1
|
Li M, Yao H, Yi K, Lao YH, Shao D, Tao Y. Emerging nanoparticle platforms for CpG oligonucleotide delivery. Biomater Sci 2024; 12:2203-2228. [PMID: 38293828 DOI: 10.1039/d3bm01970e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.
Collapse
Affiliation(s)
- Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
2
|
Zareein A, Mahmoudi M, Jadhav SS, Wilmore J, Wu Y. Biomaterial engineering strategies for B cell immunity modulations. Biomater Sci 2024; 12:1981-2006. [PMID: 38456305 PMCID: PMC11019864 DOI: 10.1039/d3bm01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
B cell immunity has a penetrating effect on human health and diseases. Therapeutics aiming to modulate B cell immunity have achieved remarkable success in combating infections, autoimmunity, and malignancies. However, current treatments still face significant limitations in generating effective long-lasting therapeutic B cell responses for many conditions. As the understanding of B cell biology has deepened in recent years, clearer regulation networks for B cell differentiation and antibody production have emerged, presenting opportunities to overcome current difficulties and realize the full therapeutic potential of B cell immunity. Biomaterial platforms have been developed to leverage these emerging concepts to augment therapeutic humoral immunity by facilitating immunogenic reagent trafficking, regulating T cell responses, and modulating the immune microenvironment. Moreover, biomaterial engineering tools have also advanced our understanding of B cell biology, further expediting the development of novel therapeutics. In this review, we will introduce the general concept of B cell immunobiology and highlight key biomaterial engineering strategies in the areas including B cell targeted antigen delivery, sustained B cell antigen delivery, antigen engineering, T cell help optimization, and B cell suppression. We will also discuss our perspective on future biomaterial engineering opportunities to leverage humoral immunity for therapeutics.
Collapse
Affiliation(s)
- Ali Zareein
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Mina Mahmoudi
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shruti Sunil Jadhav
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
| | - Joel Wilmore
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
3
|
Pérez-Herrero E, Lanier OL, Krishnan N, D'Andrea A, Peppas NA. Drug delivery methods for cancer immunotherapy. Drug Deliv Transl Res 2024; 14:30-61. [PMID: 37587290 PMCID: PMC10746770 DOI: 10.1007/s13346-023-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Despite the fact that numerous immunotherapy-based drugs have been approved by the FDA for the treatment of primary and metastatic tumors, only a small proportion of the population can benefit from them because of primary and acquired resistances. Moreover, the translation of immunotherapy from the bench to the clinical practice is being challenging because of the short half-lives of the involved molecules, the difficulties to accomplish their delivery to the target sites, and some serious adverse effects that are being associated with these approaches. The emergence of drug delivery vehicles in the field of immunotherapy is helping to overcome these difficulties and limitations and this review describes how, providing some illustrative examples. Moreover, this article provides an exhaustive review of the studies that have been published to date on the particular case of hematological cancers. (Created with BioRender).
Collapse
Affiliation(s)
- Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna, Tenerife, Spain.
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - Olivia L Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Neha Krishnan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Abby D'Andrea
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery & Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery & Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Wang Z, Chen R, Yang S, Li S, Gao Z. Design and application of stimuli-responsive DNA hydrogels: A review. Mater Today Bio 2022; 16:100430. [PMID: 36157049 PMCID: PMC9493390 DOI: 10.1016/j.mtbio.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Deoxyribonucleic acid (DNA) hydrogels combine the properties of DNAs and hydrogels, and adding functionalized DNAs is key to the wide application of DNA hydrogels. In stimuli-responsive DNA hydrogels, the DNA transcends its application in genetics and bridges the gap between different fields. Specifically, the DNA acts as both an information carrier and a bridge in constructing DNA hydrogels. The programmability and biocompatibility of DNA hydrogel make it change macroscopically in response to a variety of stimuli. In order to meet the needs of different scenarios, DNA hydrogels were also designed into microcapsules, beads, membranes, microneedle patches, and other forms. In this study, the stimuli were classified into single biological and non-biological stimuli and composite stimuli. Stimuli-responsive DNA hydrogels from the past five years were summarized, including but not limited to their design and application, in particular logic gate pathways and signal amplification mechanisms. Stimuli-responsive DNA hydrogels have been applied to fields such as sensing, nanorobots, information carriers, controlled drug release, and disease treatment. Different potential applications and the developmental pro-spects of stimuli-responsive DNA hydrogels were discussed.
