1
|
Dou X, Liu X, Liu Y, Wang L, Jia F, Shen F, Ma Y, Liang C, Jin G, Wang M, Liu Z, Zhu B, Liu X. Biomimetic Porous Ti6Al4V Implants: A Novel Interbody Fusion Cage via Gel-Casting Technique to Promote Spine Fusion. Adv Healthc Mater 2024; 13:e2400550. [PMID: 39031096 DOI: 10.1002/adhm.202400550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Indexed: 07/22/2024]
Abstract
An interbody fusion cage (Cage) is crucial in spinal decompression and fusion procedures for restoring normal vertebral curvature and rebuilding spinal stability. Currently, these Cages suffer from issues related to mismatched elastic modulus and insufficient bone integration capability. Therefore, a gel-casting technique is utilized to fabricate a biomimetic porous titanium alloy material from Ti6Al4V powder. The biomimetic porous Ti6Al4V is compared with polyetheretherketone (PEEK) and 3D-printed Ti6Al4V materials and their respective Cages. Systematic validation is performed through mechanical testing, in vitro cell, in vivo rabbit bone defect implantation, and ovine anterior cervical discectomy and fusion experiments to evaluate the mechanical and biological performance of the materials. Although all three materials demonstrate good biocompatibility and osseointegration properties, the biomimetic porous Ti6Al4V, with its excellent mechanical properties and a structure closely resembling bone trabecular tissue, exhibited superior bone ingrowth and osseointegration performance. Compared to the PEEK and 3D-printed Ti6Al4V Cages, the biomimetic porous Ti6Al4V Cage outperforms in terms of intervertebral fusion performance, achieving excellent intervertebral fusion without the need for bone grafting, thereby enhancing cervical vertebra stability. This biomimetic porous Ti6Al4V Cage offers cost-effectiveness, presenting significant potential for clinical applications in spinal surgery.
Collapse
Affiliation(s)
- Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Fei Jia
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Fei Shen
- Laboratory Animal Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yunlong Ma
- Pain Medical Center, Peking University Third Hospital, Beijing, 100191, China
| | - Chen Liang
- Pain Medical Center, Peking University Third Hospital, Beijing, 100191, China
| | - Gong Jin
- ZhongAoHuiCheng Technology Co., Beijing, 100176, China
| | - Meina Wang
- ZhongAoHuiCheng Technology Co., Beijing, 100176, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Bin Zhu
- Department of Orthopaedics, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
2
|
Dahinten A, Kade JC, Soliman S, Krastl G, Gbureck U. Evaluation of baghdadite (Ca 3ZrSi 2O 9) cements for the application as novel endodontic filling materials. Dent Mater 2024; 40:1364-1371. [PMID: 38890091 DOI: 10.1016/j.dental.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES Baghdadite (Ca3ZrSi2O9) cements of various composition have been investigated in this study regarding an application as endodontic filling materials. METHODS Cements were either obtained by mixing mechanically activated baghdadite powder with water (maBag) or by subsequently substituting the ß-tricalcium phosphate (ß-TCP) component in a brushite forming calcium phosphate cement. The cements were analyzed for their mechanical performance, injectability, radiopacity, phase composition and antimicrobial properties. RESULTS The cements demonstrated sufficient mechanical performance with a compressive strength of ∼1 MPa (maBag) and 2.3 - 17.4 MPa (substituted calcium phosphate cement), good injectability > 80 % depending on the powder to liquid ratio and an intrinsic radiopacity of 1.13 - 2.05 mm aluminum equivalent. Immersion in artificial saliva proved their bioactivity by the formation of calcium phosphate and calcium silicate precipitates on the cement surface. The bacterial activity of Staphylococcus aureus cultured on the surface of the cements was found to be similar compared to clinical standard ProRoot MTA cement or even reduced by a factor of 3 for Streptococcus mutans. SIGNIFICANCE In combination with their antibacterial properties, baghdadite cements are thought to have the potential to fulfil the clinical requirements for endodontic filling materials.
