1
|
Shi M, Liang Y, Zhang C, Li N, Li Y, Shi X, Qin Z, Jiao T. Cellulose nanofibril enhanced ionic conductive hydrogels with high stretchability, high toughness and self-adhesive ability for flexible strain sensors. Int J Biol Macromol 2024:139297. [PMID: 39736292 DOI: 10.1016/j.ijbiomac.2024.139297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Preparation of ion-conductive hydrogels with excellent mechanics, good conductivity and adhesiveness is promising for flexible sensors, but remains a challenge. Here, we prepare a self-adhesive and ion-conductive hydrogel by introducing cellulose nanofibers (CNF) and ZnSO4 into a covalently-crosslinked poly (acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid) (P(AM-co-AMPS)) network. Owing to the hydrogen bonding and metal coordination interactions among P(AM-co-AMPS) chains, CNF, and Zn2+, the resulting P(AM-co-AMPS)/CNF/ZnSO4 hydrogel exhibits high stretchability (1092 %), high toughness (244 kJ m-3), and skin-like elasticity (3.53 kPa). Moreover, the hydrogel has strong adhesion with different substrates by multiple non-covalent interfacial interactions. The SO3- on AMPS and COO- on CNF largely promptes the ionic migration (Zn2+, SO42-) through electrostatic interaction and hydrogen bonding, thus the hydrogel has high ion conductivity (5.85 S m-1). Finally, this hydrogel has high strain-sensitivity in a wide strain range, exhibiting great potential applications in wearable sensors.
Collapse
Affiliation(s)
- Mengqian Shi
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ya Liang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Chengyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Yunfeng Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Xiaojiao Shi
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhihui Qin
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Yan Y, Deng W, Xie D, Hu J. Silk Fibroin Hydrogel for Pulse Waveform Precise and Continuous Perception. Adv Healthc Mater 2024:e2403637. [PMID: 39707661 DOI: 10.1002/adhm.202403637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Indexed: 12/23/2024]
Abstract
Precise and continuous monitoring of blood pressure and cardiac function is of great importance for early diagnosis and timely treatment of cardiovascular diseases. The common tests rely on on-site diagnosis and bulky equipments, hindering early diagnosis. The emerging hydrogels have gained considerable attention in skin bioelectronics by virtue of the similarities to biological tissues and versatility in mechanical, electrical, and biofunctional engineering. However, hydrogels should overcome intrinsic issues such as poor mechanical strength, easy dehydration and freezing, weak adhesiveness and self-recovery, severely limiting their precision and reliability in practical applications. Here, silk fibroin hydrogels are developed as resistive sensors for pulse waveform monitoring. The silk fibroin hydrogel is simultaneously transparent, extremely stretchable, extra tough, adhesive, printable, and environmentally endurable. The silk fibroin hydrogel is also conductive with high sensitivity, short self-healing time, highly repeatable and reliable response, meeting the requirements for wearable sensors for continuous monitoring. The sensors with silk fibroin hydrogel present high-quality and stable waveforms of radical and brachial pulses with high precision and rich features, providing physiological signals of blood pressure and cardiac function. The sensors are promising for personalized health management, daily monitoring and timely diagnosis.
Collapse
Affiliation(s)
- Yingmei Yan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Du Xie
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Pang S, Yan J. Research and progress on the mechanism of lower urinary tract neuromodulation: a literature review. PeerJ 2024; 12:e17870. [PMID: 39148679 PMCID: PMC11326431 DOI: 10.7717/peerj.17870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The storage and periodic voiding of urine in the lower urinary tract are regulated by a complex neural control system that includes the brain, spinal cord, and peripheral autonomic ganglia. Investigating the neuromodulation mechanisms of the lower urinary tract helps to deepen our understanding of urine storage and voiding processes, reveal the mechanisms underlying lower urinary tract dysfunction, and provide new strategies and insights for the treatment and management of related diseases. However, the current understanding of the neuromodulation mechanisms of the lower urinary tract is still limited, and further research methods are needed to elucidate its mechanisms and potential pathological mechanisms. This article provides an overview of the research progress in the functional study of the lower urinary tract system, as well as the key neural regulatory mechanisms during the micturition process. In addition, the commonly used research methods for studying the regulatory mechanisms of the lower urinary tract and the methods for evaluating lower urinary tract function in rodents are discussed. Finally, the latest advances and prospects of artificial intelligence in the research of neuromodulation mechanisms of the lower urinary tract are discussed. This includes the potential roles of machine learning in the diagnosis of lower urinary tract diseases and intelligent-assisted surgical systems, as well as the application of data mining and pattern recognition techniques in advancing lower urinary tract research. Our aim is to provide researchers with novel strategies and insights for the treatment and management of lower urinary tract dysfunction by conducting in-depth research and gaining a comprehensive understanding of the latest advancements in the neural regulation mechanisms of the lower urinary tract.