Collapse
Affiliation(s)
- Zhiguang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
5
|
Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45079-45095. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, nanoscale or microscale functional materials derived from DNA have shown great potential for immunotherapy as superior delivery carriers. DNA nanostructures with excellent programmability and addressability enable the precise assembly of molecules or nanoparticles. DNA hydrogels have predictable structures and adjustable mechanical strength, thus being advantageous in controllable release of cargos. In addition, utilizing systematic evolution of ligands by exponential enrichment technology, a variety of DNA aptamers have been screened for specific recognition of ions, molecules, and even cells. Moreover, a wide variety of chemical modifications can further enrich the function of DNA. The unique advantages of functional DNA materials make them extremely attractive in immunomodulation. Recently, functional DNA materials-based immunotherapy has shown great potential in fighting against many diseases like cancer, viral infection, and inflammation. Therefore, in this review, we focus on discussing the progress of the applications of functional DNA materials in immunotherapy; before that, we also summarize the characteristics of the functional DNA materials descried above. Finally, we discuss the challenges and future opportunities of functional DNA materials in immunomodulatory therapy.
Collapse
Affiliation(s)
- Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Wang Q, Qu Y, Zhang Z, Huang H, Xu Y, Shen F, Wang L, Sun L. Injectable DNA Hydrogel-Based Local Drug Delivery and Immunotherapy. Gels 2022; 8:gels8070400. [PMID: 35877485 PMCID: PMC9320917 DOI: 10.3390/gels8070400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022] Open
Abstract
Regulated drug delivery is an important direction in the field of medicine and healthcare research. In recent years, injectable hydrogels with good biocompatibility and biodegradability have attracted extensive attention due to their promising application in controlled drug release. Among them, DNA hydrogel has shown great potentials in local drug delivery and immunotherapy. DNA hydrogel is a three-dimensional network formed by cross-linking of hydrophilic DNA strands with extremely good biocompatibility. Benefiting from the special properties of DNA, including editable sequence and specificity of hybridization reactions, the mechanical properties and functions of DNA hydrogels can be precisely designed according to specific applications. In addition, other functional materials, including peptides, proteins and synthetic organic polymers can be easily integrated with DNA hydrogels, thereby enriching the functions of the hydrogels. In this review, we first summarize the types and synthesis methods of DNA hydrogels, and then review the recent research progress of injectable DNA hydrogels in local drug delivery, especially in immunotherapy. Finally, we discuss the challenges facing DNA hydrogels and future development directions.
Collapse
Affiliation(s)
- Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 201240, China
- Correspondence: (F.S.); (L.S.)
| | - Lihua Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Q.W.); (Y.Q.); (Z.Z.); (H.H.); (Y.X.)
- Correspondence: (F.S.); (L.S.)
| |
Collapse
|
7
|
Ou BS, Saouaf OM, Baillet J, Appel EA. Sustained delivery approaches to improving adaptive immune responses. Adv Drug Deliv Rev 2022; 187:114401. [PMID: 35750115 DOI: 10.1016/j.addr.2022.114401] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
The immune system is one of the most important, complex biological networks regulating and protecting human health. Its precise modulation can prevent deadly infections and fight cancer. Accordingly, prophylactic vaccines and cancer immunotherapies are some of the most powerful technologies to protect against potential dangers through training of the immune system. Upon immunization, activation and maturation of B and T cells of the adaptive immune system are necessary for development of proper humoral and cellular protection. Yet, the exquisite organization of the immune system requires spatiotemporal control over the exposure of immunomodulatory signals. For example, while the human immune system has evolved to develop immunity to natural pathogenic infections that often last for weeks, current prophylactic vaccination technologies only expose the immune system to immunomodulatory signals for hours to days. It has become clear that leveraging sustained release technologies to prolong immunogen and adjuvant exposure can increase the potency, durability, and quality of adaptive immune responses. Over the past several years, tremendous breakthroughs have been made in the design of novel biomaterials such as nanoparticles, microparticles, hydrogels, and microneedles that can precisely control and the presentation of immunomodulatory signals to the immune system. In this review, we discuss relevant sustained release strategies and their corresponding benefits to cellular and humoral responses.
