1
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
2
|
Merlin JPJ, Crous A, Abrahamse H. Nano-phototherapy: Favorable prospects for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1930. [PMID: 37752098 DOI: 10.1002/wnan.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Nanotechnology-based phototherapies have drawn interest in the fight against cancer because of its noninvasiveness, high flexibility, and precision in terms of cancer targeting and drug delivery based on its surface properties and size. Phototherapy has made remarkable development in recent decades. Approaches to phototherapy, which utilize nanomaterials or nanotechnology have emerged to contribute to advances around nanotechnologies in medicine, particularly for cancers. A brief overviews of the development of photodynamic therapy as well as its mechanism in cancer treatment is provided. We emphasize the design of novel nanoparticles utilized in photodynamic therapy while summarizing the representative progress during the recent years. Finally, to forecast important future research in this area, we examine the viability and promise of photodynamic therapy systems based on nanoparticles in clinical anticancer treatment applications and briefly make mention of the elimination of all reactive metabolites pertaining to nano formulations inside living organisms providing insight into clinical mechanistic processes. Future developments and therapeutic prospects for photodynamic treatments are anticipated. Our viewpoints might encourage scientists to create more potent phototherapy-based cancer therapeutic modalities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- J P Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
4
|
Wang D, Li H, Wang D, Hao Y, Gui H, Liu J, Zhang Y, Liu J, Yang C. Supramolecular Coassembled Peptide Hydrogels for Efficient Anticancer Therapy by RNS-Based PDT and Immune Microenvironment Regulation. Macromol Biosci 2022; 22:e2200359. [PMID: 36208072 DOI: 10.1002/mabi.202200359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) has attracted much attention in cancer treatment due to its tumor selectivity and noninvasive nature. Recent studies have demonstrated that PDT mediated reactive oxygen species (ROS) generation in tumor microenvironment (TME) synergistically improves the efficacy of immune checkpoint blockade (ICB) therapy. However, the instability and short half-life of the ROS generated by PDT limit its clinical applications. Herein, a coassembled peptide hydrogel comprising two short peptides that contained the same assembly unit, Ce6-KKFKFEFEF (KEF-Ce6) and RRRRRRRR-KFKFEFEF (KEF-R8) is developed. When exposed to 635 nm laser irradiation, KEF-Ce6 released ROS, while KEF-R8 plays as nitric oxide (NO) donor. Subsequently, ROS reacts with NO to produce reactive nitrogen species (RNS). Both in vitro and in vivo experiments prove that converting ROS into more cytotoxic RNS caused intense cell death. Importantly, it is observed that tumor-associated macrophages (TAMs) are polarized to proinflammatory types (M1-type) by the RNS-based PDT. The increase of M1 macrophages relieves the immunosuppressive situation in TME. Thus, when combined with αPD-L1 treatment, the survival time of tumor-bearing mice is prolonged. Overall, a simple yet efficient coassembled hydrogel that can cascade release ROS/NO/RNS and strengthen antitumor T cell responses to boost cancer immunotherapy by reprogramming TAMs is provided.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hui Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yusen Hao
- Lab of Functional and Biomedical Nanomaterials College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Han Gui
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
5
|
Wu M, Huang X, Gao L, Zhou G, Xie F. The application of photodynamic therapy in plastic and reconstructive surgery. Front Chem 2022; 10:967312. [PMID: 35936104 PMCID: PMC9353173 DOI: 10.3389/fchem.2022.967312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a modern clinical treatment paradigm with the advantages of high selectivity, non-invasiveness, rare side-effect, no obvious drug resistance and easy combination with other therapies. These features have endowed PDT with high focus and application prospects. Studies of photodynamic therapy have been expanded in a lot of biomedical and clinical fields, especially Plastic and Reconstructive Surgery (PRS) the author major in. In this review, we emphasize the mechanism and advances in PDT related to the PRS applications including benign pigmented lesions, vascular malformations, inflammatory lesions, tumor and others. Besides, combined with clinical data analysis, the limitation of PDT and current issues that need to be addressed in the field of PRS have also been discussed. At last, a comprehensive discussion and outlooking represent future progress of PDT in PRS.
