, including precise deployment of the device at desired intestinal locations, secure anchoring within the gastrointestinal tract to allow for natural function, and safe removal of the IRD at user-defined times. Advancing the state-of-the-art of IRD is an interdisciplinary effort that requires innovations such as new materials, novel anchoring mechanisms, and medical device design with consistent input from clinical practitioners and end-users. This perspective briefly reviews the current state-of-the-art for IRDs and charts a path forward to inform the design of future concepts. Specifically, this article will highlight materials, retention mechanisms, and test beds to measure the efficacy of IRDs and their mechanisms. Finally, potential synergies between IRD and other medical device technologies are presented to identify future opportunities.
Collapse
Affiliation(s)
- Durva A Naik
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Spencer Matonis
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Gaurav Balakrishnan
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Christopher J Bettinger
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
- Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4N201, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Nan K, Feig VR, Ying B, Howarth JG, Kang Z, Yang Y, Traverso G. Mucosa-interfacing electronics. NATURE REVIEWS. MATERIALS 2022; 7:908-925. [PMID: 36124042 PMCID: PMC9472746 DOI: 10.1038/s41578-022-00477-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The surface mucosa that lines many of our organs houses myriad biometric signals and, therefore, has great potential as a sensor-tissue interface for high-fidelity and long-term biosensing. However, progress is still nascent for mucosa-interfacing electronics owing to challenges with establishing robust sensor-tissue interfaces; device localization, retention and removal; and power and data transfer. This is in sharp contrast to the rapidly advancing field of skin-interfacing electronics, which are replacing traditional hospital visits with minimally invasive, real-time, continuous and untethered biosensing. This Review aims to bridge the gap between skin-interfacing electronics and mucosa-interfacing electronics systems through a comparison of the properties and functions of the skin and internal mucosal surfaces. The major physiological signals accessible through mucosa-lined organs are surveyed and design considerations for the next generation of mucosa-interfacing electronics are outlined based on state-of-the-art developments in bio-integrated electronics. With this Review, we aim to inspire hardware solutions that can serve as a foundation for developing personalized biosensing from the mucosa, a relatively uncharted field with great scientific and clinical potential.
Collapse
Affiliation(s)
- Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Vivian R. Feig
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Julia G. Howarth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ziliang Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
3
|
Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater 2022; 152:19-46. [PMID: 36089235 DOI: 10.1016/j.actbio.2022.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The artificial lung (AL) technology is one of the membrane-based artificial organs that partly augments lung functions, i.e. blood oxygenation and CO2 removal. It is generally employed as an extracorporeal membrane oxygenation (ECMO) device to treat acute and chronic lung-failure patients, and the recent outbreak of the COVID-19 pandemic has re-emphasized the importance of this technology. The principal component in AL is the polymeric membrane oxygenator that facilitates the O2/CO2 exchange with the blood. Despite the considerable improvement in anti-thrombogenic biomaterials in other applications (e.g., stents), AL research has not advanced at the same rate. This is partly because AL research requires interdisciplinary knowledge in biomaterials and membrane technology. Some of the promising biomaterials with reasonable hemocompatibility - such as emerging fluoropolymers of extremely low surface energy - must first be fabricated into membranes to exhibit effective gas exchange performance. As AL membranes must also demonstrate high hemocompatibility in tandem, it is essential to test the membranes using in-vitro hemocompatibility experiments before in-vivo test. Hence, it is vital to have a reliable in-vitro experimental protocol that can be reasonably correlated with the in-vivo results. However, current in-vitro AL studies are unsystematic to allow a consistent comparison with in-vivo results. More specifically, current literature on AL biomaterial in-vitro hemocompatibility data are not quantitatively comparable due to the use of unstandardized and unreliable protocols. Such a wide gap has been the main bottleneck in the improvement of AL research, preventing promising biomaterials from reaching clinical trials. This review summarizes the current state-of-the-art and status of AL technology from membrane researcher perspectives. Particularly, most of the reported in-vitro experiments to assess AL membrane hemocompatibility are compiled and critically compared to suggest the most reliable method suitable for AL biomaterial research. Also, a brief review of current approaches to improve AL hemocompatibility is summarized. STATEMENT OF SIGNIFICANCE: The importance of Artificial Lung (AL) technology has been re-emphasized in the time of the COVID-19 pandemic. The utmost bottleneck in the current AL technology is the poor hemocompatibility of the polymer membrane used for O2/CO2 gas exchange, limiting its use in the long-term. Unfortunately, most of the in-vitro AL experiments are unsystematic, irreproducible, and unreliable. There are no standardized in-vitro hemocompatibility characterization protocols for quantitative comparison between AL biomaterials. In this review, we tackled this bottleneck by compiling the scattered in-vitro data and suggesting the most suitable experimental protocol to obtain reliable and comparable hemocompatibility results. To the best of our knowledge, this is the first review paper focusing on the hemocompatibility challenge of AL technology.
