1
|
Gao D, Yan C, Wang Y, Yang H, Liu M, Wang Y, Li C, Li C, Cheng G, Zhang L. Drug-eluting contact lenses: Progress, challenges, and prospects. Biointerphases 2024; 19:040801. [PMID: 38984804 DOI: 10.1116/6.0003612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Topical ophthalmic solutions (eye drops) are becoming increasingly popular in treating and preventing ocular diseases for their safety, noninvasiveness, and ease of handling. However, the static and dynamic barriers of eyes cause the extremely low bioavailability (<5%) of eye drops, making ocular therapy challenging. Thus, drug-eluting corneal contact lenses (DECLs) have been intensively investigated as a drug delivery device for their attractive properties, such as sustained drug release and improved bioavailability. In order to promote the clinical application of DECLs, multiple aspects, i.e., drug release and penetration, safety, and biocompatibility, of these drug delivery systems were thoroughly examined. In this review, we systematically discussed advances in DECLs, including types of preparation materials, drug-loading strategies, drug release mechanisms, strategies for penetrating ocular barriers, in vitro and in vivo drug delivery and penetration detection, safety, and biocompatibility validation methods, as well as challenges and future perspectives.
Collapse
Affiliation(s)
- Dongdong Gao
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Chunxiao Yan
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yong Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Mengxin Liu
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yi Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| |
Collapse
|
2
|
Apostolides D, Michael G, Patrickios CS, Notredame B, Zhang Y, Gohy JF, Prévost S, Gradzielski M, Jung FA, Papadakis CM. Dynamic Covalent Amphiphilic Polymer Conetworks Based on End-Linked Pluronic F108: Preparation, Characterization, and Evaluation as Matrices for Gel Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38669089 PMCID: PMC11082838 DOI: 10.1021/acsami.3c19189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
We present the development of a platform of well-defined, dynamic covalent amphiphilic polymer conetworks (APCN) based on an α,ω-dibenzaldehyde end-functionalized linear amphiphilic poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (PEG-b-PPG-b-PEG, Pluronic) copolymer end-linked with a triacylhydrazide oligo(ethylene glycol) triarmed star cross-linker. The developed APCNs were characterized in terms of their rheological (increase in the storage modulus by a factor of 2 with increase in temperature from 10 to 50 °C), self-healing, self-assembling, and mechanical properties and evaluated as a matrix for gel polymer electrolytes (GPEs) in both the stretched and unstretched states. Our results show that water-loaded APCNs almost completely self-mend, self-organize at room temperature into a body-centered cubic structure with long-range order exhibiting an aggregation number of around 80, and display an exceptional room temperature stretchability of ∼2400%. Furthermore, ionic liquid-loaded APCNs could serve as gel polymer electrolytes (GPEs), displaying a substantial ion conductivity in the unstretched state, which was gradually reduced upon elongation up to a strain of 4, above which it gradually increased. Finally, it was found that recycled (dissolved and re-formed) ionic liquid-loaded APCNs could be reused as GPEs preserving 50-70% of their original ion conductivity.