Collapse
Affiliation(s)
- Shutong Pang
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Junan Yan
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, Guangxi, China
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Zhao Z, Yu H, Wisniewski DJ, Cea C, Ma L, Trautmann EM, Churchland MM, Gelinas JN, Khodagholy D. Formation of Anisotropic Conducting Interlayer for High-Resolution Epidermal Electromyography Using Mixed-Conducting Particulate Composite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308014. [PMID: 38600655 PMCID: PMC11251554 DOI: 10.1002/advs.202308014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Indexed: 04/12/2024]
Abstract
Epidermal electrophysiology is a non-invasive method used in research and clinical practices to study the electrical activity of the brain, heart, nerves, and muscles. However, electrode/tissue interlayer materials such as ionically conducting pastes can negatively affect recordings by introducing lateral electrode-to-electrode ionic crosstalk and reducing spatial resolution. To overcome this issue, biocompatible, anisotropic-conducting interlayer composites (ACI) that establish an electrically anisotropic interface with the skin are developed, enabling the application of dense cutaneous sensor arrays. High-density, conformable electrodes are also microfabricated that adhere to the ACI and follow the curvilinear surface of the skin. The results show that ACI significantly enhances the spatial resolution of epidermal electromyography (EMG) recording compared to conductive paste, permitting the acquisition of single muscle action potentials with distinct spatial profiles. The high-density EMG in developing mice, non-human primates, and humans is validated. Overall, high spatial-resolution epidermal electrophysiology enabled by ACI has the potential to advance clinical diagnostics of motor system disorders and enhance data quality for human-computer interface applications.
Collapse
Affiliation(s)
- Zifang Zhao
- Department of Electrical EngineeringColumbia UniversityNew York10027USA
| | - Han Yu
- Department of Electrical EngineeringColumbia UniversityNew York10027USA
| | | | - Claudia Cea
- Department of Electrical EngineeringColumbia UniversityNew York10027USA
| | - Liang Ma
- Department of Biomedical EngineeringColumbia UniversityNew York10027USA
| | - Eric M. Trautmann
- Department of NeuroscienceColumbia UniversityNew YorkNY10032USA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew York10027USA
| | - Mark M. Churchland
- Department of NeuroscienceColumbia UniversityNew YorkNY10032USA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew York10027USA
- Kavli Institute for Brain ScienceColumbia UniversityNew York10032USA
- Grossman Center for the Statistics of MindColumbia UniversityNew YorkUSA
| | - Jennifer N. Gelinas
- Department of Biomedical EngineeringColumbia UniversityNew York10027USA
- Department of NeurologyColumbia University Irving Medical CenterNew York10032USA
| | - Dion Khodagholy
- Department of Electrical EngineeringColumbia UniversityNew York10027USA
- Department of Electrical EngineeringUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
5
|
Li C, Wang T, Zhou S, Sun Y, Xu Z, Xu S, Shu S, Zhao Y, Jiang B, Xie S, Sun Z, Xu X, Li W, Chen B, Tang W. Deep Learning Model Coupling Wearable Bioelectric and Mechanical Sensors for Refined Muscle Strength Assessment. RESEARCH (WASHINGTON, D.C.) 2024; 7:0366. [PMID: 38783913 PMCID: PMC11112600 DOI: 10.34133/research.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
Muscle strength (MS) is related to our neural and muscle systems, essential for clinical diagnosis and rehabilitation evaluation. Although emerging wearable technology seems promising for MS assessment, problems still exist, including inaccuracy, spatiotemporal differences, and analyzing methods. In this study, we propose a wearable device consisting of myoelectric and strain sensors, synchronously acquiring surface electromyography and mechanical signals at the same spot during muscle activities, and then employ a deep learning model based on temporal convolutional network (TCN) + Transformer (Tcnformer), achieving accurate grading and prediction of MS. Moreover, by combining with deep clustering, named Tcnformer deep cluster (TDC), we further obtain a 25-level classification for MS assessment, refining the conventional 5 levels. Quantification and validation showcase a patient's postoperative recovery from level 3.2 to level 3.6 in the first few days after surgery. We anticipate that this system will importantly advance precise MS assessment, potentially improving relevant clinical diagnosis and rehabilitation outcomes.