Collapse
|
4
|
Chen W, Wainer J, Ryoo SW, Qi X, Chang R, Li J, Lee SH, Min S, Wentworth A, Collins JE, Tamang S, Ishida K, Hayward A, Langer R, Traverso G. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. SCIENCE ADVANCES 2022; 8:eabk1792. [PMID: 34985942 PMCID: PMC8730401 DOI: 10.1126/sciadv.abk1792] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/11/2021] [Indexed: 05/31/2023]
Abstract
Oral drug administration remains the preferred route for patients and health care providers. Delivery of macromolecules through this route remains challenging because of limitations imposed by the transport across the gastrointestinal epithelium and the dynamic and degradative environment. Here, we present the development of a delivery system that combines physical (microneedle) and nonphysical (enhancer) modes of drug delivery enhancement for a macromolecule in a large animal model. Inspired by the thorny-headed intestinal worm, we report a dynamic omnidirectional mucoadhesive microneedle system capable of prolonged gastric mucosa fixation. Moreover, we incorporate sodium N-[8-(2-hydroxybenzoyl) amino] caprylate along with semaglutide and demonstrate enhanced absorption in swine resistant to physical displacement in the gastric cavity. Meanwhile, we developed a targeted capsule system capable of deploying intact microneedle-containing systems. These systems stand to enable the delivery of a range of drugs through the generation and maintenance of a privileged region in the gastrointestinal tract.
Collapse
Affiliation(s)
- Wei Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacob Wainer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Si Won Ryoo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaoyue Qi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rong Chang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seung Ho Lee
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seokkee Min
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam Wentworth
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joy E. Collins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siddartha Tamang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keiko Ishida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alison Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Advancedoral vaccine delivery strategies for improving the immunity. Adv Drug Deliv Rev 2021; 177:113928. [PMID: 34411689 DOI: 10.1016/j.addr.2021.113928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Infectious diseases continue to inflict a high global disease burden. The consensus is that vaccination is the most effective option against infectious diseases. Oral vaccines have unique advantages in the prevention of global pandemics due to their ease of use, high compliance, low cost, and the ability to induce both systemic and mucosal immune responses. However, challenges of adapting vaccines for oral administration remain significant. Foremost among these are enzymatic and pH-dependent degradation of antigens in the stomach and intestines, the low permeability of mucus barrier, the nonspecific uptake of antigens at the intestinal mucosal site, and the immune suppression result from the elusive immune tolerance mechanisms. Innovative delivery techniques promise great potential for improving the flexibility and efficiency of oral vaccines. A better understanding of the delivery approaches and the immunological mechanisms of oral vaccine delivery systems may provide new scientific insight and tools for developing the next-generation oral vaccine. Here, an overview of the advanced technologies in the field of oral vaccination is proposed, including mucus-penetrating nanoparticle (NP), mucoadhesive delivery vehicles, targeting antigen-presenting cell (APC) nanocarriers and enhanced paracellular delivery strategies and so on. Meanwhile, the mechanisms of delivery vectors interact with mucosal barriers are discussed.