Collapse
Affiliation(s)
- Min Wu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Min Wu, ; Feng Xie,
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Min Wu, ; Feng Xie,
| |
Collapse
|
6
|
Lee D, Kwon S, Jang SY, Park E, Lee Y, Koo H. Overcoming the obstacles of current photodynamic therapy in tumors using nanoparticles. Bioact Mater 2022; 8:20-34. [PMID: 34541384 PMCID: PMC8424083 DOI: 10.1016/j.bioactmat.2021.06.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) has been applied in clinical treatment of tumors for a long time. However, insufficient supply of pivotal factors including photosensitizer (PS), light, and oxygen in tumor tissue dramatically reduces the therapeutic efficacy of PDT. Nanoparticles have received an influx of attention as drug carriers, and recent studies have demonstrated their promising potential to overcome the obstacles of PDT in tumor tissue. Physicochemical optimization for passive targeting, ligand modification for active targeting, and stimuli-responsive release achieved efficient delivery of PS to tumor tissue. Various trials using upconversion NPs, two-photon lasers, X-rays, and bioluminescence have provided clues for efficient methods of light delivery to deep tissue. Attempts have been made to overcome unfavorable tumor microenvironments via artificial oxygen generation, Fenton reaction, and combination with other chemical drugs. In this review, we introduce these creative approaches to addressing the hurdles facing PDT in tumors. In particular, the studies that have been validated in animal experiments are preferred in this review over proof-of-concept studies that were only performed in cells.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Soonmin Kwon
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seok-young Jang
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Eunyoung Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yeeun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| |
Collapse
|
7
|
Sun N, Wen X, Zhang S. Strategies to Improve Photodynamic Therapy Efficacy of Metal-Free Semiconducting Conjugated Polymers. Int J Nanomedicine 2022; 17:247-271. [PMID: 35082494 PMCID: PMC8786367 DOI: 10.2147/ijn.s337599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Photodynamic therapy (PDT) is a noninvasive therapy for cancer and bacterial infection. Metal-free semiconducting conjugated polymers (SCPS) with good stability and optical and electrical properties are promising photosensitizers (PSs) for PDT compared with traditional small-molecule PSs. This review analyzes the latest progress of strategies to improve PDT effect of linear, planar, and three-dimensional SCPS, including improving solubility, adjusting conjugated structure, enhancing PS-doped SCPs, and combining therapies. Moreover, the current issues, such as hypoxia, low penetration, targeting and biosafety of SCPS, and corresponding strategies, are discussed. Furthermore, the challenges and potential opportunities on further improvement of PDT for SCPs are presented.
Collapse
Affiliation(s)
- Na Sun
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xue Wen
- School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Song Zhang
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Photosensitizers with Aggregation-induced Emission and Their Biomedical Applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
He Z, Gao Y, Zhang H, Xue Y, Meng F, Luo L. Mitochondrion-Anchored Photosensitizer with Near Infrared-I Aggregation-Induced Emission for Near Infrared-II Two-Photon Photodynamic Therapy. Adv Healthc Mater 2021; 10:e2101056. [PMID: 34569175 DOI: 10.1002/adhm.202101056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/21/2021] [Indexed: 12/23/2022]
Abstract
Two-photon photodynamic therapy (2P-PDT) that employs photosensitizers (PSs) with 2P absorption is particularly intriguing in cancer treatment, in that 2P excitation enables precise spatial localization and deep tissue penetration. Here, a donor-π-acceptor PS (named TPBPy) with near infrared (NIR) aggregation-induced emission (AIE) is designed and synthesized for imaging-guided 2P-PDT. The maximal photoluminescence (PL) peak of TPBPy is as high as 720 nm when it is encapsulated in liposomes. Upon 2P irradiation by a laser in NIR-II window (λ = 1000 nm), TPBPy exhibits strong NIR-I PL in a multicellular tumor spheroids (MCTSs) model, showing an imaging depth of 210 µm that is significantly higher than upon one-photon irradiation. Moreover, TPBPy localizes specifically on mitochondrion, an important organelle in cell oxidative metabolism and apoptosis. When exposed to the NIR-II irradiation, TPBPy can efficiently generate singlet oxygen (1 O2 ) and trigger cell death. The efficacy of TPBPy-mediated 2P-PDT has also been validated using 4T1 tumor mouse model, the growth of which is significantly suppressed upon NIR-II laser irradiation. TPBPy herein serves as an excellent candidate to suppress deep tumor tissues through NIR-II 2P-PDT, and also renders a new paradigm to construct mitochondrion-anchored AIE luminogens for future cancer theranostic applications.