Collapse
Affiliation(s)
- Chengyu Li
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Wang
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Zhou
- Department of Orthopaedics,
Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine,
Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yanshuo Sun
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijie Xu
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxing Xu
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Shu
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhao
- Department of Orthopaedics,
Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine,
Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Bing Jiang
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology,
Guangxi University, Nanning 530004, China
| | - Shiwang Xie
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Sun
- Department of Orthopaedics,
Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine,
Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Xiaowei Xu
- Guangdong Provincial People’s Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weishi Li
- Department of Orthopaedics,
Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine,
Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Baodong Chen
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Tang
- Beijing Institute of Nanoenergy and Nanosystems,
Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology,
Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Colachis M, Schlink BR, Colachis S, Shqau K, Huegen BL, Palmer K, Heintz A. Benchtop Performance of Novel Mixed Ionic-Electronic Conductive Electrode Form Factors for Biopotential Recordings. SENSORS (BASEL, SWITZERLAND) 2024; 24:3136. [PMID: 38793990 PMCID: PMC11125343 DOI: 10.3390/s24103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Background: Traditional gel-based (wet) electrodes for biopotential recordings have several shortcomings that limit their practicality for real-world measurements. Dry electrodes may improve usability, but they often suffer from reduced signal quality. We sought to evaluate the biopotential recording properties of a novel mixed ionic-electronic conductive (MIEC) material for improved performance. Methods: We fabricated four MIEC electrode form factors and compared their signal recording properties to two control electrodes, which are electrodes commonly used for biopotential recordings (Ag-AgCl and stainless steel). We used an agar synthetic skin to characterize the impedance of each electrode form factor. An electrical phantom setup allowed us to compare the recording quality of simulated biopotentials with ground-truth sources. Results: All MIEC electrode form factors yielded impedances in a similar range to the control electrodes (all <80 kΩ at 100 Hz). Three of the four MIEC samples produced similar signal-to-noise ratios and interfacial charge transfers as the control electrodes. Conclusions: The MIEC electrodes demonstrated similar and, in some cases, better signal recording characteristics than current state-of-the-art electrodes. MIEC electrodes can also be fabricated into a myriad of form factors, underscoring the great potential this novel material has across a wide range of biopotential recording applications.
Collapse
Affiliation(s)
- Matthew Colachis
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Bryan R. Schlink
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Sam Colachis
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Krenar Shqau
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Brittani L. Huegen
- UES, a BlueHalo Company, 4401 Dayton Xenia Road, Beavercreek, OH 45432, USA;
| | - Katherine Palmer
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| | - Amy Heintz
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA; (B.R.S.); (K.S.); (K.P.); (A.H.)
| |
Collapse
|
7
|
Freitas MC, Sanati AL, Lopes PA, Silva AF, Tavakoli M. 3D Printed Gallium Battery with Outstanding Energy Storage: Toward Fully Printed Battery-on-the-Board Soft Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304716. [PMID: 38335309 DOI: 10.1002/smll.202304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Indexed: 02/12/2024]
Abstract
The last decade observed rapid progress in soft electronics. Yet, the ultimate desired goal for many research fields is to fabricate fully integrated soft-matter electronics with sensors, interconnects, and batteries, at the ease of pushing a print button. In this work, an important step is taken toward this by demonstrating an ultra-stretchable thin-film Silver-Gallium (Ag-Ga) battery with an unprecedented combination of areal capacity and mechanical strain tolerance. The Biphasic Gallium-Carbon anode electrode demonstrates a record-breaking areal capacity of 78.7 mAh cm-2, and an exceptional stretchability of 170%, showing clear progress over state-of-the-art. The exceptional theoretical capacity of gallium, along with its natural liquid phase self-healing, and its dendrite-free operation permits excellent electromechanical cycling. All composites of the battery including liquid-metal-based current collectors, and electrodes are sinter-free and digitally printable at room temperature, enabling the use of a wide range of substrates, including heat-sensitive polymer films. Consequently, it is demonstrated for the first time multi-layer, and multi-material digital printing of complex battery-on-the-board stretchable devices that integrate printed sensor, multiple cells of printed battery, highly conductive interconnects, and silicone chips, and demonstrate a tailor-made patch for body-worn electrophysiological monitoring.