Collapse
|
6
|
Park J, Kim Y, Chun B, Seo J. Rational engineering and applications of functional bioadhesives in biomedical engineering. Biotechnol J 2021; 16:e2100231. [PMID: 34469052 DOI: 10.1002/biot.202100231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022]
Abstract
For the past decades, several bioadhesives have been developed to replace conventional wound closure medical tools such as sutures, staples, and clips. The bioadhesives are easy to use and can minimize tissue damage. They are designed to provide strong adhesion with stable mechanical support on tissue surfaces. However, this monofunctionality of the bioadhesives hinders their practical applications. In particular, a bioadhesive can lose its intended function under harsh tissue environments or delay tissue regeneration during wound healing. Based on several natural and synthetic biomaterials, functional bioadhesives have been developed to overcome the aforementioned limitations. The functional bioadhesives are designed to have specific characteristics such as antimicrobial, cell infiltrative, stimuli-responsive, electrically conductive, and self-healing to ensure stability under harsh tissue conditions, facilitate tissue regeneration, and effectively monitor biosignals. Herein, we thoroughly review the functional bioadhesives from their fundamental background to recent progress with their practical applications for the enhancement of tissue healing and effective biosignal sensing. Furthermore, the future perspectives on the applications of functional bioadhesives and current challenges in their commercialization are also discussed.
Collapse
Affiliation(s)
- Jae Park
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yeonju Kim
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Beomsoo Chun
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jungmok Seo
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Okeyo PO, Rajendran ST, Zór K, Boisen A. Sensing technologies and experimental platforms for the characterization of advanced oral drug delivery systems. Adv Drug Deliv Rev 2021; 176:113850. [PMID: 34182015 DOI: 10.1016/j.addr.2021.113850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Complex and miniaturized oral drug delivery systems are being developed rapidly for targeted, controlled drug release and improved bioavailability. Standard analytical techniques are widely used to characterize i) drug carrier and active pharmaceutical ingredients before loading into a delivery device (to ensure the solid form), and ii) the entire drug delivery system during the development process. However, in light of the complexity and the size of some of these systems, standard techniques as well as novel sensing technologies and experimental platforms need to be used in tandem. These technologies and platforms are discussed in this review, with a special focus on passive delivery systems in size range from a few 100 µm to a few mm. Challenges associated with characterizing these systems and evaluating their effect on oral drug delivery in the preclinical phase are also discussed.
Collapse
|
8
|
In vitro and in vivo comparison of microcontainers and microspheres for oral drug delivery. Int J Pharm 2021; 600:120516. [PMID: 33775722 DOI: 10.1016/j.ijpharm.2021.120516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Microcontainers, which are microfabricated cylindrical devices with a reservoir function, have shown promise as an oral drug delivery system for small molecular drug compounds. However, they have never been evaluated against a relevant control formulation. In the current study, we prepared microcrystalline cellulose (MCC) microspheres as a control for in vitro and in vivo testing of SU-8 microcontainers as an oral drug delivery system. Both dosage forms were loaded with paracetamol and coated with chitosan or polyethylene glycol (PEG) (12 kDa). These coatings were followed by an additional enteric coating of Eudragit® S100. In addition, a control dosage form was coated with Eudragit® alone. The dosage forms were evaluated in vitro, in a physiologically relevant two-step model simulating rat gastrointestinal fluids, and in vivo by oral administration to rats. In vitro, the microcontainers coated with PEG/Eudragit® resulted in a prolonged release of paracetamol compared to the respective microspheres, which was consistent with in vivo observations of a later time (Tmax) for maximum plasma concentration (Cmax) for the microcontainers. For microspheres and microcontainers coated with chitosan/Eudragit®, the time for complete in vitro release of paracetamol was very similar, due to an earlier release from the microcontainers. This trend was supported by very similar Tmax values in vivo. The in vitro in vivo relation was confirmed by a linear regression with R2 = 0.9, when Tmax for each dosage form was plotted as a function of time for 90% paracetamol release in vitro. From the in vivo study, the average plasma concentration of paracetamol 120 min after dosing was significantly higher for microcontainers than for microspheres (0.3 ± 0.1 µg/mL and 0.1 ± <0.1 µg/mL, respectively) - regardless of the coating applied.