Collapse
Affiliation(s)
- Anna Dahinten
- Department for Functional Materials in Medicine and Dentistry, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Juliane C Kade
- Department for Functional Materials in Medicine and Dentistry, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Sebastian Soliman
- Department of Conservative Dentistry and Periodontology, Center of Dental Traumatology, Dental School, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany.
| | - Gabriel Krastl
- Department of Conservative Dentistry and Periodontology, Center of Dental Traumatology, Dental School, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| |
Collapse
|
3
|
Jaenisch M, Guder C, Ossendorff R, Randau TM, Gravius S, Wirtz DC, Strauss AC, Schildberg FA. In Vitro Biocompatibility of the Novel Ceramic Composite Baghdadite for Defect Augmentation in Revision Total Hip Arthroplasty. J Funct Biomater 2023; 14:517. [PMID: 37888182 PMCID: PMC10607879 DOI: 10.3390/jfb14100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Biological augmentation of bony defects in weight-bearing areas of both the acetabulum and the femur remains challenging. The calcium-silicate-based ceramic Baghdadite is a very interesting material to be used in the field of revision total hip arthroplasty for the treatment of bony defects in weight-bearing and non-weight-bearing areas alike. The aim of this study was to investigate the biocompatibility of Baghdadite utilizing an osteoblast-like, human osteosarcoma cell line (MG-63) and the human monocytic leukemia-derived cell line (THP-1). THP-1-derived macrophages and MG-63 were indirectly exposed to Baghdadite for 7 days using a transwell system. Viability was assessed with MTT assay and pH analysis. To investigate proliferation rate, both cell lines were labelled using CFSE and flow cytometrically analyzed. ELISA was used to measure the secretion of IL-1ß, IL-6 and TNFα. The investigation of viability, while showing a slight difference in optical density for the MTT assays in MG-63 cells, did not present a meaningful difference between groups for both cell lines. The comparison of pH and the proportion of living cells between groups did not present with a significant difference for both THP-1 and MG-63. Baghdadite did not have a relevant impact on the proliferation rate of the investigated cell lines. Mean fluorescence intensity was calculated between groups with no significant difference. Baghdadite exerted a proinflammatory effect, which could be seen in an upregulated production of TNFα in macrophages. Production of IL-1ß and IL-6 was not statistically significant, but the IL-6 ELISA showed a trend to an upregulated production as well. A similar effect on MG-63 was not observed. No relevant cytotoxicity of Baghdadite ceramics was encountered. Baghdadite ceramics exhibit a proinflammatory potential by significantly increasing the secretion of TNFα in THP-1-derived macrophages. Whether this proinflammatory potential results in a clinically relevant effect on osteointegration is unclear and requires further investigation. Baghdadite ceramics provide an interesting alternative to conventional bone substitutes and should be further investigated in a biomechanical and in vivo setting.
Collapse
Affiliation(s)
- Max Jaenisch
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Christian Guder
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Robert Ossendorff
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Thomas M. Randau
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
- Department of Orthopedics, Orthopedic Surgery and Sports Medicine, Augustinian Hospital Cologne, 50678 Cologne, Germany
| | - Sascha Gravius
- Department of Orthopedics and Trauma Surgery, University Medical Center Mannheim of University Heidelberg, 68167 Mannheim, Germany
| | - Dieter C. Wirtz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas C. Strauss
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
4
|
Sommer KP, Krolinski A, Mirkhalaf M, Zreiqat H, Friedrich O, Vielreicher M. Protocol for Cell Colonization and Comprehensive Monitoring of Osteogenic Differentiation in 3D Scaffolds Using Biochemical Assays and Multiphoton Imaging. Int J Mol Sci 2023; 24:ijms24032999. [PMID: 36769321 PMCID: PMC9917811 DOI: 10.3390/ijms24032999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
The goal of bone tissue engineering is to build artificial bone tissue with properties that closely resemble human bone and thereby support the optimal integration of the constructs (biografts) into the body. The development of tissues in 3D scaffolds includes several complex steps that need to be optimized and monitored. In particular, cell-material interaction during seeding, cell proliferation and cell differentiation within the scaffold pores play a key role. In this work, we seeded two types of 3D-printed scaffolds with pre-osteoblastic MC3T3-E1 cells, proliferated and differentiated the cells, before testing and adapting different assays and imaging methods to monitor these processes. Alpha-TCP/HA (α-TCP with low calcium hydroxyapatite) and baghdadite (Ca3ZrSi2O9) scaffolds were used, which had comparable porosity (~50%) and pore sizes (~300-400 µm). Cell adhesion to both scaffolds showed ~95% seeding efficiency. Cell proliferation tests provided characteristic progression curves over time and increased values for α-TCP/HA. Transmitted light imaging displayed a homogeneous population of scaffold pores and allowed us to track their opening state for the supply of the inner scaffold regions by diffusion. Fluorescence labeling enabled us to image the arrangement and morphology of the cells within the pores. During three weeks of osteogenesis, ALP activity increased sharply in both scaffolds, but was again markedly increased in α-TCP/HA scaffolds. Multiphoton SHG and autofluorescence imaging were used to investigate the distribution, morphology, and arrangement of cells; collagen-I fiber networks; and hydroxyapatite crystals. The collagen-I networks became denser and more structured during osteogenic differentiation and appeared comparable in both scaffolds. However, imaging of the HA crystals showed a different morphology between the two scaffolds and appeared to arrange in the α-TCP/HA scaffolds along collagen-I fibers. ALP activity and SHG imaging indicated a pronounced osteo-inductive effect of baghdadite. This study describes a series of methods, in particular multiphoton imaging and complementary biochemical assays, to validly measure and track the development of bone tissue in 3D scaffolds. The results contribute to the understanding of cell colonization, growth, and differentiation, emphasizing the importance of optimal media supply of the inner scaffold regions.
