1
|
Ouhaddi Y, Dalisson B, Rastinfard A, Gilardino M, Watters K, Job D, Azizi-Mehr P, Merle G, Lasagabaster AV, Barralet J. Necrosis reduction efficacy of subdermal biomaterial mediated oxygen delivery in ischemic skin flaps. BIOMATERIALS ADVANCES 2023; 153:213519. [PMID: 37392519 DOI: 10.1016/j.bioadv.2023.213519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 07/03/2023]
Abstract
Inadequate tissue blood supply as may be found in a wound or a poorly vascularised graft, can result in tissue ischemia and necrosis. As revascularization is a slow process relative to the proliferation of bacteria and the onset of tissue necrosis, extensive tissue damage and loss can occur before healing is underway. Necrosis can develop rapidly, and treatment options are limited such that loss of tissue following necrosis onset is considered unavoidable and irreversible. Oxygen delivery from biomaterials exploiting aqueous decomposition of peroxy-compounds has shown some potential in overcoming the supply limitations by creating oxygen concentration gradients higher than can be attained physiologically or by air saturated solutions. We sought to test whether subdermal oxygen delivery from a material composite that was buffered and contained a catalyst, to reduce hydrogen peroxide release, could ameliorate necrosis in a 9 × 2 cm flap in a rat model that reliably underwent 40 % necrosis if untreated. Blood flow in this flap reduced from near normal to essentially zero, along its 9 cm length and subdermal perforator vessel anastomosis was physically prevented by placement of a polymer sheet. In the middle, low blood flow region of the flap, treatment significantly reduced necrosis based on measurements from photographs and histological micrographs. No change was observed in blood vessel density but significant differences in HIF1-α, inducible nitric oxide synthase and liver arginase were observed with oxygen delivery.
Collapse
Affiliation(s)
- Yassine Ouhaddi
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Benjamin Dalisson
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC, H3A 1G1, Canada
| | - Arghavan Rastinfard
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Mirko Gilardino
- Division of Pastic and Reconstructive Surgery, Department of Surgery, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Kevin Watters
- Department of Pathology, Glen Site, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Dario Job
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Parsa Azizi-Mehr
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Geraldine Merle
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Arturo Vela Lasagabaster
- Division of Pastic and Reconstructive Surgery, Department of Surgery, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Jake Barralet
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada; Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
2
|
Ren ZY, Lyu SC, Wang HX, Wang J, Zhou L, He Q, Lang R. Protective Effects of Different Hypothermal Preservation Solutions on Structure and Function of Isolated Rat Arteries. Curr Med Sci 2023; 43:768-778. [PMID: 37480414 DOI: 10.1007/s11596-023-2766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/03/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE With the increasing application of vascular reconstruction in surgical procedures, allogeneic vessels are becoming more popular in clinical practice due to their abundant sources, precise diameter matching, improved histocompatibility, and higher long-term patency rate. This study aimed to investigate the protective effect of various preservation solutions on the function and structure of the isolated rat abdominal aorta preserved under hypothermal conditions. METHODS The study utilized a total of 150 Sprague-Dawley (SD) rats, with 144 rats allocated to the experimental groups and 6 rats allocated to the control groups. The abdominal aorta of the rats was chosen as the subject of our research. The aorta in the experimental groups were randomly assigned to 4 groups: University of Wisconsin (UW) solution group, histidine-tryptophan-ketoglutarate (HTK) solution group, normal saline (NS) group, and sodium lactate Ringer's solution (RS) group. Samples were subjected to examination after preservation periods of 1 day, 3 days, 5 days, 7 days, 14 days, 30 days, and 90 days. Evaluation of vascular physiological function involved detecting and assessing vasoconstriction ability and measuring cell viability through the MTT test. Evaluation of the vascular wall structure involved tension tolerance tests and pathological staining. RESULTS The pathogen-positive rate in the HTK group and NS group at 1 month was 16.7%. Regarding the vascular skeleton structure, both the UW group and HTK group exhibited intact structures after 2 weeks of preservation, with slightly edematous collagen and elastic fibers, which was significantly better than that of the NS group and RS group. In terms of cell activity and contractile function, all preservation groups showed similar effects within 2 weeks. However, after 2 weeks, the UW group showed the most favorable preservation effect (P<0.05). In terms of vascular tension, different groups exhibited similar effects within 1 week. However, after 2 weeks, the UW group showed the best preservation effect (P<0.05). CONCLUSION All 4 types of preservation solution had a preservation effect on the structure and function of isolated blood vessels during short-term hypothermal preservation. However, after 2-week preservation, the UW solution was found to be the most suitable solution for the preservation of blood vessels.