Collapse
|
9
|
González C, González D, Zúñiga RN, Estay H, Troncoso E. Simulation of Human Small Intestinal Digestion of Starch Using an In Vitro System Based on a Dialysis Membrane Process. Foods 2020; 9:foods9070913. [PMID: 32664457 PMCID: PMC7405000 DOI: 10.3390/foods9070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
This work deepens our understanding of starch digestion and the consequent absorption of hydrolytic products generated in the human small intestine. Gelatinized starch dispersions were digested with α-amylase in an in vitro intestinal digestion system (i-IDS) based on a dialysis membrane process. This study innovates with respect to the existing literature, because it considers the impact of simultaneous digestion and absorption processes occurring during the intestinal digestion of starchy foods and adopts phenomenological models that deal in a more realistic manner with the behavior found in the small intestine. Operating the i-IDS at different flow/dialysate flow ratios resulted in distinct generation and transfer curves of reducing sugars mass. This indicates that the operating conditions affected the mass transfer by diffusion and convection. However, the transfer process was also affected by membrane fouling, a dynamic phenomenon that occurred in the i-IDS. The experimental results were extrapolated to the human small intestine, where the times reached to transfer the hydrolytic products ranged between 30 and 64 min, according to the flow ratio used. We consider that the i-IDS is a versatile system that can be used for assessing and/or comparing digestion and absorption behaviors of different starch-based food matrices as found in the human small intestine, but the formation and interpretation of membrane fouling requires further studies for a better understanding at physiological level. In addition, further studies with the i-IDS are required if food matrices based on fat, proteins or more complex carbohydrates are of interest for testing. Moreover, a next improvement step of the i-IDS must include the simulation of some physiological events (e.g., electrolytes addition, enzyme activities, bile, dilution and pH) occurring in the human small intestine, in order to improve the comparison with in vivo data.
Collapse
Affiliation(s)
- Carol González
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Daniela González
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Rommy N Zúñiga
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), University of Chile, Av. Tupper 2007, AMTC Building, Santiago 8370451, Chile
| | - Elizabeth Troncoso
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| |
Collapse
|
10
|
Dalskov Mosgaard M, Strindberg S, Abid Z, Singh Petersen R, Højlund Eklund Thamdrup L, Joukainen Andersen A, Sylvest Keller S, Müllertz A, Hagner Nielsen L, Boisen A. Ex vivo intestinal perfusion model for investigating mucoadhesion of microcontainers. Int J Pharm 2019; 570:118658. [PMID: 31491485 DOI: 10.1016/j.ijpharm.2019.118658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 11/30/2022]
Abstract
Micro fabricated delivery systems have shown promise in increasing oral bioavailability of drugs. Micrometer-sized polymeric devices (microcontainers) have the potential to facilitate unidirectional drug release directly into the intestinal mucosa whereby, drug absorption can be enhanced. The aim of this study was to develop an ex vivo model to investigate mucosal adhesion and orientation of microcontainers. Furthermore, to investigate how microcontainers with varying height, shape and material behave in regards to mucoadhesion and orientation. Microcontainers were placed at the top of an inclined piece of porcine small intestine. The tissue was perfused with biorelevant medium followed by microscopic examination to observe the orientation and amount of microcontainers on the tissue. The mucoadhesion of the microcontainers were evaluated based on the observed position on the tissue after being exposed to flow. When comparing the varying types of microcontainers, good adhesion was in general observed since most of the microcontainers were located in the beginning of the intestine. Microcontainers fabricated from the epoxy-based photoresist SU-8 had a slightly better adherence than those fabricated from poly-ɛ-caprolactone (PCL). The orientation of the microcontainers appeare to be dictated mainly by the height. In general, the model showed promising results in evaluating mucoadhesion and orientation.