Collapse
Affiliation(s)
- Marta Calisto Freitas
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Afsaneh L Sanati
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Pedro Alhais Lopes
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - André F Silva
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Mahmoud Tavakoli
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
8
|
Kim H, Lee J, Heo U, Jayashankar DK, Agno KC, Kim Y, Kim CY, Oh Y, Byun SH, Choi B, Jeong H, Yeo WH, Li Z, Park S, Xiao J, Kim J, Jeong JW. Skin preparation-free, stretchable microneedle adhesive patches for reliable electrophysiological sensing and exoskeleton robot control. SCIENCE ADVANCES 2024; 10:eadk5260. [PMID: 38232166 DOI: 10.1126/sciadv.adk5260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
High-fidelity and comfortable recording of electrophysiological (EP) signals with on-the-fly setup is essential for health care and human-machine interfaces (HMIs). Microneedle electrodes allow direct access to the epidermis and eliminate time-consuming skin preparation. However, existing microneedle electrodes lack elasticity and reliability required for robust skin interfacing, thereby making long-term, high-quality EP sensing challenging during body movement. Here, we introduce a stretchable microneedle adhesive patch (SNAP) providing excellent skin penetrability and a robust electromechanical skin interface for prolonged and reliable EP monitoring under varying skin conditions. Results demonstrate that the SNAP can substantially reduce skin contact impedance under skin contamination and enhance wearing comfort during motion, outperforming gel and flexible microneedle electrodes. Our wireless SNAP demonstration for exoskeleton robot control shows its potential for highly reliable HMIs, even under time-dynamic skin conditions. We envision that the SNAP will open new opportunities for wearable EP sensing and its real-world applications in HMIs.
Collapse
Affiliation(s)
- Heesoo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ung Heo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | | | - Karen-Christian Agno
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngjun Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang-Hyuk Byun
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bohyung Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hwayeong Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Woon-Hong Yeo
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Neural Engineering Center, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zhuo Li
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jianliang Xiao
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jung Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Ma H, Hou J, Xiao X, Wan R, Ge G, Zheng W, Chen C, Cao J, Wang J, Liu C, Zhao Q, Zhang Z, Jiang P, Chen S, Xiong W, Xu J, Lu B. Self-healing electrical bioadhesive interface for electrophysiology recording. J Colloid Interface Sci 2024; 654:639-648. [PMID: 37864869 DOI: 10.1016/j.jcis.2023.09.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/01/2023] [Accepted: 09/30/2023] [Indexed: 10/23/2023]
Abstract
Electrical bioadhesive interfaces (EBIs) are standing out in various applications, including medical diagnostics, prosthetic devices, rehabilitation, and human-machine interactions. Nonetheless, crafting a reliable and advanced EBI with comprehensive properties spanning electrochemical, electrical, mechanical, and self-healing capabilities remains a formidable challenge. Herein, we develop a self-healing EBI by thoughtfully integrating conducting polymer nanofibers and a typical bioadhesive within a robust hydrogel matrix. The accomplished EBI demonstrates extraordinary adhesion (lap shear strength of 197 kPa), exceptional electrical conductivity (2.18 S m-1), and outstanding self-healing performance. Taking advantage of these attributes, we integrated the EBI into flexible skin electrodes for surface electromyography (sEMG) signal recording from forearm muscles. The engineered skin electrodes exhibit robust adhesion to the skin even when sweating, rapid self-healing from damage, and seamless real-time signal recording with a higher signal-to-noise ratio (39 dB). Our EBI, along with its skin electrodes, offers a promising platform for tissue-device integration, health monitoring, and an array of bioelectronic applications.