Collapse
Affiliation(s)
- Zhenyan He
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yuting Gao
- Engineering Research Center of Nano‐Geomaterials of the Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
| | - Huimin Zhang
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Ying Xue
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
11
|
Lang Y, Wu S, Yang Q, Luo Y, Jiang X, Wu P. Analysis of the Isotopic Purity of D 2O with the Characteristic NIR-II Phosphorescence of Singlet Oxygen from a Photostable Polythiophene Photosensitizer. Anal Chem 2021; 93:9737-9743. [PMID: 34235917 DOI: 10.1021/acs.analchem.1c01160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
D2O plays important roles in a variety of fields (such as the nuclear industry and bioorganic analysis), and thus its isotopic purity (H2O contents) is highly concerned. Due to its highly similar physical properties to H2O and large excess amounts of H2O over D2O, it is challenging to distinguish D2O from H2O. On the basis of the characteristic NIR-II phosphorescence of singlet oxygen (1O2), and the fact that H2O is a more efficient quencher for 1O2 than D2O, here, we proposed to simply use the 1275 nm emission of 1O2 for the analysis of the isotopic purity of D2O. In normal cases (a xenon lamp for excitation), such steady-state emission is extremely weak for valid analytical applications, we thus employed laser excitation for intensification. To this goal, a series of photosensitizers were screened, and eventually polythiophene PT10 was selected with high singlet oxygen quantum yield (ΦΔ = 0.51), high H2O/D2O contrast, and excellent photostability. Upon excitation with a 445 nm laser, a limit of detection (LOD, 3σ) of 0.1% for H2O in D2O was achieved. The accuracy of the proposed method was verified by the analysis of the isotopic purity of several D2O samples (with randomly added H2O). More interestingly, the hygroscopicity of D2O was sensitively monitored with the proposed probe in a real-time manner; the results of which are important for strengthening the care of D2O storage and the importance of humidity control during related investigations. Besides D2O isotopic purity evaluation, this work also indicated the potential usefulness of the NIR-II emission of singlet oxygen in future analytical detection.
Collapse
|
12
|
Zangoli M, Di Maria F. Synthesis, characterization, and biological applications of semiconducting polythiophene‐based nanoparticles. VIEW 2020. [DOI: 10.1002/viw.20200086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Mattia Zangoli
- Consiglio Nazionale Ricerche CNR‐ISOF and Mediteknology srl Bologna Italy
| | - Francesca Di Maria
- Consiglio Nazionale Ricerche CNR‐ISOF and Mediteknology srl Bologna Italy
| |
Collapse
|
13
|
Lichon L, Kotras C, Myrzakhmetov B, Arnoux P, Daurat M, Nguyen C, Durand D, Bouchmella K, Ali LMA, Durand JO, Richeter S, Frochot C, Gary-Bobo M, Surin M, Clément S. Polythiophenes with Cationic Phosphonium Groups as Vectors for Imaging, siRNA Delivery, and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1432. [PMID: 32708042 PMCID: PMC7466636 DOI: 10.3390/nano10081432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
In this work, we exploit the versatile function of cationic phosphonium-conjugated polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery and photodynamic therapy). The photophysical properties (absorption, emission and light-induced generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation in aqueous media. These polymers are also fluorescent, allowing one to visualize their intracellular location through confocal microscopy. The most promising polymers were then used as vectors for siRNA delivery. Due to their cationic and amphipathic features, these polymers were found to effectively self-assemble with siRNA targeting the luciferase gene and deliver it in MDA-MB-231 cancer cells expressing luciferase, leading to 30-50% of the gene-silencing effect. In parallel, the photodynamic therapy (PDT) activity of these cationic polymers was restored after siRNA delivery, demonstrating their potential for combined PDT and gene therapy.
Collapse
Affiliation(s)
- Laure Lichon
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Clément Kotras
- Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, 20 Place du Parc, 7000 Mons, Belgium; (C.K.); (M.S.)