Collapse
Affiliation(s)
- Ben S Ou
- Department of Bioengineering, Stanford University, Stanford 94305, USA
| | - Olivia M Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac 33600, France
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford 94305, USA; Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; Department of Pediatrics (Endocrinology), Stanford University, Stanford 94305, USA; ChEM-H Institute, Stanford University, Stanford CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Chen M, Wang Y, Zhang J, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Gao Z. Stimuli-responsive DNA-based hydrogels for biosensing applications. J Nanobiotechnology 2022; 20:40. [PMID: 35062945 PMCID: PMC8777454 DOI: 10.1186/s12951-022-01242-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/02/2022] [Indexed: 12/26/2022] Open
Abstract
The base sequences of DNA are endowed with the rich structural and functional information and are available for the precise construction of the 2D and 3D macro products. The hydrogels formed by DNA are biocompatible, stable, tunable and biologically versatile, thus, these have a wide range of promising applications in bioanalysis and biomedicine. In particular, the stimuli-responsive DNA hydrogels (smart DNA hydrogels), which exhibit a reversible and switchable hydrogel to sol transition under different triggers, have emerged as smart materials for sensing. Thus far, the combination of the stimuli-responsive DNA hydrogels and multiple sensing platforms is considered as biocompatible and is useful as the flexible recognition components. A review of the stimuli-responsive DNA hydrogels and their biosensing applications has been presented in this study. The synthesis methods to prepare the DNA hydrogels have been introduced. Subsequently, the current status of the stimuli-responsive DNA hydrogels in biosensing has been described. The analytical mechanisms are further elaborated by the combination of the stimuli-responsive DNA hydrogels with the optical, electrochemical, point-of-care testing (POCT) and other detection platforms. In addition, the prospects of the application of the stimuli-responsive DNA hydrogels in biosensing are presented.
Collapse
|
9
|
Affiliation(s)
- Dong Wang
- Department of Biological and Environmental Engineering Cornell University Ithaca New York 14853 USA
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Micro-Nano Research and Diagnosis Center Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Dan Luo
- Department of Biological and Environmental Engineering Cornell University Ithaca New York 14853 USA
- Kavli Institute at Cornell for Nanoscale Science Cornell University Ithaca New York 14853 USA
| |
Collapse
|
10
|
Leo M, Lattuada E, Caprara D, Salvatori L, Vecchione A, Sciortino F, Filetici P, Stoppacciaro A. Treatment of kidney clear cell carcinoma, lung adenocarcinoma and glioblastoma cell lines with hydrogels made of DNA nanostars. Biomater Sci 2022; 10:1304-1316. [DOI: 10.1039/d1bm01643a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the systemic administration of chemotherapy to reduce drug toxicity and the application of personalised medicine are two of the major challenges in the treatment of cancer. To this aim,...
Collapse
|
11
|
Wang D, Liu P, Luo D. Putting DNA to Work as Generic Polymeric Materials. Angew Chem Int Ed Engl 2021; 61:e202110666. [PMID: 34545660 DOI: 10.1002/anie.202110666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 01/10/2023]
Abstract
DNA is a true polymer that stores the genetic information of an organism. With its amazing biological and polymeric characteristics, DNA has been regarded as a universal building block for the construction of diverse materials for real-world applications. Through various approaches including ligation, polymerization, chemical crosslinking, and physical crosslinking, both pure and hybrid DNA gels have been developed as generic materials. This Review discusses recent advances in the construction of DNA-based networks without considering any of DNA's genetic properties. In addition, we highlight the biomedical and non-biomedical applications of DNA as generic materials. Owing to the superb molecular recognition, self-assembly, and responsiveness of DNA, a mushrooming number of DNA materials with various properties have been developed for general utilization.