Collapse
Affiliation(s)
| | - George Michael
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas S. Patrickios
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Benoît Notredame
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yinghui Zhang
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Gohy
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Sylvain Prévost
- Institut
Max von Laue—Paul Langevin (ILL), 71, Avenue des Martyrs—CS 20156, 38042 Grenoble Cedex 9, France
| | - Michael Gradzielski
- Stranski-Laboratorium
für Physikalische und Theoretische Chemie, Institut für
Chemie, Technische Universität, Straße des 17, Juni 124, D-10623 Berlin, Germany
| | - Florian A. Jung
- Soft Matter
Physics Group, Physics Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Christine M. Papadakis
- Soft Matter
Physics Group, Physics Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
3
|
Yu M, Ye R, Zeng T, Tan L, Zhao Z, Gao W, Chen X, Lian Z, Ma Y, Li A, Hu J. Constructing an Ultra-Rapid Nanoconfinement-Enhanced Fluorescence Clinical Detection Platform by Using Machine Learning and Tunable DNA Xerogel "Probe". Anal Chem 2023; 95:15690-15699. [PMID: 37830461 DOI: 10.1021/acs.analchem.3c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Low mass transfer efficiency and unavoidable matrix effects seriously limit the development of rapid and accurate determination of biosensing systems. Herein, we have successfully constructed an ultra-rapid nanoconfinement-enhanced fluorescence clinical detection platform based on machine learning (ML) and DNA xerogel "probe", which was performed by detecting neutrophil gelatinase-associated lipocalin (NGAL, protein biomarker of acute kidney injury). By regulating pore sizes of the xerogels, the transfer of NGAL in xerogels can approximate that in homogeneous solution. Due to electrostatic attraction of the pore entrances, NGAL rapidly enriches on the surface and inside the xerogels. The reaction rate of NGAL and aptamer cross-linked in xerogels is also accelerated because of the nanoconfinement effect-induced increasing reactant concentration and the enhanced affinity constant KD between reactants, which can be promoted by ∼667-fold than that in bulk solution, thus achieving ultra-rapid detection (ca. 5 min) of human urine. The platform could realize one-step detection without sample pretreatments due to the antiligand exchange effect on the surface of N-doped carbon quantum dots (N-CQDs) in xerogels, in which ligand exchange between -COOH and underlying interfering ions in urine will be inhibited due to higher adsorption energy of -COOH on the N-CQD surface relative to the interfering ions. Based on the ML-extended program, the real-time analysis of the urine fluorescence spectra can be completed within 2 s. Interestingly, by changing DNA, aptamer sequences, or xerogel fluorescence intensities, the detection platform can be customized for targeted diseases.
Collapse
Affiliation(s)
- Meng Yu
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Rongkai Ye
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Tao Zeng
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Li Tan
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ziyu Zhao
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Wenjing Gao
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Xin Chen
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ziqi Lian
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Aiqing Li
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Jianqiang Hu
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Yang H, Zhao M, Xing D, Zhang J, Fang T, Zhang F, Nie Z, Liu Y, Yang L, Li J, Wang D. Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review. Asian J Pharm Sci 2023; 18:100847. [PMID: 37915758 PMCID: PMC10616140 DOI: 10.1016/j.ajps.2023.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 11/03/2023] Open
Abstract
The number of people with eye diseases has increased with the use of electronics. However, the bioavailability of eye drops remains low owing to the presence of the ocular barrier and other reasons. Although many drug delivery systems have been developed to overcome these problems, they have certain limitations. In recent years, the development of contact lenses that can deliver drugs for long periods with high bioavailability and without affecting vision has increased the interest in using contact lenses for drug delivery. Hence, a review of the current state of research on drug delivery contact lenses has become crucial. This article reviews the key physical and chemical properties of drug-laden contact lenses, development and classification of contact lenses, and features of the commonly used materials. A review of the methods commonly used in current research to create contact lenses has also been presented. An overview on how drug-laden contact lenses can overcome the problems of high burst and short release duration has been discussed. Overall, the review focuses on drug delivery methods using smart contact lenses, and predicts the future direction of research on contact lenses.