Collapse
Affiliation(s)
- Kai Peter Sommer
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Adrian Krolinski
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Mohammad Mirkhalaf
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, D-91052 Erlangen, Germany
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Martin Vielreicher
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, D-91052 Erlangen, Germany
- Correspondence:
| |
Collapse
|
5
|
Nasser Atia G, Barai HR, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Nasser Attia HA, Joo SW. Baghdadite: A Novel and Promising Calcium Silicate in Regenerative Dentistry and Medicine. ACS OMEGA 2022; 7:44532-44541. [PMID: 36530225 PMCID: PMC9753547 DOI: 10.1021/acsomega.2c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
For several years, ceramic biomaterials have been extensively utilized to rebuild and substitute for body tissues. Calcium silicates have been proven to exhibit excellent bioactivity due to apatite formation and cell proliferation stimulation, in addition to degradability at levels adequate for hard tissue formation. These ceramics' excellent biological characteristics have attracted researchers. Baghdadite is a calcium silicate incorporating zirconium ions that enhances human osteoblast multiplication and development, increasing mineralization, and ossification. It has currently received much interest in academic institutions and has been extensively explored in the form of permeable frameworks, varnishes, bone adhesive and gap fillings, microparticles, and nanospheres, particularly in a wide range of biomedical applications. This review article aims to summarize and analyze the most recent research on baghdadite's mechanical characteristics, apatite-forming capability, dissolution pattern, and physiochemical qualities as a scaffold for dentofacial tissuè regeneration purposes.
Collapse
Affiliation(s)
- Gamal
Abdel Nasser Atia
- Department
of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Hasi Rani Barai
- Department
of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Hany K. Shalaby
- Department
of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department
of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department
of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Mohamed mohamady Ghobashy
- Radiation
Research of Polymer Chemistry Department, National Center for Radiation
Research and Technology (NCRRT), Egyptian
Atomic Energy Authority, P.O. Box 8029, Cairo 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department
of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, P.O. Box 21526, Egypt
| | - Sang Woo Joo
- Department
of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
6
|
Sadeghzade S, Liu J, Wang H, Li X, Cao J, Cao H, Tang B, Yuan H. Recent advances on bioactive baghdadite ceramic for bone tissue engineering applications: 20 years of research and innovation (a review). Mater Today Bio 2022; 17:100473. [PMID: 36345364 PMCID: PMC9636580 DOI: 10.1016/j.mtbio.2022.100473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Various artificial bone graft substitutes based on ceramics have been developed over the last 20 years. Among them, calcium-silicate-based ceramics, which are osteoconductive and can attach directly to biological organs, have received great attention for bone tissue engineering applications. However, the degradation rate of calcium-silicate and bone formation is often out of balance, resulting in stress shielding (osteopenia). A new strategy to improve the drawbacks of these ceramics is incorporating trace elements such as Zn, Mg, and Zr into their lattice structures, enhancing their physical and biological properties. Recently, baghdadite (Ca3ZrSi2O9) ceramic, one of the most appealing calcium-silicate-based ceramics, has demonstrated high bioactivity, biocompatibility, biodegradability, and cell interaction. Because of its physical, mechanical, and biological properties and ability to be shaped using various fabrication techniques, baghdadite has found high potential in various biomedical applications such as coatings, fillers, cement, scaffolds, and drug delivery systems. Undoubtedly, there is a high potential for this newly developed ceramic to contribute significantly to therapies to provide a tremendous clinical outcome. This review paper aims to summarize and discuss the most relevant studies performed on baghdadite-based ceramics and composites by focusing on their behavior in vivo and in vitro.