Collapse
Affiliation(s)
- Dong Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.,Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
12
|
Bender EC, Kraynak CA, Huang W, Suggs LJ. Cell-Inspired Biomaterials for Modulating Inflammation. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:279-294. [PMID: 33528306 DOI: 10.1089/ten.teb.2020.0276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammation is a crucial part of wound healing and pathogen clearance. However, it can also play a role in exacerbating chronic diseases and cancer progression when not regulated properly. A subset of current innate immune engineering research is focused on how molecules such as lipids, proteins, and nucleic acids native to a healthy inflammatory response can be harnessed in the context of biomaterial design to promote healing, decrease disease severity, and prolong survival. The engineered biomaterials in this review inhibit inflammation by releasing anti-inflammatory cytokines, sequestering proinflammatory cytokines, and promoting phenotype switching of macrophages in chronic inflammatory disease models. Conversely, other biomaterials discussed here promote inflammation by mimicking pathogen invasion to inhibit tumor growth in cancer models. The form that these biomaterials take spans a spectrum from nanoparticles to large-scale hydrogels to surface coatings on medical devices. Cell-inspired molecules have been incorporated in a variety of creative ways, including loaded into or onto the surface of biomaterials or used as the biomaterials themselves.
Collapse
Affiliation(s)
- Elizabeth C Bender
- Department of Biomedical Engineering and The University of Texas at Austin, Austin, Texas, USA
| | - Chelsea A Kraynak
- Department of Biomedical Engineering and The University of Texas at Austin, Austin, Texas, USA
| | - Wenbai Huang
- Department of Biomedical Engineering and The University of Texas at Austin, Austin, Texas, USA.,Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, USA
| | - Laura J Suggs
- Department of Biomedical Engineering and The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
13
|
|
14
|
Wang YH, Song Z, Hu XY, Wang HS. Circulating tumor DNA analysis for tumor diagnosis. Talanta 2021; 228:122220. [PMID: 33773726 DOI: 10.1016/j.talanta.2021.122220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 01/10/2023]
Abstract
Tumor is a kind of abnormal organism generated by the proliferation and differentiation of cells in the body under the action of various initiating and promoting factors, which seriously threatens human life and health. Tumorigenesis is a gradual process that involves multistage reactions and the accumulation of mutations. Gene mutation usually occurs during tumorigenesis, and can be used for tumor diagnosis. Early diagnosis is the most effective way to improve the cure rate and reduce the mortality rate. Among the peripheral blood circulating tumor DNA (ctDNA), gene mutation in keeping with tumor cells can be detected, which can potentially replace tumor tissue section for early diagnosis. It has been considered as a liquid biopsy marker with good clinical application prospect. However, the high fragmentation and low concentration of ctDNA in blood result in the difficulty of tumor stage determination. Therefore, high sensitive and specific mutation detection methods have been developed to detect trace mutant ctDNA. At present, the approaches include digital PCR (dPCR), Bead, Emulsion, Amplification and Magnetic (BEAMing), Next Generation Sequencing (NGS), Amplification Refractory Mutation System (ARMS), etc. In this paper, the principle, characteristics, latest progress and application prospects of these methods are reviewed, which will facilitate researchers to choose appropriate ctDNA detection approaches.
Collapse
Affiliation(s)
- Yi-Hui Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomed Pharmacother 2021; 137:111333. [PMID: 33571834 DOI: 10.1016/j.biopha.2021.111333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy that boosts the body's immune system to treat local and distant metastatic tumors has offered a new treatment option for cancer. However, cancer immunotherapy via systemic administration of immunotherapeutic agents often has two major issues of limited immune responses and potential immune-related adverse events in the clinic. Hydrogels, a class of three-dimensional network biomaterials with unique porous structures can achieve local delivery of drugs into tumors to trigger the antitumor immunity, resulting in amplified immunotherapy at lower dosages. In this review, we summarize the recent development of polymer-based hydrogels as drug release systems for local delivery of various immunotherapeutic agents for cancer immunotherapy. The constructions of polymer-based hydrogels and their local delivery of various drugs in tumors to achieve sole immunotherapy, and chemotherapy-, and phototherapy-combinational immunotherapy are introduced. Furthermore, a brief conclusion is given and existing challenges and further perspectives of polymer-based hydrogels for cancer immunotherapy are discussed.