Collapse
Affiliation(s)
| | | | - Dandan Xing
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Faxing Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhihao Nie
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lihua Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
5
|
Yang C, Wu Q, Liu J, Mo J, Li X, Yang C, Liu Z, Yang J, Jiang L, Chen W, Chen HJ, Wang J, Xie X. Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure. Nat Commun 2022; 13:2556. [PMID: 35581184 PMCID: PMC9114010 DOI: 10.1038/s41467-022-29860-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Engineering wearable devices that can wirelessly track intraocular pressure and offer feedback-medicine administrations are highly desirable for glaucoma treatments, yet remain challenging due to issues of limited sizes, wireless operations, and wireless cross-coupling. Here, we present an integrated wireless theranostic contact lens for in situ electrical sensing of intraocular pressure and on-demand anti-glaucoma drug delivery. The wireless theranostic contact lens utilizes a highly compact structural design, which enables high-degreed integration and frequency separation on the curved and limited surface of contact lens. The wireless intraocular pressure sensing modulus could ultra-sensitively detect intraocular pressure fluctuations, due to the unique cantilever configuration design of capacitive sensing circuit. The drug delivery modulus employs an efficient wireless power transfer circuit, to trigger delivery of anti-glaucoma drug into aqueous chamber via iontophoresis. The minimally invasive, smart, wireless and theranostic features endow the wireless theranostic contact lens as a highly promising system for glaucoma treatments.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Junqing Liu
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.,School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.,The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ziqi Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jingbo Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.,School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lelun Jiang
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China. .,The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Pereira-da-Mota AF, Phan CM, Concheiro A, Jones L, Alvarez-Lorenzo C. Testing drug release from medicated contact lenses: The missing link to predict in vivo performance. J Control Release 2022; 343:672-702. [DOI: 10.1016/j.jconrel.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
|
7
|
Iyer A, Jyothi VGSS, Agrawal A, Khatri DK, Srivastava S, Singh SB, Madan J. Does skin permeation kinetics influence efficacy of topical dermal drug delivery system?: Assessment, prediction, utilization, and integration of chitosan biomacromolecule for augmenting topical dermal drug delivery in skin. J Adv Pharm Technol Res 2021; 12:345-355. [PMID: 34820308 PMCID: PMC8588922 DOI: 10.4103/japtr.japtr_82_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 11/04/2022] Open
Abstract
Skin permeation is an integral part of penetration of topical therapeutics. Zero order in addition to Higuchi permeation kinetic is usually preferred in topical drug delivery cargo. Penetration of therapeutic entities through epidermal barrier is a major challenge for scientific fraternity. Furthermore, penetration of therapeutic entities determines the transportation and ultimately therapeutic efficacy of topical dermal dosage forms. Apart from experimentation models, mathematical equations, in silico docking, molecular dynamics (MDs), and artificial neural network (Neural) techniques are being used to assess free energies and prediction of electrostatic attractions in order to predict the permeation phenomena of therapeutic entities. Therefore, in the present review, we have summarized the significance of kinetic equations, in silico docking, MDs, and ANN in assessing and predicting the penetration behavior of topical therapeutics through dermal dosage form. In addition, the role of chitosan biomacromolecule in modulating permeation of topical therapeutics in skin has also been illustrated using computational techniques.
Collapse
Affiliation(s)
- Akshaya Iyer
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aashruti Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Patrickios CS, Matyjaszewski K. Amphiphilic polymer co‐networks: 32 years old and growing stronger – a perspective. POLYM INT 2020. [DOI: 10.1002/pi.6138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
9
|
Lanier OL, Christopher KG, Macoon RM, Yu Y, Sekar P, Chauhan A. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv 2020; 17:1133-1149. [DOI: 10.1080/17425247.2020.1787983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Olivia L. Lanier
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | | | - Russell M. Macoon
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Yifan Yu
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Poorvajan Sekar
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Anuj Chauhan
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|
10
|
Varnava CK, Patrickios CS. Model Amphiphilic Polymer Conetworks in Water: Prediction of Their Ability for Oil Solubilization. ACS OMEGA 2019; 4:4721-4738. [PMID: 31459659 PMCID: PMC6648537 DOI: 10.1021/acsomega.8b03658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/13/2019] [Indexed: 06/10/2023]
Abstract
In this work, we computationally explored the ability of water-swollen, model ionizable ABA triblock copolymer-based amphiphilic polymer conetworks (APCNs) to solubilize a water-immiscible organic solvent (oil), via Gibbs free energy minimization. This was done as a function of the conetwork hydrophobe (A-blocks) mol fraction and the degree of ionization of the hydrophilic B-blocks. Expectedly, highest oil solubilization capacities were calculated for the most hydrophobic and least ionized APCNs, which could absorb up to 6.4 times more oil than water and exhibited a lamellar morphology. Our results also included a phase diagram, which indicated transitions from spheres to cylinders, lamellae, and unimers in oil, as the hydrophobe content increased and the degree of ionization decreased. All of these transitions were accompanied by discontinuous changes in the degrees of swelling in the aqueous and oil nanophases, discontinuous changes in the asymmetry ratios (for the anisotropic morphologies), and discontinuous changes in the oil solubilization capacities. This is the first time that a dual discontinuous volume phase transition is reported within a polymer gel.
