1
|
Zhang J, Yang H, Wu J, Zhang D, Wang Y, Zhai J. Recent progresses in novel in vitro models of primary neurons: A biomaterial perspective. Front Bioeng Biotechnol 2022; 10:953031. [PMID: 36061442 PMCID: PMC9428288 DOI: 10.3389/fbioe.2022.953031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Central nervous system (CNS) diseases have been a growing threat to the health of humanity, emphasizing the urgent need of exploring the pathogenesis and therapeutic approaches of various CNS diseases. Primary neurons are directly obtained from animals or humans, which have wide applications including disease modeling, mechanism exploration and drug development. However, traditional two-dimensional (2D) monoculture cannot resemble the native microenvironment of CNS. With the increasing understanding of the complexity of the CNS and the remarkable development of novel biomaterials, in vitro models have experienced great innovation from 2D monoculture toward three-dimensional (3D) multicellular culture. The scope of this review includes the progress of various in vitro models of primary neurons in recent years to provide a holistic view of the modalities and applications of primary neuron models and how they have been connected with the revolution of biofabrication techniques. Special attention has been paid to the interaction between primary neurons and biomaterials. First, a brief introduction on the history of CNS modeling and primary neuron culture was conducted. Next, detailed progress in novel in vitro models were discussed ranging from 2D culture, ex vivo model, spheroid, scaffold-based model, 3D bioprinting model, and microfluidic chip. Modalities, applications, advantages, and limitations of the aforementioned models were described separately. Finally, we explored future prospects, providing new insights into how basic science research methodologies have advanced our understanding of the CNS, and highlighted some future directions of primary neuron culture in the next few decades.
Collapse
Affiliation(s)
- Jiangang Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiyu Yang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dingyue Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiliang Zhai
- Departments of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jiliang Zhai,
| |
Collapse
|
2
|
Luo Y, Li J, Li B, Xia Y, Wang H, Fu C. Physical Cues of Matrices Reeducate Nerve Cells. Front Cell Dev Biol 2021; 9:731170. [PMID: 34646825 PMCID: PMC8502847 DOI: 10.3389/fcell.2021.731170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
The behavior of nerve cells plays a crucial role in nerve regeneration. The mechanical, topographical, and electrical microenvironment surrounding nerve cells can activate cellular signaling pathways of mechanical transduction to affect the behavior of nerve cells. Recently, biological scaffolds with various physical properties have been developed as extracellular matrix to regulate the behavior conversion of nerve cell, such as neuronal neurite growth and directional differentiation of neural stem cells, providing a robust driving force for nerve regeneration. This review mainly focused on the biological basis of nerve cells in mechanical transduction. In addition, we also highlighted the effect of the physical cues, including stiffness, mechanical tension, two-dimensional terrain, and electrical conductivity, on neurite outgrowth and differentiation of neural stem cells and predicted their potential application in clinical nerve tissue engineering.
Collapse
Affiliation(s)
- Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100427. [PMID: 34038626 PMCID: PMC8295195 DOI: 10.1002/adhm.202100427] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Nerve guidance conduits with multifunctional features could offer microenvironments for improved nerve regeneration and functional recovery. However, the challenge remains to optimize multiple cues in nerve conduit systems due to the interplay of these factors during fabrication. Here, a modular assembly for the fabrication of nerve conduits is utilized to address the goal of incorporating multifunctional guidance cues for nerve regeneration. Silk-based hollow conduits with suitable size and mechanical properties, along with silk nanofiber fillers with tunable hierarchical anisotropic architectures and microporous structures, are developed and assembled into conduits. These conduits supported improves nerve regeneration in terms of cell proliferation (Schwann and PC12 cells) and growth factor secretion (BDNF, brain-derived neurotrophic factor) in vitro, and the in vivo repair and functional recovery of rat sciatic nerve defects. Nerve regeneration using these new conduit designs is comparable to autografts, providing a path towards future clinical impact.
Collapse
Affiliation(s)
- Qingqing Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Xiang Gao
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
4
|
Seo J, Youn W, Choi JY, Cho H, Choi H, Lanara C, Stratakis E, Choi IS. Neuro-taxis: Neuronal movement in gradients of chemical and physical environments. Dev Neurobiol 2020; 80:361-377. [PMID: 32304173 DOI: 10.1002/dneu.22749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Environmental chemical and physical cues dynamically interact with migrating neurons and sprouting axons, and in particular, the gradients of environmental cues are regarded as one of the factors intimately involved in the neuronal movement. Since a growth cone was first described by Cajal, more than one century ago, chemical gradients have been suggested as one of the mechanisms by which the neurons determine proper paths and destinations. However, the gradients of physical cues, such as stiffness and topography, which also interact constantly with the neurons and their axons as a component of the extracellular environments, have rarely been noted regarding the guidance of neurons, despite their gradually increasingly reported influences in the case of nonneuronal-cell migration. In this review, we discuss chemical (i.e., chemo- and hapto-) and physical (i.e., duro-) taxis phenomena on the movement of neurons including axonal elongation. In addition, we suggest topotaxis, the most recently proposed physical-taxis phenomenon, as another potential mechanism in the neuronal movement, based on the reports of neuronal recognition of and responses to nanotopography.
Collapse
Affiliation(s)
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Ji Yu Choi
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | | - Christina Lanara
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece.,Physics Department, University of Crete, Heraklion, Crete, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
5
|
Kim BJ, Choi JY, Choi H, Han S, Seo J, Kim J, Joo S, Kim HM, Oh C, Hong S, Kim P, Choi IS. Astrocyte-Encapsulated Hydrogel Microfibers Enhance Neuronal Circuit Generation. Adv Healthc Mater 2020; 9:e1901072. [PMID: 31957248 DOI: 10.1002/adhm.201901072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Astrocytes, the most representative glial cells in the brain, play a multitude of crucial functions for proper neuronal development and synaptic-network formation, including neuroprotection as well as physical and chemical support. However, little attention has been paid, in the neuroregenerative medicine and related fields, to the cytoprotective incorporation of astrocytes into neuron-culture scaffolds and full-fledged functional utilization of encapsulated astrocytes for controlled neuronal development. In this article, a 3D neurosupportive culture system for enhanced induction of neuronal circuit generation is reported, where astrocytes are confined in hydrogel microfibers and protected from the outside. The astrocyte-encapsulated microfibers significantly accelerate the neurite outgrowth and guide its directionality, and enhance the synaptic formation, without any physical contact with the neurons. This astrocyte-laden system provides a pivotal culture scaffold for advanced development of cell-based therapeutics for neural injuries, such as spinal cord injury.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Ji Yu Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyunwoo Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sol Han
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jeongyeon Seo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sunghoon Joo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyo Min Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Chungik Oh
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Pilnam Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| |
Collapse
|