Collapse
|
16
|
Fan Y, Bai T, Tian Y, Zhou B, Wang Y, Yang L. H 2O 2-Inactivated Salmonella typhimurium RE88 Strain as a New Cancer Vaccine Carrier: Evaluation in a Mouse Model of Cancer. Drug Des Devel Ther 2021; 15:209-222. [PMID: 33488068 PMCID: PMC7815095 DOI: 10.2147/dddt.s282660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose This study aimed to describe a novel cancer vaccine developed using H2O2-inactivated Salmonella typhimurium RE88 [with deletions of AroA (the first enzyme in the aromatic amino acid biosynthesis pathway) and DNA adenine methylase] as the carrier. Methods The pVLT33 plasmid was used to engineer an RE88 strain induced to express ovalbumin (OVA) by isopropylthiogalactoside (RE88-pVLT33-OVA). The immune responses and anticancer effects of H2O2-inactivated RE88-pVLT33-OVA were compared with those of non-inactivated RE88-pVLT33-OVA and OVA (positive control) in mice carrying OVA-expressing tumors (EG7-OVA) cells. Results Anti-ovalbumin IgG (immunoglobulin G) titer following vaccination with H2O2-inactivated RE88-pVLT33-OVA was higher for subcutaneous than for intragastric vaccination. When subcutaneous administration was used, H2O2-inactivated RE88-pVLT33-OVA (2 × 109 CFU (colony forming units)/mouse) achieved an anti-ovalbumin IgG titer higher than that for the same dose of RE88-pVLT33-OVA and comparable to that for 10 µg ovalbumin (positive control). The binding of mouse serum antibodies to EG7-OVA cells was stronger for H2O2-inactivated RE88-pVLT33-OVA (2 × 109 CFU/mouse) than for 10 µg ovalbumin. Furthermore, subcutaneous vaccination with H2O2-inactivated RE88-pVLT33-OVA (2 × 109 CFU/mouse) induced greater activation of splenic T cells and more extensive tumor infiltration with CD4+/CD8+ T cells compared with 10 µg ovalbumin (positive control). The mice vaccinated subcutaneously with H2O2-inactivated RE88-pVLT33-OVA at a dose of 2 × 108 or 6 × 108 CFU/mouse had smaller tumors compared with mice in the negative control groups. Tumor weight in mice vaccinated with H2O2-inactivated RE88-pVLT33-OVA at a dose of 2 × 109 CFU/mouse was significantly lower than that in both negative control groups (P < 0.05) and decreased with the increasing dose of H2O2-inactivated RE88-pVLT33-OVA. H2O2-inactivated RE88-pVLT33-OVA was potentially safer than the non-inactivated strain, could carry exogenous antigens, and had specific epitopes that could be exploited as natural adjuvants to facilitate the induction of cellular and humoral immune responses. Conclusion It was anticipated that H2O2-inactivated RE88-pVLT33-OVA could be used as a novel delivery system for new cancer vaccines.
Collapse
Affiliation(s)
- Yingzi Fan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.,Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| | - Tingting Bai
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Yuanda Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| |
Collapse
|
17
|
Lattuada E, Leo M, Caprara D, Salvatori L, Stoppacciaro A, Sciortino F, Filetici P. DNA-GEL, Novel Nanomaterial for Biomedical Applications and Delivery of Bioactive Molecules. Front Pharmacol 2020; 11:01345. [PMID: 33013376 PMCID: PMC7500453 DOI: 10.3389/fphar.2020.01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/11/2020] [Indexed: 01/19/2023] Open
Abstract
Novel DNA materials promise unpredictable perspectives for applications in cell biology. The realization of DNA-hydrogels built by a controlled association of DNA nanostars, whose binding can be tuned with minor changes in the nucleotide sequences, has been recently described. DNA hydrogels, with specific gelation properties that can be reassambled in desired culture media supplemented with drugs, RNA, DNA molecules and other bioactive compounds offer the opportunity to develop a novel nanomaterial for the delivery of single or multiple drugs in tumor tissues as an innovative and promising strategy. We provide here a comprehensive description of different, recently realized DNA-gels with the perspective of stimulating their biomedical application. Finally, we discuss the possibility to design sophisticated 3D tissue-like DNA-gels incorporating cell spheroids or single cells for the assembly of a novel kind of cellular matrix as a preclinical investigation for the implementation of tools for in vivo delivery of bioactive molecules.