Collapse
Affiliation(s)
- Mette Dalskov Mosgaard
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | - Sophie Strindberg
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Zarmeena Abid
- National Center of Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | - Ritika Singh Petersen
- National Center of Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | | | - Alina Joukainen Andersen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- National Center of Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Line Hagner Nielsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Hou C, Yi B, Jiang J, Chang YF, Yao X. Up-to-date vaccine delivery systems: robust immunity elicited by multifarious nanomaterials upon administration through diverse routes. Biomater Sci 2019; 7:822-835. [PMID: 30540292 DOI: 10.1039/c8bm01197d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this review, we summarize the recent design strategies (2015-present) of nanomaterial-based vaccine delivery systems via multiple routes to induce robust protective immunity. The selected topics are focused on the novel design strategies of nanomaterial carriers for vaccine delivery. Inspired by recent advances, we also briefly introduce the emerging administration routes that may give rise to synergistic immune effects with advanced delivery systems. Ultimately, we present the existing challenges and survey the prospective development of various nanoparticle vaccine delivery systems.
Collapse
Affiliation(s)
- Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Kim T, Kim JU, Yang K, Nam K, Choe D, Kim E, Hong IH, Song M, Lee H, Park J, Roh YH. Nanoparticle-Patterned Multicompartmental Chitosan Capsules for Oral Delivery of Oligonucleotides. ACS Biomater Sci Eng 2018; 4:4163-4173. [PMID: 33418815 DOI: 10.1021/acsbiomaterials.8b00806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orally administered antisense therapy has been introduced as an effective approach for treating cancer in the gastrointestinal tract. However, its practical application has been limited by the instability of oligonucleotides and their inefficient delivery. To overcome these problems, we synthesized size-dependent, oligonucleotide nanoparticle-patterned chitosan/phytic acid (ODN/CS/PA) capsules with protective shields via a three-step process of self-assembly, nanoparticle encapsulation, and shell formation. The multicompartmental capsule size and oligonucleotide nanoparticle-loading pattern were controlled by applying different potentials during the electrostatic extrusion process used for nanoparticle encapsulation. Over 95% of encapsulated oligonucleotides were protected from nuclease digestion (DNase I) and, depending on their size, showed 40-75% protection against simulated gastric fluid. Their controlled release from capsules correlated with the cellular delivery of released nanoparticles and the inhibition of protein expression in cancer cells. Specifically, large capsules showed approximately 32-fold greater delivery to cancer cells than nonencapsulated nanoparticles. We also confirmed delivery of oligonucleotide nanoparticles to the small intestine and colon of rats following oral administration. These findings demonstrate that the multicompartmental ODN/CS/PA capsules can facilitate efficient oral delivery of oligonucleotides for cancer treatment.
Collapse
Affiliation(s)
- Taehyung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong Un Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungjik Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Deokyeong Choe
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eugene Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Il-Hwa Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, South Gyeongsang Province 52828, Republic of Korea
| | - Minjung Song
- Department of Food Biotechnology, Division of Bioindustry, Silla University, 140 Baegyang-daero, 700 beon-gil, Sasang-gu, Busan 46958, Republic of Korea
| | - Hyunah Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiyong Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Nielsen LH, Keller SS, Boisen A. Microfabricated devices for oral drug delivery. LAB ON A CHIP 2018; 18:2348-2358. [PMID: 29975383 DOI: 10.1039/c8lc00408k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oral administration of drugs is most convenient for patients and therefore the ultimate goal when developing new medication. The physical barriers in the body, low pH of the stomach and degradation by enzymes in the gastrointestinal tract are a few of the obstacles to succeeding with oral drug delivery. Microfabricated devices show promise to overcome some of these hindrances and thereby improve the bioavailability of drugs after oral administration. There is an increasing focus on microfabricated oral drug delivery systems, and so far there have been three main groups of designs: patch-like structures, microcontainers and microwells. Here, we review the newest development in top-down microfabricated devices for oral drug delivery with coverage of the aspects of design, choice of material and fabrication techniques. Furthermore, the drug loading techniques and methods for testing are discussed. In addition, we discuss the future perspectives for microfabricated devices.