Collapse
Affiliation(s)
- Zhang-Yong Ren
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Han-Xuan Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
3
|
Augustine R, Gezek M, Seray Bostanci N, Nguyen A, Camci-Unal G. Oxygen-Generating Scaffolds: One Step Closer to the Clinical Translation of Tissue Engineered Products. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 455:140783. [PMID: 36644784 PMCID: PMC9835968 DOI: 10.1016/j.cej.2022.140783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues. Similarly, maintaining adequate oxygen levels in cell-laden tissue engineered products during transportation and storage is another hurdle. There is an unmet demand for functional scaffolds that could actively produce and deliver oxygen, attainable by incorporating oxygen-generating materials. Recent approaches include encapsulation of oxygen-generating agents such as solid peroxides, liquid peroxides, and fluorinated substances in the scaffolds. Recent approaches to mitigate the adverse effects, as well as achieving a sustained and controlled release of oxygen, are discussed. Importance of oxygen-generating materials in various tissue engineering approaches such as ex vivo tissue engineering, in situ tissue engineering, and bioprinting are highlighted in detail. In addition, the existing challenges, possible solutions, and future strategies that aim to design clinically relevant multifunctional oxygen-generating biomaterials are provided in this review paper.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Angelina Nguyen
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
4
|
Willemen NGA, Hassan S, Gurian M, Li J, Allijn IE, Shin SR, Leijten J. Oxygen-Releasing Biomaterials: Current Challenges and Future Applications. Trends Biotechnol 2021; 39:1144-1159. [PMID: 33602609 PMCID: PMC9078202 DOI: 10.1016/j.tibtech.2021.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
Oxygen is essential for the survival, function, and fate of mammalian cells. Oxygen tension controls cellular behaviour via metabolic programming, which in turn controls tissue regeneration, stem cell differentiation, drug metabolism, and numerous pathologies. Thus, oxygen-releasing biomaterials represent a novel and unique strategy to gain control over a variety of in vivo processes. Consequently, numerous oxygen-generating or carrying materials have been developed in recent years, which offer innovative solutions in the field of drug efficiency, regenerative medicine, and engineered living systems. In this review, we discuss the latest trends, highlight current challenges and solutions, and provide a future perspective on the field of oxygen-releasing materials.
Collapse
Affiliation(s)
- Niels G A Willemen
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands; Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Melvin Gurian
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Jinghang Li
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA; School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Iris E Allijn
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA.
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
5
|
Nguyen T, Peng Y, Seekell RP, Kheir JN, Polizzotti BD. Hyperbaric polymer microcapsules for tunable oxygen delivery. J Control Release 2020; 327:420-428. [PMID: 32798637 DOI: 10.1016/j.jconrel.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 01/23/2023]
Abstract
Over the past decade, there have been many attempts to engineer systems capable of delivering oxygen to overcome the effects of both systemic and local hypoxia that occurs as a result of traumatic injury, cell transplantation, or tumor growth, among many others. Despite progress in this field, which has led to a new class of oxygen-generating biomaterials, most reported techniques lack the tunability necessary for independent control over the oxygen flux (volume per unit time) and the duration of delivery, both of which are key parameters for overcoming tissue hypoxia of varying etiologies. Here, we show that these critical parameters can be effectively manipulated using hyperbarically-loaded polymeric microcapsules (PMC). PMCs are micron-sized particles with hollow cores and polymeric shells. We show that oxygen delivery through PMCs is dependent on its permeability through the polymeric shell, the shell thickness, and the pressure gradient across the shell. We also demonstrate that incorporating an intermediate oil layer between the polymeric shell and the gas core prevents rapid outgassing by effectively lowering the resultant pressure gradient across the polymeric membrane following depressurization.
Collapse
Affiliation(s)
- Tien Nguyen
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yifeng Peng
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond P Seekell
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - John N Kheir
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Brian D Polizzotti
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Abdullah T, Gauthaman K, Hammad AH, Joshi Navare K, Alshahrie AA, Bencherif SA, Tamayol A, Memic A. Oxygen-Releasing Antibacterial Nanofibrous Scaffolds for Tissue Engineering Applications. Polymers (Basel) 2020; 12:polym12061233. [PMID: 32485817 PMCID: PMC7361702 DOI: 10.3390/polym12061233] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Lack of suitable auto/allografts has been delaying surgical interventions for the treatment of numerous disorders and has also caused a serious threat to public health. Tissue engineering could be one of the best alternatives to solve this issue. However, deficiency of oxygen supply in the wounded and implanted engineered tissues, caused by circulatory problems and insufficient angiogenesis, has been a rate-limiting step in translation of tissue-engineered grafts. To address this issue, we designed oxygen-releasing electrospun composite scaffolds, based on a previously developed hybrid polymeric matrix composed of poly(glycerol sebacate) (PGS) and poly(ε-caprolactone) (PCL). By performing ball-milling, we were able to embed a large percent of calcium peroxide (CP) nanoparticles into the PGS/PCL nanofibers able to generate oxygen. The composite scaffold exhibited a smooth fiber structure, while providing sustainable oxygen release for several days to a week, and significantly improved cell metabolic activity due to alleviation of hypoxic environment around primary bone-marrow-derived mesenchymal stem cells (BM-MSCs). Moreover, the composite scaffolds also showed good antibacterial performance. In conjunction to other improved features, such as degradation behavior, the developed scaffolds are promising biomaterials for various tissue-engineering and wound-healing applications.