Collapse
Affiliation(s)
- Enrico Lattuada
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Manuela Leo
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Debora Caprara
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Luisa Salvatori
- Institute of Molecular Biology and Pathology - CNR, Sapienza University of Rome, Rome, Italy
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Patrizia Filetici
- Institute of Molecular Biology and Pathology - CNR, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Chen J, Zhu Y, Liu H, Wang L. Tailoring DNA Self-assembly to Build Hydrogels. Top Curr Chem (Cham) 2020; 378:32. [PMID: 32146604 DOI: 10.1007/s41061-020-0295-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/23/2020] [Indexed: 01/12/2023]
Abstract
DNA hydrogels are crosslinked polymeric networks in which DNA is used as the backbone or the crosslinker. These hydrogels are novel biofunctional materials that possess the biological character of DNA and the framed structure of hydrogels. Compared with other kinds of hydrogels, DNA hydrogels exhibit not only high mechanical strength and controllable morphologies but also good recognition ability, designable responsiveness, and programmability. The DNA used in this type of hydrogel acts as a building block for self-assembly or as a responsive element due to its sequence recognition ability and switchable structural transitions, respectively. In this review, we describe recent developments in the field of DNA hydrogels and discuss the role played by DNA in these hydrogels. Various synthetic strategies for and a range of applications of DNA hydrogels are detailed.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China. .,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| |
Collapse
|
19
|
Development of RNA/DNA Hydrogel Targeting Toll-Like Receptor 7/8 for Sustained RNA Release and Potent Immune Activation. Molecules 2020; 25:molecules25030728. [PMID: 32046113 PMCID: PMC7037604 DOI: 10.3390/molecules25030728] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 01/10/2023] Open
Abstract
Guanosine- and uridine-rich single-stranded RNA (GU-rich RNA) is an agonist of Toll-like receptor (TLR) 7 and TLR8 and induces strong immune responses. A nanostructured GU-rich RNA/DNA assembly prepared using DNA nanotechnology can be used as an adjuvant capable of improving the biological stability of RNA and promoting efficient RNA delivery to target immune cells. To achieve a sustained supply of GU-rich RNA to immune cells, we developed a GU-rich RNA/DNA hydrogel (RDgel) using nanostructured GU-rich RNA/DNA assembly, from which GU-rich RNA can be released in a sustained manner. A hexapod-like GU-rich RNA/DNA nanostructure, or hexapodRD6, was designed using a 20-mer phosphorothioate-stabilized GU-rich RNA and six phosphodiester DNAs. Two sets of hexapodRD6 were mixed to obtain RDgel. Under serum-containing conditions, GU-rich RNA was gradually released from the RDgel. Fluorescently labeled GU-rich RNA was efficiently taken up by DC2.4 murine dendritic cells and induced a high level of tumor necrosis factor-α release from these cells when it was incorporated into RDgel. These results indicate that the RDgel constructed using DNA nanotechnology can be a useful adjuvant in cancer therapy with sustained RNA release and high immunostimulatory activity.
Collapse
|
20
|
DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen. Acta Biomater 2019; 96:480-490. [PMID: 31299353 DOI: 10.1016/j.actbio.2019.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022]
Abstract
Castrate resistant prostate cancer (CRPC) remains a major challenge for healthcare professionals. Immunotherapeutic approaches, including DNA vaccination, hold the potential to harness the host's own immune system to mount a cell-mediated, anti-tumour response, capable of clearing disseminated tumour deposits. These anti-cancer vaccines represent a promising strategy for patients with advanced disease, however, to date DNA vaccines have demonstrated limited efficacy in clinical trials, owing to the lack of a suitable DNA delivery system. This study was designed to evaluate the efficacy of a two-tier delivery system incorporating cationic RALA/pDNA nanoparticles (NPs) into a dissolvable microneedle (MN) patch for the purposes of DNA vaccination against prostate cancer. Application of NP-loaded MN patches successfully resulted in endogenous production of the encoded Prostate Stem Cell Antigen (PSCA). Furthermore, immunisation with RALA/pPSCA loaded MNs elicited a tumour-specific immune response against TRAMP-C1 tumours ex vivo. Finally, vaccination with RALA/pPSCA loaded MNs demonstrated anti-tumour activity in both prophylactic and therapeutic prostate cancer models in vivo. This is further evidence that this two-tier MN delivery system is a robust platform for prostate cancer DNA vaccination. STATEMENT OF SIGNIFICANCE: This research describes the development and utilisation of our unique microneedle (MN) DNA delivery system, which enables penetration through the stratum corneum and deposition of the DNA within the highly immunogenic skin layers via a dissolvable MN matrix, and facilitates cellular uptake via complexation of pDNA cargo into nanoparticles (NPs) with the RALA delivery peptide. We report for the first time on using the NP-MN platform to immunise mice with encoded Prostate Stem Cell Antigen (mPSCA) for prostate cancer DNA vaccination. Application of the NP-MN system resulted in local mPSCA expression in vivo. Furthermore, immunisation with the NP-MN system induced a tumour-specific cellular immune response, and inhibited the growth of TRAMP-C1 prostate tumours in both prophylactic and therapeutic challenge models in vivo.