Collapse
|
7
|
No YJ, Nguyen T, Lu Z, Mirkhalaf M, Fei F, Foley M, Zreiqat H. Development of a bioactive and radiopaque bismuth doped baghdadite ceramic for bone tissue engineering. Bone 2021; 153:116147. [PMID: 34389477 DOI: 10.1016/j.bone.2021.116147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022]
Abstract
Baghdadite (Ca3ZrSi2O9, BAG), is a Zr-doped calcium silicate that has outstanding bioactivity both in vitro and in vivo. Bioceramic scaffolds should be sufficiently radiopaque to be distinguishable in vivo from surrounding bone structures. To enhance the radiopacity of BAG, this study investigated the effect of incorporating bismuth ions into its crystalline structure (BixCa3-xZrSi2O9, x = 0, 0.1, 0.2, 0.5; BAG, Bi0.1-BAG, Bi0.2-BAG, Bi0.5-BAG, respectively). Monophasic baghdadite was retained after bismuth ion incorporation up to x = 0.2 at calcination temperatures of 1350 °C. When pressed and sintered, energy dispersive x-ray spectroscopy showed that BAG and Bi0.1-BAG retained crystalline homogeneity, but Bi0.2-BAG formed zirconium-rich crystalline regions. BAG, Bi0.1-BAG and Bi0.2-BAG exhibited non-degradation after 56 days of immersion in culture medium. Bi0.1-BAG exhibited the lowest change in culture medium pH (+0.0), compared to BAG (+0.7) and Bi0.2-BAG (+0.2) after 56 days of culture media immersion. Bi0.1-BAG exhibited similar strength and modulus to BAG (σ: 200-290 MPa; E: 4-5 GPa), and significantly higher compressive strength and modulus versus Bi0.2-BAG (σ: 150-200 MPa; E: 3.5-4 GPa) across 56 days of aqueous immersion. In vitro studies using primary human bone derived cells (HOBs) demonstrated a significant increase in HOBs proliferation when cultured on Bi0.1-BAG for seven days compared to BAG and Bi0.2-BAG. Importantly, Bi0.1-BAG showed increased radiopacity by ~33%, when compared to BAG, and by ~115% when compared to biphasic calcium phosphate. The properties of Bi0.1-BAG show promise for its use as a bioactive ceramic with sufficient radiopacity for treatment of bone defects.
Collapse
Affiliation(s)
- Young Jung No
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia.
| | - Tien Nguyen
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia
| | - Zufu Lu
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia
| | - Mohammad Mirkhalaf
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia
| | - Frank Fei
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia
| | - Matthew Foley
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Hala Zreiqat
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative BioEngineering, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
Personalized Baghdadite scaffolds: stereolithography, mechanics and in vivo testing. Acta Biomater 2021; 132:217-226. [PMID: 33711527 DOI: 10.1016/j.actbio.2021.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023]
Abstract
An ongoing challenge in the field of orthopedics is to produce a clinically relevant synthetic ceramic scaffold for the treatment of 'critical-sized' bone defects, which cannot heal without intervention. We had developed a bioactive ceramic (baghdadite, Ca₃ZrSi₂O₉) and demonstrated its outstanding bioactivity using traditional manufacturing techniques. Here, we report on the development of a versatile stereolithography printing technology that enabled fabrication of anatomically-shaped and -sized Baghdadite scaffolds. We assessed the in vivo bioactivity of these scaffolds in co-delivering of bone morphogenetic protein-2 (BMP2) and zoledronic acid (ZA) through bioresorbable coatings to induce bone formation and increase retention in a rat model of heterotopic ossification. Micro-computed tomography, histology, mechanical tests pre- and post-implantation, and mechanical modelling were used to assess bone ingrowth and its effects on the mechanics of the scaffolds. Bone ingrowth and the consequent mechanical properties of the scaffolds improved with increasing BMP2 dose. Co-delivery of ZA with BMP2 further improved this outcome. The significant bone formation within the scaffolds functionalized with 10 µg BMP2 and 2 µg ZA made them 2.3 × stiffer and 2.7 × stronger post-implantation and turned these inherently brittle scaffolds into a tough and deformable material. The effects of bone ingrowth on the mechanical properties of scaffolds were captured in a mechanical model that can be used in future clinical studies for non-destructive evaluation of scaffold's stiffness and strength as new bone forms. These results support the practical utilization of our versatile stereolithographic printing methods and BMP2/ZA functionalization to create fit-for-purpose personalized implants for clinical trials. STATEMENT OF SIGNIFICANCE: In this study, we addressed a long-standing challenge of developing a ceramic printing technology that enables fabrication of customizable anatomically-shaped and -sized bioceramic scaffolds with precise internal architectures using an inexpensive desktop printer. We also addressed another challenge related to delivery of pharmaceuticals. BMP2, currently available as a bone-inducing bioactive protein, is clinically administered in a collagen scaffold that has limited moldability and poor mechanical properties. The comparably stiffer and stronger 3D printed personalized Baghdadite scaffolds developed here can be readily functionalized with bioresorbable coatings containing BMP2 ± ZA. These innovations considerably improve on the prior art and are scalable for use in human surgery.