Collapse
Affiliation(s)
- Line Hagner Nielsen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
14
|
He W, Liu P, Zhang J, Yao X. Emerging Applications of Bioinspired Slippery Surfaces in Biomedical Fields. Chemistry 2018; 24:14864-14877. [DOI: 10.1002/chem.201801368] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Wenqing He
- Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Peng Liu
- Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Jianqiang Zhang
- Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Xi Yao
- Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
- City University of Hong Kong Shenzhen Research Institute; Shenzhen 518075 P.R. China
| |
Collapse
|
15
|
Schoellhammer CM, Chen Y, Cleveland C, Minahan D, Bensel T, Park JY, Saxton S, Lee YAL, Booth L, Langer R, Traverso G. Defining optimal permeant characteristics for ultrasound-mediated gastrointestinal delivery. J Control Release 2017; 268:113-119. [PMID: 29051063 DOI: 10.1016/j.jconrel.2017.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/01/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
Ultrasound-mediated drug delivery in the gastrointestinal (GI) tract is a bourgeoning area of study. Localized, low-frequency ultrasound has recently been shown to enable significant enhancement in delivery of a broad set of active pharmaceutical ingredients including small molecules, proteins, and nucleic acids without any formulation or encapsulation of the therapeutic. Traditional chemical formulations are typically required to protect, stabilize, and enable the successful delivery of a given therapeutic. The use of ultrasound, however, may make delivery insensitive to the chemical formulation. This might open the door to chemical formulations being developed to address other properties besides the deliverability of a therapeutic. Instead, chemical formulations could potentially be developed to achieve novel pharmacokinetics, without consideration of that particular formulation's ability to penetrate the mucus barrier passively. Here we investigated the effect of permeant size, charge, and the presence of chemical penetration enhancers on delivery to GI tissue using ultrasound. Short ultrasound treatments enabled delivery of large permeants, including microparticles, deep into colonic tissue ex vivo. Delivery was relatively independent of size and charge but did depend on conformation, with regular, spherical particles being delivered to a greater extent than long-chain polymers. The subsequent residence time of model permeants in tissue after ultrasound-mediated delivery was found to depend on size, with large microparticles demonstrating negligible clearance from the local tissue 24h after delivery ex vivo. The dependence of clearance time on permeant size was further confirmed in vivo in mice using fluorescently labeled 3kDa and 70kDa dextran. The use of low-frequency ultrasound in the GI tract represents a novel tool for the delivery of a wide-range of therapeutics independent of formulation, potentially allowing for the tailoring of formulations to impart novel pharmacokinetic profiles once delivered into tissue.