Collapse
Affiliation(s)
- Constantina K. Varnava
- Department of Chemistry, University of
Cyprus, P.O. Box 20537, 1 University Avenue 2109 Aglantzia, 1678 Nicosia, Cyprus
| | - Costas S. Patrickios
- Department of Chemistry, University of
Cyprus, P.O. Box 20537, 1 University Avenue 2109 Aglantzia, 1678 Nicosia, Cyprus
| |
Collapse
|
11
|
Alvarez-Lorenzo C, Anguiano-Igea S, Varela-García A, Vivero-Lopez M, Concheiro A. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater 2019; 84:49-62. [PMID: 30448434 DOI: 10.1016/j.actbio.2018.11.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Efficient ocular drug delivery that can overcome the challenges of topical application has been largely pursued. Contact lenses (CLs) may act as light-transparent cornea/sclera bandages for prolonged drug release towards the post-lens tear fluid, if their composition and inner architecture are fitted to the features of the drug molecules. In this review, first the foundations and advantages of using CLs as ocular drug depots are revisited. Then, pros and cons of common strategies to prepare drug-loaded CLs are analyzed on the basis of recent examples, and finally the main section focuses on bioinspired strategies that can overcome some limitations of current designs. Most bioinspired strategies resemble a reverse engineering process to create artificial receptors for the drug inside the CL network by mimicking the human natural binding site of the drug. Related bioinspired strategies are being also tested for designing CLs that elute comfort ingredients mimicking the blinking-associated renewal of eye mucins. Other bioinspired approaches exploit the natural eye variables as stimuli to trigger drug release or take benefit of bio-glues to specifically bind active components to the CL surface. Overall, biomimicking approaches are being revealed as valuable tools to fit the amounts loaded and the release profiles to the therapeutic demands of each pathology. STATEMENT OF SIGNIFICANCE: Biomimetic and bioinspired strategies are remarkable tools for the optimization of drug delivery systems. Translation of the knowledge about how drugs interact with the natural pharmacological receptor and about components and dynamics of anterior eye segment may shed light on the design criteria for obtaining efficient drug-eluting CLs. Current strategies for endowing CLs with controlled drug release performance still require optimization regarding amount loaded, drug retained in the CL structure during storage, regulation of drug release once applied onto the eye, and maintenance of CL physical properties. All these limitations may be addressed through a variety of recently growing bioinspired approaches, which are expected to pave the way of medicated CLs towards the clinics.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Soledad Anguiano-Igea
- HGBeyond Materials Science S.L, Edificio Emprendia, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Angela Varela-García
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; HGBeyond Materials Science S.L, Edificio Emprendia, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - María Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Kitiri EN, Varnava CK, Patrickios CS, Voutouri C, Stylianopoulos T, Gradzielski M, Hoffmann I. Double‐networks based on interconnected amphiphilic “in–out” star first polymer conetworks prepared by RAFT polymerization. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elina N. Kitiri
- Department of ChemistryUniversity of Cyprus P. O. Box 20537, 1678 Nicosia Cyprus
| | | | - Costas S. Patrickios
- Department of ChemistryUniversity of Cyprus P. O. Box 20537, 1678 Nicosia Cyprus
| | - Chrysovalantis Voutouri
- Department of Mechanical and Manufacturing EngineeringUniversity of Cyprus P. O. Box 20537, Nicosia 1678 Cyprus
| | | | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für ChemieTechnische Universität Berlin, Strasse des 17 Juni 124, 10623 Berlin Germany
| | - Ingo Hoffmann
- Institut Max von Laue‐Paul Langevin (ILL) F‐38042 Grenoble Cedex 9 France
| |
Collapse
|
13
|
Nutan B, Chandel AKS, Jewrajka SK. Liquid Prepolymer-Based in Situ Formation of Degradable Poly(ethylene glycol)-Linked-Poly(caprolactone)-Linked-Poly(2-dimethylaminoethyl)methacrylate Amphiphilic Conetwork Gels Showing Polarity Driven Gelation and Bioadhesion. ACS APPLIED BIO MATERIALS 2018; 1:1606-1619. [DOI: 10.1021/acsabm.8b00461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Arvind K. Singh Chandel
