1
|
Lu L, Raj S, Arizmendi N, Ding J, Eitzen G, Kwan P, Kulka M, Unsworth LD. Identification of short peptide sequences that activate human mast cells via Mas-related G-protein coupled receptor member X2. Acta Biomater 2021; 136:159-169. [PMID: 34530142 DOI: 10.1016/j.actbio.2021.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022]
Abstract
Peptide based therapeutics are desirable owing to their high biological specificity. However, a number of these fail in clinical testing due to an adverse inflammatory response. Mast cells play a key role in directing the host response to drugs and related products. Although the role of FcεRI receptor is well known, Mas-related G-protein coupled receptor X2 (MRGPRX2) binding of endogenous peptides, and drugs will activate mast cells independent of FcεRI. Identifying peptides that activate mast cells through MRGPRX2, and their respective activation potency, can be used to reduce the failure rate of peptide therapeutics at clinical trial. Moreover, it will allow for peptide design where mast cell activation is actually desired. It was found that FRKKW and WNKWAL are two motifs that activate human LAD2 cells similar to PAMP-12 controls. Peptide activators of MRGPRX2 could be reduced to Xa-(Y)(n ≥ 3)-Xb where: Xa is an aromatic residue; Xb is a hydrophobic residue; and Y is a minimum 3 residue long sequence, containing a minimum of one positively charged residue with the remainder being uncharged residues. Artificial peptides WKKKW and FKKKF were constructed to test this structural functionality and were similar to PAMP-12 controls. Peptides with different activation potentials were found where FRKKW = WKKKW = FKKKF > PAMP-12 = WNKWAL > YKKKY > FRKKANKWALSR = FRKKWNKAALSR > KWKWK > FRKK = WNKWA > KYKYK > NKWALSR = YKKY = WNK. These sequences should be considered when designing peptide-based therapeutics. STATEMENT OF SIGNIFICANCE: Mast cells release immune regulating molecules upon activation that direct host's immune response. MRGPRX2 receptor provides an alternate pathway for mast cell activation that is independent of FcεRI receptor. It is thought that mast cell activation through MRGPRX2 plays a critical role in high failure rates of drugs in clinical trials. Identifying peptide sequences that activate mast cells through MRGPRX2 can serve two important purposes, namely, sequences to avoid when designing peptide therapeutics, and artificial peptides with different activation potentials for mast cells. Herein, we have identified a general amino acid sequence that induces mast cell activation through MRGPRX2. Furthermore, by modulating the identified sequence, artificial peptides have been designed which activate mast cells by varying degrees for therapeutic applications.
Collapse
Affiliation(s)
- Lei Lu
- Department of Chemical and Materials Engineering, Donadeo Innovation Center for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shammy Raj
- Department of Chemical and Materials Engineering, Donadeo Innovation Center for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada
| | - Narcy Arizmendi
- Nanotechnology Research Council (Canada), 11421 Saskatchewan Drive NW, Edmonton, AB T6G2M9, Canada
| | - Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB T6G2B7, Canada
| | - Gary Eitzen
- Department of Cell Biology, MSB 5-14, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Peter Kwan
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB T6G2B7, Canada
| | - Marianna Kulka
- Nanotechnology Research Council (Canada), 11421 Saskatchewan Drive NW, Edmonton, AB T6G2M9, Canada; Department of Medical Microbiology and Immunology, University of Alberta, 6-020 Katz Group Center, Edmonton, AB T6G2E1, Canada.
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, Donadeo Innovation Center for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada.
| |
Collapse
|
2
|
Duguay BA, Lu L, Arizmendi N, Unsworth LD, Kulka M. The Possible Uses and Challenges of Nanomaterials in Mast Cell Research. THE JOURNAL OF IMMUNOLOGY 2020; 204:2021-2032. [PMID: 32253270 DOI: 10.4049/jimmunol.1800658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/19/2019] [Indexed: 11/19/2022]
Abstract
Mast cells are tissue-resident immune cells that are involved in inflammation and fibrosis but also serve beneficial roles, including tissue maintenance, angiogenesis, pathogen clearance, and immunoregulation. Their multifaceted response and the ability of their mediators to target multiple organs and tissues means that mast cells play important roles in numerous conditions, including asthma, atopic dermatitis, drug sensitivities, ischemic heart disease, Alzheimer disease, arthritis, irritable bowel syndrome, infections (parasites, bacteria and viruses), and cancer. As a result, mast cells have become an important target for drug discovery and diagnostic research. Recent work has focused on applying novel nanotechnologies to explore cell biology. In this brief review, we will highlight the use of nanomaterials to modify mast cell functions and will discuss the potential of these technologies as research tools for understanding mast cell biology.
Collapse
Affiliation(s)
- Brett A Duguay
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; and
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
3
|
Arrabito G, Aleeva Y, Ferrara V, Prestopino G, Chiappara C, Pignataro B. On the Interaction between 1D Materials and Living Cells. J Funct Biomater 2020; 11:E40. [PMID: 32531950 PMCID: PMC7353490 DOI: 10.3390/jfb11020040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field in the last ten years has been promoted by the possibility to engineer new classes of biointerfaces that integrate 1D materials as tools to trigger reconfigurable stimuli/probes at the sub-cellular resolution, mimicking the in vivo protein fibres organization of the extracellular matrix. After a brief overview of the theoretical models relevant for a quantitative description of the 1D material/cell interface, this work offers an unprecedented review of 1D nano- and microscale materials (inorganic, organic, biomolecular) explored so far in this vibrant research field, highlighting their emerging biological applications. The correlation between each 1D material chemistry and the resulting biological response is investigated, allowing to emphasize the advantages and the issues that each class presents. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| | - Yana Aleeva
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Vittorio Ferrara
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Giuseppe Prestopino
- Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata”, Via del Politecnico 1, I-00133 Roma, Italy;
| | - Clara Chiappara
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| |
Collapse
|
4
|
Mitarotonda R, Giorgi E, Desimone MF, De Marzi MC. Nanoparticles and Immune Cells. Curr Pharm Des 2019; 25:3960-3982. [DOI: 10.2174/1381612825666190926161209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Nanoparticles have gained ground in several fields. However, it is important to consider their potentially
hazardous effects on humans, flora, and fauna. Human exposure to nanomaterials can occur unintentionally
in daily life or in industrial settings, and the continuous exposure of the biological components (cells, receptors,
proteins, etc.) of the immune system to these particles can trigger an unwanted immune response (activation or
suppression). Here, we present different studies that have been carried out to evaluate the response of immune
cells in the presence of nanoparticles and their possible applications in the biomedical field.
Collapse
Affiliation(s)
- Romina Mitarotonda
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Exequiel Giorgi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Martín F. Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica, Buenos Aires, Argentina
| | - Mauricio C. De Marzi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| |
Collapse
|