Collapse
Affiliation(s)
- Carl M Schoellhammer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Suono Bio, Inc. 700 Main St., North, Cambridge, MA 02139, United States
| | - Yiyun Chen
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, UK
| | - Cody Cleveland
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Daniel Minahan
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Taylor Bensel
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - June Y Park
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sarah Saxton
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Young-Ah Lucy Lee
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Lucas Booth
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
16
|
An YH, Yu SJ, Kim IS, Kim SH, Moon JM, Kim SL, Choi YH, Choi JS, Im SG, Lee KE, Hwang NS. Hydrogel Functionalized Janus Membrane for Skin Regeneration. Adv Healthc Mater 2017; 6. [PMID: 27995759 DOI: 10.1002/adhm.201600795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/14/2016] [Indexed: 12/31/2022]
Abstract
In this study, a hydrogel functionalized Janus membrane is developed and its capacity is examined as a wound dressing biomaterial. A hydrophobic fluoropolymer, poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PHFDMA), is uniformly coated onto macroporous polyester membrane through initiated chemical vapor deposition process on both sides. PHFDMA-coated macroporous membrane exhibits antibacterial property, allows air permeation, and inhibits water penetration. Janus membrane property is obtained by exposing one side of PHFDMA coated membrane with 1 m KOH solution, which allows PHFDMA cleavage resulting in carboxylic acid residue. This carboxylic acid residue is then further functionalized with gelatin methacrylate-based photocrosslinkable hydrogel for moisture retention and growth factor release. When applied to full thickness dorsal skin defect model, functionalized hydrogel allows moisture retention and hydrophobic surface prevents exudate leaks via water repellence. Furthermore, hydrogel functionalized Janus membrane enhances the wound healing rate and induces thick epidermal layer formation. In conclusion, the multifunctional Janus membrane with hydrophobic outer surface and immobilized hydrogel on the other surface is fabricated for an innovative strategy for wound healing.
Collapse
Affiliation(s)
- Young-Hyeon An
- School of Chemical and Biological Engineering; Seoul National University; Seoul 152-742 Republic of Korea
| | - Seung Jung Yu
- Department of Chemical and Biomolecular Engineering; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Republic of Korea
| | - In Seon Kim
- School of Chemical and Biological Engineering; Seoul National University; Seoul 152-742 Republic of Korea
| | - Su-Hwan Kim
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Jeong-Mi Moon
- Graduate School of Analytical Science and Technology; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Seunghyun L. Kim
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering; Seoul National University; Seoul 152-742 Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Republic of Korea
| | - Kyung Eun Lee
- College of Pharmacy; Chungbuk National University; Cheongju 362-763 Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering; Seoul National University; Seoul 152-742 Republic of Korea
| |
Collapse
|
17
|
Aw MS, Paniwnyk L. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release. Biomater Sci 2017; 5:1944-1961. [DOI: 10.1039/c7bm00425g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target.
Collapse
Affiliation(s)
- M. S. Aw
- School of Life Sciences
- Biomolecular and Sports Science
- Faculty of Health and Life Sciences
- Coventry University
- Coventry
| | - L. Paniwnyk
- School of Life Sciences
- Biomolecular and Sports Science
- Faculty of Health and Life Sciences
- Coventry University
- Coventry
| |
Collapse
|
18
|
Banerjee A, Lee J, Mitragotri S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioeng Transl Med 2016; 1:338-346. [PMID: 29313019 PMCID: PMC5689539 DOI: 10.1002/btm2.10015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
Oral delivery of proteins such as insulin has been a long‐lasting challenge owing to gastrointestinal degradation and poor permeability of therapeutic macromolecules across biological membranes. We have developed mucoadhesive intestinal devices for oral delivery of insulin to address this challenge. Here we demonstrate a combination of intestinal devices and a permeation enhancer, dimethyl palmitoyl ammonio propanesulfonate (PPS), for oral delivery of insulin. The devices were delivered from a capsule coated with a pH‐responsive enteric coating. The devices adhere to intestinal mucosa, release their protein load unidirectionally, and prevent enzymatic degradation in the gut. Devices were found to completely release their drug load within 3–4 hr and showed excellent strength of mucoadhesion to porcine intestine. Devices loaded with insulin and PPS significantly decreased blood glucose levels by 30 and 33% in diabetic and nondiabetic rats, respectively. These studies demonstrate that intestinal mucoadhesive devices are a promising oral alternative to insulin injections and therefore should be further explored for the treatment of diabetes.
Collapse
Affiliation(s)
- Amrita Banerjee
- Dept. of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106
| | - JooHee Lee
- Dept. of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106
| | - Samir Mitragotri
- Dept. of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106.,Center for Bioengineering University of California Santa Barbara Santa Barbara California 93106
| |
Collapse
|