Collapse
Affiliation(s)
- Turdimuhammad Abdullah
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah 08100, Malaysia
| | - Ahmed H. Hammad
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Electron Microscope and Thin Films Department, Physics Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Kasturi Joshi Navare
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Ahmed A. Alshahrie
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sidi A. Bencherif
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA;
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- UMR CNRS 7338 Biomechanics and Bioengineering, University of Technology of Compiègne, Sorbonne University, 60200 Compiègne, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA;
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Correspondence:
| |
Collapse
|
7
|
Structure and Function of Porcine Arteries Are Preserved for up to 6 Days Using the HypoRP Cold-storage Solution. Transplantation 2020; 104:e125-e134. [PMID: 32000259 DOI: 10.1097/tp.0000000000003141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Maintaining functional vessels during preservation of vascularized composite allografts (VCAs) remains a major challenge. The University of Wisconsin (UW) solution has demonstrated significant short-term benefits (4-6 h). Here we determined whether the new hypothermic resuscitation and preservation solution HypoRP improves both structure, survival, and function of pig arteries during storage for up to 6 days. METHODS Using porcine swine mesenteric arteries, the effects of up to 6-day incubation in a saline (PBS), UW, or HypoRP solution on the structure, cell viability, metabolism, and function were determined. RESULTS After incubation at 4°C, for up to 6 days, the structures of the arteries were significantly disrupted, especially the tunica media, following incubation in PBS, in contrast with incubation in the HypoRP solution and to a lesser extent, in UW solution. Those disruptions were associated with increased active caspase 3 indicative of apoptosis. Additionally, while incubation in PBS led to a significant decrease in the metabolic activity, UW and HypoRP solutions allowed a stable to increased metabolic activity following 6 days of cold storage. Functional responsiveness to phenylephrine (PE) and sodium nitroprusside (SNP) decreased over time for artery rings stored in PBS and UW solution but not for those stored in HypoRP solution. Moreover, artery rings cold-stored in HypoRP solution were more sensitive to ATP. CONCLUSIONS The HypoRP solution improved long-term cold storage of porcine arteries by limiting structural alterations, including the collagen matrix, reducing apoptosis, and maintaining artery contraction-relaxation functions for up to 6 days.
Collapse
|
8
|
Chiu YC, Shen YF, Lee AKX, Lin SH, Wu YC, Chen YW. 3D Printing of Amino Resin-based Photosensitive Materials on Multi-parameter Optimization Design for Vascular Engineering Applications. Polymers (Basel) 2019; 11:E1394. [PMID: 31450605 PMCID: PMC6780824 DOI: 10.3390/polym11091394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases are currently the most common cause of death globally and of which, the golden treatment method for severe cardiovascular diseases or coronary artery diseases are implantations of synthetic vascular grafts. However, such grafts often come with rejections and hypersensitivity reactions. With the emergence of regenerative medicine, researchers are now trying to explore alternative ways to produce grafts that are less likely to induce immunological reactions in patients. The main goal of such studies is to produce biocompatible artificial vascular grafts with the capability of allowing cellular adhesion and cellular proliferation for tissues regeneration. The Design of Experimental concepts is employed into the manufacturing process of digital light processing (DLP) 3D printing technology to explore near-optimal processing parameters to produce artificial vascular grafts with vascular characteristics that are close to native vessels by assessing for the cause and effect relationships between different ratios of amino resin (AR), 2-hydroxyethyl methacrylate (HEMA), dopamine, and curing durations. We found that with proper optimization of fabrication procedures and ratios of materials, we are able to successfully fabricate vascular grafts with good printing resolutions. These had similar physical properties to native vessels and were able to support cellular adhesion and proliferation. This study could support future studies in exploring near-optimal processes for fabrication of artificial vascular grafts that could be adapted into clinical applications.
Collapse
Affiliation(s)
- Yung-Cheng Chiu
- School of Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Fang Shen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan
- 3D Printing Medical Research Institute, Asia University, Taichung 40447, Taiwan
| | - Alvin Kai-Xing Lee
- School of Medicine, China Medical University, Taichung 40447, Taiwan
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shu-Hsien Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Chen Wu
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yi-Wen Chen
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
| |
Collapse
|