Collapse
|
21
|
Ren N, Sun R, Xia K, Zhang Q, Li W, Wang F, Zhang X, Ge Z, Wang L, Fan C, Zhu Y. DNA-Based Hybrid Hydrogels Sustain Water-Insoluble Ophthalmic Therapeutic Delivery against Allergic Conjunctivitis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26704-26710. [PMID: 31264833 DOI: 10.1021/acsami.9b08652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Clinical need for treating allergic conjunctivitis (AC) is rapidly increasing. However, AC-relevant anti-inflammatory compounds are generally difficult to solubilize in water, thus limiting their therapeutic potential. Solubility-improved eye drop formulations of these compounds have poor bioavailability and a short retention time in ophthalmic tissues. Herein, we report a DNA/poly(lactic-co-glycolicacid) (PLGA) hybrid hydrogel (HDNA) for water-insoluble ophthalmic therapeutic delivery. PLGA pre-encapsulation enables loading of water-insoluble therapeutics. HDNA's porous structure is capable of sustained delivery of therapeutics. Dexamethasone (DEX), with demonstrated activities in attenuating inflammatory symptom in AC, was used as a model system. The designed HDNA hybrid hydrogels significantly improved the DEX accumulation and mediated the gradual DEX release in ophthalmic cells and tissues. Using the HDNA-DEX complexes, potent efficacy in two animal models of AC was acquired. Given this performance, demonstrable biocompatibility, and biodegradability of DNA hydrogel, the HDNA-based ophthalmic therapeutic delivery system enables novel treatment paradigms, which will have widespread applications in the treatment of various eye diseases.
Collapse
Affiliation(s)
- Ning Ren
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Rui Sun
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Kai Xia
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Qi Zhang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Wei Li
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Fei Wang
- Joint Research Center for Precision Medicine , Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital , Shanghai 201499 , China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine , Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital , Shanghai 201499 , China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Ying Zhu
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| |
Collapse
|
22
|
Sinha A, Choi Y, Nguyen MH, Nguyen TL, Choi SW, Kim J. A 3D Macroporous Alginate Graphene Scaffold with an Extremely Slow Release of a Loaded Cargo for In Situ Long-Term Activation of Dendritic Cells. Adv Healthc Mater 2019; 8:e1800571. [PMID: 30680955 DOI: 10.1002/adhm.201800571] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Ex vivo manipulation of autologous antigen-presenting cells and their subsequent infusion back into the patient to dictate immune response is one of the promising strategies in cancer immunotherapy. Here, a 3D alginate scaffold embedded with reduced graphene oxide (rGO) is proposed as a vaccine delivery platform for in situ long-term activation of antigen-presenting dendritic cells (DCs). High surface area and hydrophobic surface of the rGO component of the scaffold provide high loading and a very slow release of a loaded antigen, danger signal, and/or chemoattractant from the scaffold. This approach offers long-term bioavailability of the loaded cargo inside the scaffold for manipulation of recruited DCs. After mice are subcutaneously vaccinated with the macroporous alginate graphene scaffold (MAGS) loaded with ovalbumin (OVA) and granulocyte-macrophage colony-stimulating factor (GM-CSF), this scaffold recruits a significantly high number of DCs, which present antigenic information via major histocompatibility complex class I for a long period. Furthermore, an MAGS loaded with OVA, GM-CSF, and CpG promotes production of activated T cells and memory T cells, leading to the suppression of OVA-expressing B16 melanoma tumor growth in a prophylactic vaccination experiment. This study indicates that an MAGS can be a strong candidate for long-term programming and modulating immune cells in vivo.