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Bauyrzhan Myrzakhmetov
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Morgane Daurat
- NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier, France;
| | - Christophe Nguyen
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Denis Durand
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Karim Bouchmella
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Lamiaa Mohamed Ahmed Ali
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Jean-Olivier Durand
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Sébastien Richeter
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Mathieu Surin
- Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, 20 Place du Parc, 7000 Mons, Belgium; (C.K.); (M.S.)
| | - Sébastien Clément
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| |
Collapse
|
14
|
Zhang F, Wu Q, Liu H. NIR light-triggered nanomaterials-based prodrug activation towards cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1643. [PMID: 32394638 DOI: 10.1002/wnan.1643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Nanomaterials-based prodrug activation systems have been widely explored in cancer therapy, aiming at overcoming limited dosage formulation, systemic toxicity, and insufficient pharmacokinetic performance of parent drugs. For better delivery control, various stimuli systems, especially nanomaterials-based ones, have come to the forefront. Among them, near-infrared (NIR) light takes advantage of on-demand/site-specific regulation and non-invasiveness. In this review, we will address the developments of nanomaterials-based prodrug over the last decade, the activation mechanisms, and bioapplications under NIR light triggering. The advantages and limitations of NIR-triggered prodrug activation strategies and the perspectives of the next-generation prodrug nanomedicine will also be summarized. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Fengrong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
15
|
Cao H, Zhong S, Wang Q, Chen C, Tian J, Zhang W. Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release. J Mater Chem B 2020; 8:478-483. [DOI: 10.1039/c9tb02120e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An amphiphilic branched copolymer with pendent vinyl groups was synthesized to enhance the efficacy of photodynamic therapy through “thio–ene“ click reaction for simultaneous GSH depletion and Ce6 release.
Collapse
Affiliation(s)
- Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Sheng Zhong
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qiusheng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering
- Biomedical Nanotechnology Center
- School of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
16
|
Liu J, Zhang Y, Liu W, Zhang K, Shi J, Zhang Z. Tumor Antigen Mediated Conformational Changes of Nanoplatform for Activated Photodynamic Therapy. Adv Healthc Mater 2019; 8:e1900791. [PMID: 31532896 DOI: 10.1002/adhm.201900791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/15/2019] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is a noninvasive powerful tool for tumor treatment. However, phototoxicity seriously limits the clinical application of PDT, and activated PDT specifically response to tumor cell antigen is rarely reported. Herein, a tumor cell specific "switch-on" PDT nanoplatform, which employs a well-designed hairpin structure mucl protein (MUC1) aptamer (Apt) as specific linker to conjugate gold nanorod and Chlorin e6 (Ce6) (GNR/Apt-Ce6) is prepared, and "switch on" via conformational changes of aptamer-induced fluorescence resonance energy transfer missing between GNR and Ce6 for selective tumor therapy. In the absence of tumor cells, MUC1 Apt keeps a hairpin structure, leading to Ce6 closely adhered to the surface of GNR, PDT is in an "off" state even under the irradiations. On the contrary, in the presence of tumor cells with overexpressed MUC1, Apt specifically recognizes and binds to MUC1, resulting in conformational changes of Apt from regular hairpin to extended chain structure. Thus with an enlarged distance between Ce6 and GNR, PDT is switched-on. GNR/Apt-Ce6 shows excellent PDT efficacy in tumor-bearing mice (55.1% vs 1.3%, tumor apoptosis rate of GNR/Apt-Ce6 vs GNR/random sequence-Ce6) due to its high tumor-targeting and "switch-on" properties. The strategy of tumor antigen activated PDT is expected to provide a new perspective for clinical application.
