1
|
Liu J, Wang P, Huang B, Cheng Q, Duan Y, Chen L, Ma T, Zhu C, Li D, Fan W, Yu M. Effective suppression of triple negative breast cancer by paclitaxel nanoparticles conjugated with transmembrane TNF-α monoclonal antibody. Int J Pharm 2022; 624:121969. [PMID: 35803533 DOI: 10.1016/j.ijpharm.2022.121969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/03/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Transmembrane TNF-α (tmTNF), a transmembrane form of TNF-α, was reported overexpressed in approximately 84% of triple-negative breast cancer (TNBC) patients and has emerged as a valid candidate biomarker for targeting TNBC. Paclitaxel is a first-line chemotherapeutic agent for the treatment of triple-negative breast cancer, but suffers from low water solubility, resulting in its low bioavailability. To achieve site-specific delivery of the anticancer chemotherapeutic drug (paclitaxel) on TNBC, we developed tmTNF-α monoclonal antibody (mAb)-conjugated paclitaxel (PTX) nanoparticles (NPs) (tmTNF-α mAb-PTX NPs) as potential nanocarriers. This targeted delivery-therapy nanocarriers was conducted by using an emulsification-evaporation method. tmTNF-α mAb-PTX NPs displayed favorable physicochemical properties. Compared with the control groups, tumor growth in human MDA-MB-231 xenograft mice was suppressed significantly by tmTNF-α mAb-PTX NPs. TmTNF-α mAb-PTX NPs exerts anti-tumor effects via promoting apoptosis and regulating mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) / protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) cascade, as well as AMP-activated protein kinase (AMPK) and nuclear factor Kappa-B (NF-κB) pathways. Moreover, tmTNF-α mAb-PTX NPs can inhibit the process of epithelial-mesenchymal transition (EMT) in TNBC to suppress tumor progression and metastasis. Together, the novel tmTNF-α mAb-PTX NPs based targeted drug delivery system is a potentially highly effective approach for treating TNBC.
Collapse
Affiliation(s)
- Jiacui Liu
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Department of Clinical Laboratory, Xiamen Children's Hospital (Children's Hospital of Fudan University Xiamen Branch), Xiamen, Fujian 361006, China
| | - Ping Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Ben Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Qingyuan Cheng
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yiping Duan
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Liangyue Chen
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Tiantian Ma
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Cuiwen Zhu
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Dongxu Li
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wei Fan
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Mingxia Yu
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
2
|
Lin X, Wang X, Gu Q, Lei D, Liu X, Yao C. Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomed Mater 2021; 16. [PMID: 33601351 DOI: 10.1088/1748-605x/abe7b3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy was emerged as a novel cancer treatment in the last decade, however, efficacious responses to mono-immunotherapy have only been achieved in a relatively small portion of patients whereas combinational immunotherapies often lead to concurrent side effects. It has been proved that the tumor microenvironment (TME) is responsible for tumor immune escape and the ultimate treatment failure. Recently, both the understanding of the TME and the applications of nanotechnological strategies have achieved remarkable progresses, and reviewing the emerging immune-regulatory nanosystems may provide valuable information for specifically modulating the TME at different immune stages. In this review, we focus on comprehending the recently proposed T-cell-based tumor classification and identifying the most promising targets for different tumor phenotypes, and then summarizing the nanotechnological strategies to best target corresponding immune-related factors. For future precise personalized immunotherapy, the tailor-made TME modulation strategies conducted by well-designed nanosystems to alleviate the suppressive TME and then promote anti-tumor immune responses will significantly benefit the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Xinyi Lin
- Xi'an Jiaotong University School of Life Science and Technology, NO. 28 Xianning Xi Road, Xi'an, Shaanxi, 710049, CHINA
| | - Xiaoyan Wang
- Fujian Agriculture and Forestry University, NO.15 Shangdian Road, Fuzhou, 350002, CHINA
| | - Qing Gu
- Xi'an Jiaotong University School of Life Science and Technology, NO.28 Xianning Xi Road, Xi'an, 710049, CHINA
| | - Dongqin Lei
- Xi'an Jiaotong University, NO.28 Xianning Xi Road, Xi'an, 710049, CHINA
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, NO.312 Xihong Road, Fuzhou, Fujian, 350025, CHINA
| | - Cuiping Yao
- Xi'an Jiaotong University School of Life Science and Technology, NO.28 Xianning Xi Road, Xi'an, Shaanxi, 710049, CHINA
| |
Collapse
|