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
14
|
Ulrich S, Sadeghpour A, Rossi RM, Bruns N, Boesel LF. Wide Range of Functionalized Poly(N-alkyl acrylamide)-Based Amphiphilic Polymer Conetworks via Active Ester Precursors. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sebastian Ulrich
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | | | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | |
Collapse
|
15
|
Apostolides DE, Patrickios CS, Sakai T, Guerre M, Lopez G, Améduri B, Ladmiral V, Simon M, Gradzielski M, Clemens D, Krumm C, Tiller JC, Ernould B, Gohy JF. Near-Model Amphiphilic Polymer Conetworks Based on Four-Arm Stars of Poly(vinylidene fluoride) and Poly(ethylene glycol): Synthesis and Characterization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02475] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Costas S. Patrickios
- Department of Chemistry, University of Cyprus, 1 University Avenue, 2109 Aglanjia, Cyprus
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Marc Guerre
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Gérald Lopez
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Bruno Améduri
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Vincent Ladmiral
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Miriam Simon
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Michael Gradzielski
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Daniel Clemens
- Institut für Weiche Materie und Funktionale Materialien (EM-ISFM), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Christian Krumm
- Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 66, D-44227 Dortmund, Germany
| | - Joerg C. Tiller
- Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 66, D-44227 Dortmund, Germany
| | - Bruno Ernould
- Institute for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université catholique de Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Gohy
- Institute for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université catholique de Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
16
|
Kepola EJ, Patrickios CS. Networks Based on “Core-First” Star Polymers End-Linked Using a Degradable Ketal Cross-Linker: Synthesis, Characterization, and Cleavage. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eleni J. Kepola
- Department of Chemistry; University of Cyprus; P. O. Box 20537, 1 University Avenue Aglanjia 2109 Nicosia Cyprus
| | - Costas S. Patrickios
- Department of Chemistry; University of Cyprus; P. O. Box 20537, 1 University Avenue Aglanjia 2109 Nicosia Cyprus
| |
Collapse
|
17
|
McLeod KR, Tew GN. Microphase-Separated Thiol–Ene Conetworks from Telechelic Macromonomers with Asymmetric Molecular Weights. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kelly R. McLeod
- Department
of Polymer Science and Engineering, ‡Department of Veterinary and Animal
Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department
of Polymer Science and Engineering, ‡Department of Veterinary and Animal
Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Wang HC, Grolman JM, Rizvi A, Hisao GS, Rienstra CM, Zimmerman SC. pH-Triggered Release from Polyamide Microcapsules Prepared by Interfacial Polymerization of a Simple Diester Monomer. ACS Macro Lett 2017; 6:321-325. [PMID: 35650910 DOI: 10.1021/acsmacrolett.6b00968] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The majority of current pH-triggered release systems is designed to respond to either low or high pH. Encapsulants based on polyampholytes are an example of materials that can respond to both acidic and basic pH. However, polyampholyte-based encapsulants generally possess a low loading capacity and have difficulty retaining their small-molecule cargo. The current work utilizes interfacial polymerization between polyamines and a pyromellitic diester diacid chloride to form high capacity "liquid core-shell" polyamide microcapsules that are stable in a dry or nonpolar environment but undergo steady, controlled release at pH 7.4 and accelerated release at pH 5 and pH 10. The rate of release can be tuned by adjusting the amine cross-linker feed ratio, which varies the degree of cross-linking in the polymer shell. The thin-shell microcapsule exhibited suitable barrier properties and tunable dual acid/base-triggered release, with applications in a wide range of pH environments.