Collapse
|
9
|
Sun QB, Xu CP, Li WQ, Meng QJ, Qu HZ. Halloysites modified polyethylene glycol diacrylate/thiolated chitosan double network hydrogel combined with BMP-2 for rat skull regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:71-82. [PMID: 33423558 DOI: 10.1080/21691401.2020.1858845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hydrogel serve as bone tissue engineering have lately received great attention for their good biocompatibility and structures similar to natural extracellular matrices. However, a single component polymer hydrogel is generally detrimental to cell adhesion due to the weaker mechanical properties, which limits their application considerably. In an effort to overcome this disadvantage, we adopt an unconventional dual network hydrogels consisting of the polyethylene glycol diacrylate (PEGDA) covalent network, a thiolated chitosan (TCS) ion crosslinking network and thiolated halloysites (T-HNTs) as reinforcing filler. In addition, bone morphogenetic protein-2 (BMP-2) was loaded into the prepared dual network (DN) hydrogel to improve the bone regeneration function of the DN hydrogel. The resulting PEGDA/TCS/T-HNTs hydrogels showed favourable mechanical property, higher crosslinking density, the lower swelling degree, excellent biocompatibility and cell adhesion ability. The histomorphometric and immunohistochemical analyses revealed the excellent bone regeneration ability for composite hydrogel after implant into rat skull defect. Thus, our results indicated that composite scaffold can be applied as a new bone regeneration biomaterial to be applied as a local drug delivery system with good bone induction performance.
Collapse
Affiliation(s)
- Qi-Bin Sun
- Department of Spine and Joint Surgery, The Third People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Chang-Peng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, P.R. China
| | - Wen-Qiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, China
| | - Qin-Jun Meng
- Department of Spine and Joint Surgery, The Third People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Hua-Zheng Qu
- Department of Spine and Joint Surgery, The Third People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| |
Collapse
|
10
|
Wang Y, Song X, Lei R, Zhang N, Zhang L, Xiao W, Xu J, Lin J. Adipose-derived stem cell sheets combined with β-tricalcium phosphate/collagen-I fiber scaffold improve cell osteogenesis. Exp Ther Med 2021; 21:452. [PMID: 33747187 PMCID: PMC7967868 DOI: 10.3892/etm.2021.9882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of cell-based material is a promising approach for the treatment of critical bone defects. However, it is still limited by the lack of suitable scaffold material or abundant seeding cell sources. The present study aimed to establish a novel composite of an adipose-derived stem cell (ADSC) sheet and a synthetic porous β-tricalcium phosphate/collagen-I fiber (β-TCP/COL-I) scaffold to enhance osteogenic activity. ADSCs were isolated from 3-week-old female Sprague Dawley rats and the ADSC sheets were prepared in an osteoinductive medium. The study groups included the ADSC sheets/scaffold, scattered ADSCs/scaffold, ADSC sheet alone and scaffold alone. Scanning electron microscopy and energy-dispersive spectrometry were used to observe cell-scaffold interactions and analyze the relative calcium content on the composites' surface. Alizarin red S staining was used to examine the calcium deposition. ELISA and reverse transcription-quantitative PCR were used to detect the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The results revealed that ADSCs were able to tightly adhere to the β-TCP/COL-I scaffold with no cytotoxicity. The calcifying nodules reaction was positive on ADSC sheets and gradually increased after osteogenic induction. In addition, the β-TCP/COL-I scaffold combined with ADSC sheets was able to significantly enhance the expression levels of ALP, OCN and OPN and increase the superficial relative calcium content compared to scattered ADSCs/scaffold or the ADSC sheet alone (P<0.05). The results indicated that ADSCs possess a strong osteogenic potential, particularly in the cell-sheet form and when compounded with the β-TCP/COL-I scaffold, compared to scattered ADSCs with a β-TCP/COL-I scaffold or an ADSC sheet alone. This novel composite may be a promising candidate for bone engineering.