Collapse
Affiliation(s)
- Junjie Liu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Yiwen Zhang
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Wei Liu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| |
Collapse
|
17
|
Lan M, Zhao S, Liu W, Lee C, Zhang W, Wang P. Photosensitizers for Photodynamic Therapy. Adv Healthc Mater 2019; 8:e1900132. [PMID: 31067008 DOI: 10.1002/adhm.201900132] [Citation(s) in RCA: 529] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Indexed: 12/12/2022]
Abstract
As an emerging clinical modality for cancer treatment, photodynamic therapy (PDT) takes advantage of the cytotoxic activity of reactive oxygen species (ROS) that are generated by light irradiating photosensitizers (PSs) in the presence of oxygen (O2 ). However, further advancements including tumor selectivity and ROS generation efficiency are still required. Substantial efforts are devoted to design and synthesize smart PSs with optimized properties for achieving a desirable therapeutic efficacy. This review summarizes the recent progress in developing intelligent PSs for efficient PDT, ranging from single molecules to delicate nanomaterials. The strategies to improve ROS generation through optimizing photoinduced electron transfer and energy transfer processes of PSs are highlighted. Moreover, the approaches that combine PDT with other therapeutics (e.g., chemotherapy, photothermal therapy, and radiotherapy) and the targeted delivery in cancer cells or tumor tissue are introduced. The main challenges for the clinical application of PSs are also discussed.
Collapse
Affiliation(s)
- Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCollege of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCollege of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Materials Science and EngineeringCity University of Hong Kong Hong Kong SAR CN P. R. China
| | - Wenjun Zhang
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Materials Science and EngineeringCity University of Hong Kong Hong Kong SAR CN P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
18
|
Sivasubramanian M, Chuang YC, Lo LW. Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules 2019; 24:E520. [PMID: 30709030 PMCID: PMC6385004 DOI: 10.3390/molecules24030520] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/03/2022] Open
Abstract
Enthusiasm for photodynamic therapy (PDT) as a potential therapeutic intervention for cancer has increased exponentially in recent decades. Photodynamic therapy constitutes a clinically approved, minimally invasive treatment modality that uses a photosensitizer (light absorbing molecule) and light to kill cancer cells. The principle of PDT is, when irradiated with a light of a suitable wavelength, a photosensitizer absorbs the light energy and generates cytotoxic free radicals through various mechanisms. The overall efficiency of PDT depends on characteristics of activation light and in-situ dosimetry, including the choice of photosensitizer molecule, wavelength of the light, and tumor location and microenvironment, for instance, the use of two-photon laser or an X-ray irradiator as the light source increases tissue-penetration depth, enabling it to achieve deep PDT. In this mini-review, we discuss the various designs and strategies for single, two-photon, and X-ray-mediated PDT for improved clinical outcomes.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yao Chen Chuang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| |
Collapse
|
19
|
Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 2019; 48:38-71. [DOI: 10.1039/c8cs00001h] [Citation(s) in RCA: 709] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in developing organic semiconducting materials (OSMs) for deep-tissue optical imaging, cancer phototherapy and biological photoactivation is summarized.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|
20
|
Zhu H, Cheng P, Chen P, Pu K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater Sci 2018; 6:746-765. [PMID: 29485662 DOI: 10.1039/c7bm01210a] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have gained considerable attention due to their high tumor ablation efficiency, excellent spatial resolution and minimal side effects on normal tissue. In contrast to inorganic nanoparticles, near-infrared (NIR) absorbing organic nanoparticles bypass the issue of metal-ion induced toxicity and thus are generally considered to be more biocompatible. Moreover, with the guidance of different kinds of imaging methods, the efficacy of cancer phototherapy based on organic nanoparticles has shown to be optimizable. In this review, we summarize the synthesis and application of NIR-absorbing organic nanoparticles as phototherapeutic nanoagents for cancer phototherapy. The chemistry, optical properties and therapeutic efficacies of organic nanoparticles are firstly described. Their phototherapy applications are then surveyed in terms of therapeutic modalities, which include PTT, PDT and PTT/PDT combined therapy. Finally, the present challenges and potential of imaging guided PTT/PDT are discussed.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| | | | | | | |
Collapse
|
21
|
Guo L, Ge J, Wang P. Polymer Dots as Effective Phototheranostic Agents. Photochem Photobiol 2018; 94:916-934. [DOI: 10.1111/php.12956] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Liang Guo
- Institute of Environment and Sustainable Development in Agriculture; Chinese Academy of Agricultural Sciences; Beijing China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
22
|
Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018; 155:217-235. [PMID: 29190479 PMCID: PMC5978728 DOI: 10.1016/j.biomaterials.2017.11.025] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