Collapse
Affiliation(s)
- Hsuan-Chin Wang
- Department
of Chemistry, ‡Beckman Institute for Advanced Science and Technology, and §Department of
Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Joshua M. Grolman
- Department
of Chemistry, ‡Beckman Institute for Advanced Science and Technology, and §Department of
Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Aoon Rizvi
- Department
of Chemistry, ‡Beckman Institute for Advanced Science and Technology, and §Department of
Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Grant S. Hisao
- Department
of Chemistry, ‡Beckman Institute for Advanced Science and Technology, and §Department of
Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department
of Chemistry, ‡Beckman Institute for Advanced Science and Technology, and §Department of
Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Steven C. Zimmerman
- Department
of Chemistry, ‡Beckman Institute for Advanced Science and Technology, and §Department of
Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Guzman G, Bhaway SM, Nugay T, Vogt BD, Cakmak M. Transport-Limited Adsorption of Plasma Proteins on Bimodal Amphiphilic Polymer Co-Networks: Real-Time Studies by Spectroscopic Ellipsometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2900-2910. [PMID: 28240027 DOI: 10.1021/acs.langmuir.7b00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Traditional hydrogels are commonly limited by poor mechanical properties and low oxygen permeability. Bimodal amphiphilic co-networks (β-APCNs) are a new class of materials that can overcome these limitations by combining hydrophilic and hydrophobic polymer chains within a network of co-continuous morphology. Applications that can benefit from these improved properties include therapeutic contact lenses, enzymatic catalysis supports, and immunoisolation membranes. The continuous hydrophobic phase could potentially increase the adsorption of plasma proteins in blood-contacting medical applications and compromise in vivo material performance, so it is critical to understand the surface characteristics of β-APCNs and adsorption of plasma proteins on β-APCNs. From real-time spectroscopic visible (Vis) ellipsometry measurements, plasma protein adsorption on β-APCNs is shown to be transport-limited. The adsorption of proteins on the β-APCNs is a multistep process with adsorption to the hydrophilic surface initially, followed by diffusion into the material to the internal hydrophilic/hydrophobic interfaces. Increasing the cross-linking of the PDMS phase reduced the protein intake by limiting the transport of large proteins. Moreover, the internalization of the proteins is confirmed by the difference between the surface-adsorbed protein layer determined from XPS and bulk thickness change from Vis ellipsometry, which can differ up to 20-fold. Desorption kinetics depend on the adsorption history with rapid desorption for slow adsorption rates (i.e., slow-diffusing proteins within the network), whereas proteins with fast adsorption kinetics do not readily desorb. This behavior can be directly related to the ability of the protein to spread or reorient, which affects the binding energy required to bind to the internal hydrophobic interfaces.
Collapse
Affiliation(s)
- Gustavo Guzman
- Polymer Engineering Department, The University of Akron , Akron, Ohio 44325, United States
| | - Sarang M Bhaway
- Polymer Engineering Department, The University of Akron , Akron, Ohio 44325, United States
| | - Turgut Nugay
- Chemistry Department, Polymer Research Center, Boğaziçi University , Bebek, 34342 Istanbul, Turkey
| | - Bryan D Vogt
- Polymer Engineering Department, The University of Akron , Akron, Ohio 44325, United States
| | - Mukerrem Cakmak
- Polymer Engineering Department, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
20
|
Zhang C, Liu Z, Wang H, Feng X, He C. Novel Anti‐Biofouling Soft Contact Lens:
l
‐Cysteine Conjugated Amphiphilic Conetworks via RAFT and Thiol–Ene Click Chemistry. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Chengfeng Zhang
- College of Material Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Ziyuan Liu
- College of Material Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Haiye Wang
- College of Material Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Xiaofeng Feng
- College of Material Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| |
Collapse
|