1
|
Ma Y, Shi R, Li F, Chang H. Emerging strategies for treating autoimmune disease with genetically modified dendritic cells. Cell Commun Signal 2024; 22:262. [PMID: 38715122 PMCID: PMC11075321 DOI: 10.1186/s12964-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.
Collapse
Affiliation(s)
- Yunhan Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Ruobing Shi
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Fujun Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Peng Q, Pan T, He R, Yi M, Feng L, Cui Z, Gao R, Wang H, Feng X, Li H, Wang Y, Zhang C, Cheng D, Du Y, Wang C. BTNL2 promotes colitis-associated tumorigenesis in mice by regulating IL-22 production. EMBO Rep 2023; 24:e56034. [PMID: 36629012 PMCID: PMC9986825 DOI: 10.15252/embr.202256034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Interleukin 22 (IL-22) has an important role in colorectal tumorigenesis and many colorectal diseases such as inflammatory bowel disease and certain infections. However, the regulation of IL-22 production in the intestinal system is still unclear. Here, we present evidence that butyrophilin-like protein 2 (BTNL2) is required for colorectal IL-22 production, and BTNL2 knockout mice show decreased colonic tumorigenesis and more severe colitis phenotypes than control mice due to defective production of IL-22. Mechanistically, BTNL2 acts on group 3 innate lymphoid cells (ILC3s), CD4+ T cells, and γδ T cells to promote the production of IL-22. Importantly, we find that a monoclonal antibody against BTNL2 attenuates colorectal tumorigenesis in mice and that the mBTNL2-Fc recombinant protein has a therapeutic effect in a dextran sulfate sodium (DSS)-induced colitis model. This study not only identifies a regulatory mechanism of IL-22 production in the colorectal system but also provides a potential therapeutic target for the treatment of human colorectal cancer and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ting Pan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Xiong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Hui Li
- Shandong PolytechnicJinanChina
| | - Yuan Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cun‐jin Zhang
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Du Cheng
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| |
Collapse
|
3
|
Lin Y, Cui C, Su M, Silbart LK, Liu H, Zhao J, He L, Huang Y, Xu D, Wei X, Du Q, Lai L. Identification of TAPBPL as a novel negative regulator of T-cell function. EMBO Mol Med 2021; 13:e13404. [PMID: 33938620 PMCID: PMC8103088 DOI: 10.15252/emmm.202013404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
T cell stimulatory and inhibitory molecules are critical for the regulation of immune responses. In this study, we identify a novel T cell co‐inhibitory molecule TAPBPL, whose amino acid sequence shares homology with known B7 family members. TAPBPL protein is expressed on resting and activated T cells, B cells, monocytes, and dendritic cells (DCs), as well as on some tumor tissues. The putative TAPBPL receptor is expressed on activated CD4 and CD8 T cells. A soluble recombinant human TAPBPL‐IgG Fc (hTAPBPL‐Ig) fusion protein inhibits the proliferation, activation, and cytokine production of both mouse and human T cells in vitro. In vivo administration of hTAPBPL‐Ig protein attenuates experimental autoimmune encephalomyelitis (EAE) in mice. Furthermore, an anti‐TAPBPL monoclonal antibody neutralizes the inhibitory activity of hTAPBPL‐Ig on T cells, enhances antitumor immunity, and inhibits tumor growth in animal models. Our results suggest that therapeutic intervention of the TAPBPL inhibitory pathway may represent a new strategy to modulate T cell‐mediated immunity for the treatment of cancer, infections, autoimmune diseases, and transplant rejection.
Collapse
Affiliation(s)
- Yujun Lin
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Cheng Cui
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Lawrence K Silbart
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Haiyan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Lang He
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,School of Biological Science and Technology, Chengdu Medical College, Chengdu, China
| | - Yuanmao Huang
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Dexin Xu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,Fuzhou Pulmonary Hospital, Fuzhou, China
| | - Xiaodan Wei
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qian Du
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Basak AJ, Maiti S, Hansda A, Mahata D, Duraivelan K, Kundapura SV, Lee W, Mukherjee G, De S, Samanta D. Structural Insights into N-terminal IgV Domain of BTNL2, a T Cell Inhibitory Molecule, Suggests a Non-canonical Binding Interface for Its Putative Receptors. J Mol Biol 2020; 432:5938-5950. [PMID: 32976909 DOI: 10.1016/j.jmb.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/30/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
T cell costimulation is mediated by the interaction of a number of receptors and ligands present on the surface of the T cell and antigen-presenting cell, respectively. Stimulatory or inhibitory signals from these receptor-ligand interactions work in tandem to preserve immune homeostasis. BTNL2 is a type-1 membrane protein that provides inhibitory signal to T cells and plays an important role in several inflammatory and autoimmune diseases. Therefore, manipulation of the molecular interaction of BTNL2 with its putative receptor could provide strategies to restore immune homeostasis in these diseases. Hence, it is imperative to study the structural characteristics of this molecule, which will provide important insights into its function as well. In this study, the membrane-distal ectodomain of murine BTNL2 was expressed in bacteria as inclusion bodies, refolded in vitro and purified for functional and structural characterization. The domain is monomeric in solution as demonstrated by size-exclusion chromatography and analytical ultracentrifugation, and also binds to its putative receptor on naïve B cells and activated T cell subsets. Importantly, for the first time, we report the structure of BTNL2 as determined by solution NMR spectroscopy and also the picosecond-nanosecond timescale backbone dynamics of this domain. The N-terminal ectodomain of BTNL2, which was able to inhibit T cell function as well, exhibits distinctive structural features. The N-terminal ectodomain of BTNL2 has a significantly reduced surface area in the front sheet due to the non-canonical conformation of the CC' loop, which provides important insights into the recognition of its presently unknown binding partner.
Collapse
Affiliation(s)
- Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Snigdha Maiti
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Anita Hansda
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Dhrubajyoti Mahata
- School of Bioscience, Indian Institute of Technology Kharagpur, India; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | | | - Shankar V Kundapura
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Bangalore, India
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, India.
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
6
|
Zhao Y, Zheng Q, Jin L. The Role of B7 Family Molecules in Maternal-Fetal Immunity. Front Immunol 2020; 11:458. [PMID: 32265918 PMCID: PMC7105612 DOI: 10.3389/fimmu.2020.00458] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023] Open
Abstract
Pregnancy is a complex but well-arranged process, and a healthy fetus requires immune privilege and surveillance in the presence of paternally derived antigens. Maternal and fetal cells interact at the maternal–fetal interface. The upregulation and downregulation of maternal immunity executed by the leukocyte population predominantly depend on the activity of decidual natural killer cells and trophoblasts and are further modulated by a series of duplex signals. The B7 family, which consists of B7-1, B7-2, B7-H1, B7-DC, B7-H2, B7-H3, B7-H4, B7-H5, BTNL2, B7-H6, and B7-H7, is one of the most characterized and widely distributed signaling molecule superfamilies and conducts both stimulatory and inhibitory signals through separate interactions. In particular, the roles of B7-1, B7-2, B7-H1, and their corresponding receptors in the progression of normal pregnancy and some pregnancy complications have been extensively studied. Together with the TCR–MHC complex, B7 and its receptors play a critical role in cell proliferation and cytokine secretion. Depending on this ligand–receptor crosstalk, the balance between the tolerance and rejection of the fetus is perfectly maintained. This review aims to provide an overview of the current knowledge of the B7 family and its functions in regulating maternal–fetal immunity through individual interactions.
Collapse
Affiliation(s)
- Yongbo Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingliang Zheng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Jin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|