Collapse
Affiliation(s)
- Yang Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaojia Song
- Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ning Zhang
- Dental Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Liangping Zhang
- Department of Plastic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Wei Xiao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Lin
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
11
|
Lu Z, Zhang W, No YJ, Lu Y, Mirkhalaf Valashani SM, Rollet P, Jiang L, Ramaswamy Y, Dunstan CR, Jiang X, Zreiqat H. Baghdadite Ceramics Prevent Senescence in Human Osteoblasts and Promote Bone Regeneration in Aged Rats. ACS Biomater Sci Eng 2020; 6:6874-6885. [PMID: 33320606 DOI: 10.1021/acsbiomaterials.0c01120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bone fractures and critical-sized bone defects present significant health threats for the elderly who have limited capacity for regeneration due to the presence of functionally compromised senescent cells. A wide range of synthetic materials has been developed to promote the regeneration of critical-sized bone defects, but it is largely unknown if a synthetic biomaterial (scaffold) can modulate cellular senescence and improve bone regeneration in aged scenarios. The current study investigates the interaction of Baghdadite (Ca3ZrSi2O9) ceramic scaffolds with senescent human primary osteoblast-like cells (HOBs) and its bone regeneration capacity in aged rats. A senescent HOB model was established by repeatedly passaging HOBs till passage 7 (P7). Compared to the clinically used hydroxyapatite/tricalcium phosphate (HA/TCP), Baghdadite prevented senescence induction in P7 HOBs and markedly negated the paracrine effect of P7 HOB secretomes that mediated the up-regulations of cellular senescence-associated gene expression levels in P2 HOBs. We further demonstrated that conditioned media extracted from Baghdadite corrected the dysfunctional mitochondria in P7 HOBs. In vivo, the bone regeneration capacity was enhanced when 3D printed Baghdadite scaffolds were implanted in a calvaria critical-sized bone defect model in both young and aged rats compared to HA/TCP scaffolds, but a better effect was observed in aged rats than in young rats. This study suggests that Baghdadite ceramic represents a novel and promising biomaterial approach to promote bone regeneration capacity in the elderly by providing an anti-senescent microenvironment.
Collapse
Affiliation(s)
- ZuFu Lu
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - WenJie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center of Stomatology, Shanghai 200011, China.,Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Young Jung No
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yuezhi Lu
- Department of Prosthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center of Stomatology, Shanghai 200011, China.,Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Seyed Mohammad Mirkhalaf Valashani
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul Rollet
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liting Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center of Stomatology, Shanghai 200011, China.,Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yogambha Ramaswamy
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Colin R Dunstan
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - XinQuan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center of Stomatology, Shanghai 200011, China.,Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Hala Zreiqat
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Penha ESD, Lacerda-Santos R, de Medeiros LADM, Araújo Rosendo R, Dos Santos A, Fook MVL, de Sousa WJB, de Oliveira Firmino M, Montagna E. Effect of chitosan and Dysphania ambrosioides on the bone regeneration process: A randomized controlled trial in an animal model. Microsc Res Tech 2020; 83:1208-1216. [PMID: 32500599 DOI: 10.1002/jemt.23512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 11/05/2022]
Abstract
The focus of this triple-blind study was on evaluating the effect of chitosan combined with Dysphania ambrosioides (A) extract on the bone repair process in vivo. In total, 60 male Wistar rats (Rattus norvegicus albinus) weighing between 260 and 270 g were randomly selected for this study and distributed into four groups (n = 15). Group C (chitosan), Group CA5 (chitosan + 5% of D. ambrosioides), Group CA20 (chitosan + 20% of D. ambrosioides), and Group CO (Control-Blood clot). In each animal, bone defects measuring 2 mm in diameter were performed in both tibias for placement of the substances. After 7, 15, and 30 days, the animals were sedated and sacrificed using the cervical dislocation technique and the tissues were analyzed under optical microscope relative to the following events: inflammatory infiltrate, necrosis, osteoclasts, osteoblasts, fibroblasts, periosteal, and endosteal bone formation. The data were evaluated to verify distribution using the Kolmogorov-Smirnov test, and variance, using the Levene test; as distribution was not normal, data were subjected to the Kruskal-Wallis and Dunn nonparametric tests (p < .05). A significant inflammatory infiltrate was observed in Group CA5 (p = .008) in the time interval of 7 days, and in Group C at 15 (p = .009) and 30 (p = .017) days. Osteoblastic activity was more significant in Group CA20 (p = .027) compared with CA5 in the time interval of 7 days. Group CA20 demonstrated a significantly higher endosteal and periosteal bone formation value in the time interval of 7 (p = .013), 15 (p = .004), and 30 days (p = .008) compared with the other groups. The null hypothesis was refuted, bone regeneration was faster in spheres with an association of chitosan and 20% extract, and complete bone repair occurred clinically at 15 days and histologically at 30 days. The spheres proved to be a promising method for the biostimulation of alveolar bone repair and bone fractures.