As a new class of organic optical nanomaterials, semiconducting polymer nanoparticles (SPNs) have the advantages of excellent optical properties, high photostability, facile surface functionalization, and are considered to possess good biocompatibility for biomedical applications. This review surveys recent progress made on the design and synthesis of SPNs for molecular imaging and cancer phototherapy. A variety of novel polymer design, chemical modification and nanoengineering strategies have been developed to precisely tune up optoelectronic properties of SPNs to enable fluorescence, chemiluminescence and photoacoustic (PA) imaging in living animals. With these imaging modalities, SPNs have been demonstrated not only to image tissues such as lymph nodes, vascular structure and tumors, but also to detect disease biomarkers such as reactive oxygen species (ROS) and protein sulfenic acid as well as physiological indexes such as pH and blood glucose concentration. The potentials of SPNs in cancer phototherapy including photodynamic and photothermal therapy are also highlighted with recent examples. Future efforts should further expand the use of SPNs in biomedical research and may even move them beyond pre-clinical studies.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Departments of Radiology and Chemistry, Stanford University, 1201 Welch Road, Stanford, CA 94305-5484, USA.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
23
|
Liu L, Ruan Z, Yuan P, Li T, Yan L. Oxygen Self-Sufficient Amphiphilic Polypeptide Nanoparticles Encapsulating BODIPY for Potential Near Infrared Imaging-guided Photodynamic Therapy at Low Energy. Nanotheranostics 2018; 2:59-69. [PMID: 29291163 PMCID: PMC5743838 DOI: 10.7150/ntno.22754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Near infrared (NIR) imaging-guided photodynamic therapy (PDT) is remarkable for its high-efficiency in "see and treat" field. However, hypoxia of cancer cell limits PDT dues to the low singlet oxygen yield. Here MnO2 conjugated multifunctional polypeptide nanoparticles encapsulating photosensitizer BODIPY has been prepared via a one-step reaction, which can generate oxygen in cancer cytoplasm where rich of H2O2, following singlet oxygen by photosensitizer under NIR light irradiation. In vitro studies on HepG2 and 4T1 cancer cells revealed that the as-prepared nanoparticles obviously increase the cell suppression rate under hypoxia conditions, even exposed to an extremely low light energy density (25 mW/cm2). Meanwhile, excellent NIR fluorescence property of BODIPY enabled the nanoparticles to light up the cancer cells for real-time imaging. These results suggest the promises of biocompatible and biodegradable nanoparticles has potential application on efficient NIR imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Le Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemical Physics, iCHEM, University of Science and Technology of China. Hefei, 230036, P.R. China
| | - Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemical Physics, iCHEM, University of Science and Technology of China. Hefei, 230036, P.R. China
| | - Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemical Physics, iCHEM, University of Science and Technology of China. Hefei, 230036, P.R. China
| | - Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemical Physics, iCHEM, University of Science and Technology of China. Hefei, 230036, P.R. China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemical Physics, iCHEM, University of Science and Technology of China. Hefei, 230036, P.R. China
| |
Collapse
|
24
|
Sun J, Xin Q, Yang Y, Shah H, Cao H, Qi Y, Gong JR, Li J. Nitrogen-doped graphene quantum dots coupled with photosensitizers for one-/two-photon activated photodynamic therapy based on a FRET mechanism. Chem Commun (Camb) 2018; 54:715-718. [DOI: 10.1039/c7cc08820e] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photosensitizers can be excited by nitrogen-doped graphene quantum dots under one-/two-photon excitation through an intramolecular FRET mechanism and induced phototoxicity.
Collapse
Affiliation(s)
- Jiaheng Sun
- School of Public Health, Jilin University
- Changchun
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
| | - Qi Xin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Hameed Shah
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Hongqian Cao
- School of Public Health, Jilin University
- Changchun
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
| | - Yanfei Qi
- School of Public Health, Jilin University
- Changchun
- China
| | - Jian Ru Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Junbai Li
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
25
|
Meng Z, Hou W, Zhou H, Zhou L, Chen H, Wu C. Therapeutic Considerations and Conjugated Polymer-Based Photosensitizers for Photodynamic Therapy. Macromol Rapid Commun 2017; 39. [PMID: 29251383 DOI: 10.1002/marc.201700614] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/12/2017] [Indexed: 12/31/2022]
Abstract
Conjugated polymers have recently attracted a great deal of attention for applications in photodynamic therapy (PDT) because of their light-harvesting capability, efficient energy transfer, and singlet oxygen generation properties. This review describes recent advances in PDT development, including therapeutic mechanisms of PDT in cancer treatments, light excitation methods, and especially recent advances of conjugated polyelectrolytes and conjugated polymer nanoparticles as photosensitizers. The future direction on PDT and further development of conjugated polymer photosensitizers are discussed. The aim of this review is to stimulate innovative ideas to synthesize a new generation of conjugated polymer photosensitizers and promote their translation to clinical applications of PDT.