Collapse
Affiliation(s)
- Arjyabaran Sinha
- School of Chemical Engineering; Sungkyunkwan University (SKKU); Suwon 16419 Republic of Korea
| | - Youngjin Choi
- School of Chemical Engineering; Sungkyunkwan University (SKKU); Suwon 16419 Republic of Korea
| | - Minh Hoang Nguyen
- School of Chemical Engineering; Sungkyunkwan University (SKKU); Suwon 16419 Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering; Sungkyunkwan University (SKKU); Suwon 16419 Republic of Korea
| | - Seung Woo Choi
- Department of Health Sciences and Technology; Samsung Advanced Institute for Health Science and Technology (SAIHST); SKKU; Suwon 16419 Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering; Sungkyunkwan University (SKKU); Suwon 16419 Republic of Korea
- Department of Health Sciences and Technology; Samsung Advanced Institute for Health Science and Technology (SAIHST); SKKU; Suwon 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS); SKKU; Suwon 16419 Republic of Korea
| |
Collapse
|
23
|
Umeki Y, Saito M, Kusamori K, Tsujimura M, Nishimura M, Takahashi Y, Takakura Y, Nishikawa M. Combined encapsulation of a tumor antigen and immune cells using a self-assembling immunostimulatory DNA hydrogel to enhance antigen-specific tumor immunity. J Control Release 2018; 288:189-198. [PMID: 30219278 DOI: 10.1016/j.jconrel.2018.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/25/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022]
Abstract
Our previous study demonstrated that the incorporation of a tumor antigen into a self-assembling DNA hydrogel, comprised of a DNA containing un-methylated cytosine-phosphate-guanine (CpG) dinucleotides (CpG DNA), efficiently induced antigen-specific tumor immunity after intra-tumoral injection into tumor-bearing mice. We hypothesized that the additional incorporation of immune cells, the target for the antigen and immunostimulatory CpG DNA, would increase the antitumor response. To prove this, immune cells were also encapsulated into the CpG DNA hydrogel and delivered along with the antigen. Mouse dendritic DC2.4 cells maintained their form even after incorporation into the DNA hydrogel. The incorporation of mouse macrophage-like J774.1 cells and RAW264.7 cells into CpG DNA hydrogel did not significantly affect their viability. J774.1, RAW264.7, DC2.4, and mouse bone marrow-derived dendritic cells (BMDCs) were efficiently activated when incorporated into the CpG DNA hydrogel. The CpG DNA hydrogel incorporated with both the tumor antigen and BMDCs effectively induced antigen-specific immune responses, and retarded tumor growth following intradermal administration before and after tumor inoculation without severe local and systemic adverse events. These data indicate that the combined delivery of a tumor antigen and immune cells using an immunostimulatory CpG DNA hydrogel is effective in inducing antigen-specific antitumor immunity.
Collapse
Affiliation(s)
- Yuka Umeki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaaki Saito
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Mari Tsujimura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Moeka Nishimura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| |
Collapse
|
24
|
Lyu D, Chen S, Guo W. Liposome Crosslinked Polyacrylamide/DNA Hydrogel: a Smart Controlled-Release System for Small Molecular Payloads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704039. [PMID: 29479856 DOI: 10.1002/smll.201704039] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/19/2018] [Indexed: 06/08/2023]
Abstract
A novel stimuli-responsive hydrogel system with liposomes serving as both noncovalent crosslinkers and functional small molecules carriers for controlled-release is developed. Liposomes can crosslink polyacrylamide copolymers functionalized with cholesterol-modified DNA motifs to yield a DNA hydrogel system, due to the hydrophobic interaction between cholesteryl groups and the lipid bilayer of liposomes. Functional information encoded DNA motifs on the polymer backbones endow the hydrogel with programmable smart responsive properties. In a model system, the hydrogel exhibits stimuli-responsive gel-to-sol transformation triggered by the opening of DNA motifs upon the presence of a restriction endonuclease enzyme, EcoR I, or temperature change, realizing the controlled-release of liposomes which are highly efficient carriers of active small molecules payloads. Two active molecules, 1,1-dioctadecyl-3,3,3,3-tetramethylindodicarbocyanine perchlorate (DiIC18(5)) and calcein, are chosen as the hydrophobic and hydrophilic model payloads, respectively, to address the feasibility of the releasing strategy. Moreover, the hydrogel exhibits injectable property as well as self-recovery behaviors.
Collapse
Affiliation(s)
- Danya Lyu
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Shanshan Chen
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Weiwei Guo
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|