Collapse
Affiliation(s)
- Elizandra Silva da Penha
- Postgraduate, Research and Innovation, Centro Universitário Saúde ABC, Faculdade de Medicina do ABC, Santo André, Brazil
| | - Rogério Lacerda-Santos
- Department of Orthodontics and Pediatric Dentistry, Federal University of Juiz de Fora, UFJF, Governador Valadares, Brazil
| | | | | | | | - Marcus Vinícius Lia Fook
- Postgraduate Program in Materials Science and Engineering, Federal University of Campina Grande, UFCG, Campina Grande, Brazil
| | | | | | - Erik Montagna
- Postgraduate, Research and Innovation, Centro Universitário Saúde ABC, Faculdade de Medicina do ABC, Santo André, Brazil
| |
Collapse
|
13
|
Sparks DS, Saifzadeh S, Savi FM, Dlaska CE, Berner A, Henkel J, Reichert JC, Wullschleger M, Ren J, Cipitria A, McGovern JA, Steck R, Wagels M, Woodruff MA, Schuetz MA, Hutmacher DW. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat Protoc 2020; 15:877-924. [PMID: 32060491 DOI: 10.1038/s41596-019-0271-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022]
Abstract
Critical-size bone defects, which require large-volume tissue reconstruction, remain a clinical challenge. Bone engineering has the potential to provide new treatment concepts, yet clinical translation requires anatomically and physiologically relevant preclinical models. The ovine critical-size long-bone defect model has been validated in numerous studies as a preclinical tool for evaluating both conventional and novel bone-engineering concepts. With sufficient training and experience in large-animal studies, it is a technically feasible procedure with a high level of reproducibility when appropriate preoperative and postoperative management protocols are followed. The model can be established by following a procedure that includes the following stages: (i) preoperative planning and preparation, (ii) the surgical approach, (iii) postoperative management, and (iv) postmortem analysis. Using this model, full results for peer-reviewed publication can be attained within 2 years. In this protocol, we comprehensively describe how to establish proficiency using the preclinical model for the evaluation of a range of bone defect reconstruction options.
Collapse
Affiliation(s)
- David S Sparks
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Department of Plastic & Reconswrapping a sterile Coban wrap around the limb distallytructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, Queensland, Australia
| | - Siamak Saifzadeh
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Medical Engineering Research Facility, Queensland UCoban wrap only comes non-sterile. Sterilize Coban wrap before use.niversity of Technology, Chermside, Queensland, Australia
| | - Flavia Medeiros Savi
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,ARC Centre for Additive Biomanufactthe mounting resin base cement. Use it only in a laboratory fume cabinet and withuring, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Constantin E Dlaska
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Arne Berner
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Department of Trauma Surgery, University Hospital of Regensburg, Regensburg, Germany
| | - Jan Henkel
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Johannes C Reichert
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany.,Department of Orthopaedic and Trauma Surgery, Evangelisches Waldkrankenhaus Spandau, Berlin, Germany
| | - Martin Wullschleger
- Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, Queensland, Australia.,Griffith University, School of Medicine, Southport, Queensland, Australia
| | - Jiongyu Ren
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jacqui A McGovern
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Roland Steck
- Medical Engineering Research Facility, Queensland UCoban wrap only comes non-sterile. Sterilize Coban wrap before use.niversity of Technology, Chermside, Queensland, Australia
| | - Michael Wagels
- Department of Plastic & Reconswrapping a sterile Coban wrap around the limb distallytructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, Queensland, Australia.,Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Maria Ann Woodruff
- ARC Centre for Additive Biomanufactthe mounting resin base cement. Use it only in a laboratory fume cabinet and withuring, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Biofabrication and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Michael A Schuetz
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia. .,ARC Centre for Additive Biomanufactthe mounting resin base cement. Use it only in a laboratory fume cabinet and withuring, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| |
Collapse
|
14
|
Hansel CS, Holme MN, Gopal S, Stevens MM. Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials 2020; 226:119406. [DOI: 10.1016/j.biomaterials.2019.119406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
15
|