Collapse
Affiliation(s)
- Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, 130033, China
| | - Weiying Hou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Hua Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Libo Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Haobin Chen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
26
|
Guo L, Niu G, Zheng X, Ge J, Liu W, Jia Q, Zhang P, Zhang H, Wang P. Single Near-Infrared Emissive Polymer Nanoparticles as Versatile Phototheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700085. [PMID: 29051852 PMCID: PMC5644228 DOI: 10.1002/advs.201700085] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/22/2017] [Indexed: 05/30/2023]
Abstract
Attaining consistently high performance of diagnostic and therapeutic functions in one single nanoplatform is of great significance for nanomedicine. This study demonstrates the use of donor-acceptor (D-A) structured polymer (TBT) to develop a smart "all-five-in-one" theranostic that conveniently integrates fluorescence/photoacoustic/thermal imaging and photodynamic/photothermal therapy into single nanoparticle. The prepared nanoparticles (TBTPNPs) exhibit near-infrared emission, high water solubility, excellent light resistance, good pH stability, and negligible toxicity. Additionally, the TBTPNPs exhibit an excellent singlet oxygen (1O2) quantum yield (40%) and high photothermal conversion efficiency (37.1%) under single-laser irradiation (635 nm). Apart from their two phototherapeutic modalities, fluorescence, photoacoustic signals, and thermal imaging in vivo can be simultaneously achieved because of their enhanced permeability and retention effects. This work demonstrates that the prepared TBTPNPs are "all-five-in-one" phototheranostic agents that can exhibit properties to satisfy the "one-fits-all" requirement for future phototheranostic applications. Thus, the prepared TBTPNPs can provide fundamental insights into the development of PNP-based nanoagents for cancer therapy.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Panpan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
27
|
Guo L, Liu W, Niu G, Zhang P, Zheng X, Jia Q, Zhang H, Ge J, Wang P. Polymer nanoparticles with high photothermal conversion efficiency as robust photoacoustic and thermal theranostics. J Mater Chem B 2017; 5:2832-2839. [PMID: 32264170 DOI: 10.1039/c7tb00498b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synthesis of photothermal agents with absorption in the near-infrared (NIR) region and featuring excellent photostability, high photothermal conversion efficiency, and good biocompatibility is necessary for the application of photothermal therapy (PTT). In this work, a low band gap thiophene-benzene-diketopyrrolopyrrole (TBD)-based polymer was synthesized and used to fabricate TBD polymer nanoparticles (TBDPNPs) through a one-step nanoprecipitation method. The obtained near-infrared-absorbing TBDPNPs presented good water dispersibility, high photothermal stability, and low toxicity. Significantly, the TBDPNPs exhibited an ultrahigh photothermal conversion efficiency of approximately 68.1% under 671 nm laser irradiation. In addition, photoacoustic (PA) imaging, with high spatial resolution and deep tissue penetration, showed that the TBDPNPs targeted tumor sites through the enhanced permeability and retention effect. Therefore, the robust TBDPNPs with a photothermal conversion efficiency of 68.1% can serve as an excellent therapeutic agent for PA-imaging-guided PTT.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Adimoolam MG, A. V, Nalam MR, Sunkara MV. Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic therapy. J Mater Chem B 2017; 5:9189-9196. [DOI: 10.1039/c7tb02599h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The LeN NPs of Lf and Ce6 enhanced the intracellular delivery of the PS improving photo-induced cell death compared to free PS.
Collapse
Affiliation(s)
- Mahesh G. Adimoolam
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- AcSIR-Council of Scientific and Industrial Research
- India
| | | | | | | |
Collapse
|