Zheng X, Huang J, Lin J, Yang D, Xu T, Chen D, Zan X, Wu A. 3D bioprinting in orthopedics translational research. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1172-1187. [PMID: 31124402 DOI: 10.1080/09205063.2019.1623989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- XuanQi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - JinFeng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - JiaLiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - DeJun Yang
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Wenzhou, China
| | - TianZhen Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Dong Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xingjie Zan
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Wenzhou, China
| | - AiMin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|
16
|
Peña Fernández M, Dall’Ara E, Bodey AJ, Parwani R, Barber AH, Blunn GW, Tozzi G. Full-Field Strain Analysis of Bone–Biomaterial Systems Produced by the Implantation of Osteoregenerative Biomaterials in an Ovine Model. ACS Biomater Sci Eng 2019; 5:2543-2554. [DOI: 10.1021/acsbiomaterials.8b01044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| | - Andrew J. Bodey
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, OX11 0DE, U.K
| | - Rachna Parwani
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| | - Asa H. Barber
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, U.K
| | - Gordon W. Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, PO1 2DT, U.K
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| |
Collapse
|
17
|
Li JJ, Dunstan CR, Entezari A, Li Q, Steck R, Saifzadeh S, Sadeghpour A, Field JR, Akey A, Vielreicher M, Friedrich O, Roohani‐Esfahani S, Zreiqat H. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects. Adv Healthc Mater 2019; 8:e1801298. [PMID: 30773833 DOI: 10.1002/adhm.201801298] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/18/2019] [Indexed: 12/18/2022]
Abstract
Achieving adequate healing in large or load-bearing bone defects is highly challenging even with surgical intervention. The clinical standard of repairing bone defects using autografts or allografts has many drawbacks. A bioactive ceramic scaffold, strontium-hardystonite-gahnite or "Sr-HT-Gahnite" (a multi-component, calcium silicate-based ceramic) is developed, which when 3D-printed combines high strength with outstanding bone regeneration ability. In this study, the performance of purely synthetic, 3D-printed Sr-HT-Gahnite scaffolds is assessed in repairing large and load-bearing bone defects. The scaffolds are implanted into critical-sized segmental defects in sheep tibia for 3 and 12 months, with bone autografts used for comparison. The scaffolds induce substantial bone formation and defect bridging after 12 months, as indicated by X-ray, micro-computed tomography, and histological and biomechanical analyses. Detailed analysis of the bone-scaffold interface using focused ion beam scanning electron microscopy and multiphoton microscopy shows scaffold degradation and maturation of the newly formed bone. In silico modeling of strain energy distribution in the scaffolds reveal the importance of surgical fixation and mechanical loading on long-term bone regeneration. The clinical application of 3D-printed Sr-HT-Gahnite scaffolds as a synthetic bone substitute can potentially improve the repair of challenging bone defects and overcome the limitations of bone graft transplantation.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
- Raymond Purves Bone and Joint Research Laboratories Institute of Bone and Joint Research Kolling Institute Northern Sydney Local Health District Faculty of Medicine and Health University of Sydney St Leonards NSW 2065 Australia
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
| | - Colin R. Dunstan
- Biomaterials and Tissue Engineering Research Unit School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
| | - Ali Entezari
- School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
| | - Qing Li
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
- School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
| | - Roland Steck
- Medical Engineering Research Facility (MERF) Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Prince Charles Hospital Campus Brisbane QLD 4000 Australia
| | - Siamak Saifzadeh
- Medical Engineering Research Facility (MERF) Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Prince Charles Hospital Campus Brisbane QLD 4000 Australia
| | - Ameneh Sadeghpour
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
- Allegra Orthopaedics Limited Sydney NSW 2000 Australia
| | - John R. Field
- Centre for Orthopaedic Trauma and Research University of Adelaide Adelaide SA 5000 Australia
| | - Austin Akey
- Center for Nanoscale Systems Harvard University Cambridge MA 02138 USA
| | - Martin Vielreicher
- Institute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich Alexander University of Erlangen‐Nürnberg Erlangen 91052 Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich Alexander University of Erlangen‐Nürnberg Erlangen 91052 Germany
| | | | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
- Radcliffe Institute for Advanced Study Harvard University Cambridge MA 02138 USA
| |
Collapse
|