Collapse
Affiliation(s)
- Hude Ma
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jingdan Hou
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xiao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Rongtai Wan
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Gang Ge
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | | | - Chen Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Cao
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jinye Wang
- Liaocheng Ecological Environment Monitoring Centre of Shandong Province, Liaocheng 252000, Shandong, China
| | - Chang Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qi Zhao
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Zhilin Zhang
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Peng Jiang
- Xi'an Physical Education University, Xi'an 710068, Shaanxi, China
| | - Shuai Chen
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Wenhui Xiong
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jingkun Xu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Baoyang Lu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
10
|
Menke MA, Li BM, Arnold MG, Mueller LE, Dietrich R, Zhou S, Kelley‐Loughnane N, Dennis P, Boock JT, Estevez J, Tabor CE, Sparks JL. Silky Liquid Metal Electrodes for On-Skin Health Monitoring. Adv Healthc Mater 2024; 13:e2301811. [PMID: 37779336 PMCID: PMC11468510 DOI: 10.1002/adhm.202301811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Next generation on-skin electrodes will require soft, flexible, and gentle materials to provide both high-fidelity sensing and wearer comfort. However, many commercially available on-skin electrodes lack these key properties due to their use of rigid hardware, harsh adhesives, uncomfortable support structures, and poor breathability. To address these challenges, this work presents a new device paradigm by joining biocompatible electrospun spider silk with printable liquid metal to yield an incredibly soft and scalable on-skin electrode that is strain-tolerant, conformable, and gentle on-skin. These electrodes, termed silky liquid metal (SLiM) electrodes, are found to be over five times more breathable than commercial wet electrodes, while the silk's intrinsic adhesion mechanism allows SLiM electrodes to avoid the use of harsh artificial adhesives, potentially decreasing skin irritation and inflammation over long-term use. Finally, the SLiM electrodes provide comparable impedances to traditional wet and other liquid metal electrodes, offering a high-fidelity sensing alternative with increased wearer comfort. Human subject testing confirmed the SLiM electrodes ability to sense electrophysiological signals with high fidelity and minimal irritation to the skin. The unique properties of the reported SLiM electrodes offer a comfortable electrophysiological sensing solution especially for patients with pre-existing skin conditions or surface wounds.
Collapse
Affiliation(s)
- Maria A. Menke
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Braden M. Li
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
- Air Force Life Cycle Management CenterHuman Systems DivisionWright‐Patterson AFBDaytonOH45433USA
| | - Meghan G. Arnold
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| | - Logan E. Mueller
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| | - Robin Dietrich
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Shijie Zhou
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| | - Nancy Kelley‐Loughnane
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Patrick Dennis
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Jason T. Boock
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| | - Joseph Estevez
- Naval Air Warfare CenterWeapons DivisionChina LakeCA93555USA
| | - Christopher E. Tabor
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Jessica L. Sparks
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| |
Collapse
|
11
|
Wang J, Wang T, Liu H, Wang K, Moses K, Feng Z, Li P, Huang W. Flexible Electrodes for Brain-Computer Interface System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211012. [PMID: 37143288 DOI: 10.1002/adma.202211012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal-to-noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided.
Collapse
Affiliation(s)
- Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Haoyan Liu
- Department of Computer Science & Computer Engineering (CSCE), University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Kumi Moses
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Zhuoya Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
12
|
Abd-Elbaki MKM, Ragab TM, Ismael NER, Khalil ASG. Robust, self-adhesive and anti-bacterial silk-based LIG electrodes for electrophysiological monitoring. RSC Adv 2023; 13:31704-31719. [PMID: 37908662 PMCID: PMC10613951 DOI: 10.1039/d3ra05730e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Flexible wearable electrodes have been extensively used for obtaining electrophysiological signals towards smart health monitoring and disease diagnosis. Here, low-cost, and non-conductive silk fabric (SF) have been processed into highly conductive laser induced graphene (LIG) electrodes while maintaining the original structure of SF. A CO2-pulsed laser was utilized to produce LIG-SF with controlled sheet resistance and mechanical properties. Laser processing of SFs under optimized conditions yielded LIG-SF electrodes with a high degree of homogeneity on both, top and bottom layers. Silk fibroin/Ca2+ adhesive layers effectively promoted the adhesive, anti-bacterial properties and provided a conformal contact of LIG-SF electrodes with human skin. Compared with conventional Ag/AgCl electrodes, LIG-SF electrodes possesses a much lower contact impedance in contact with human skin enabling highly stable electrophysiological signals recording. The applicability of adhesive LIG-SF electrodes to acquire electrocardiogram (ECG) signals was investigated. ECG signals recordings of adhesive LIG-SF electrodes showed excellent performance compared to conventional Ag/AgCl electrodes at intense body movements while running at different speeds for up to 9 km over a duration of 24 h. Therefore, our proposed adhesive LIG-SF electrodes can be applied for long-term personalized healthcare monitoring and sports management applications.
Collapse
Affiliation(s)
| | - Tamer Mosaad Ragab
- Department of Cardiology, Faculty of Medicine, Fayoum University 63514 Fayoum Egypt
| | - Naglaa E R Ismael
- Zoology Department, Faculty of Science, Fayoum University 63514 Fayoum Egypt
| | - Ahmed S G Khalil
- Physics Department, Environmental and Smart Technology Group, Faculty of Science, Fayoum University 63514 Fayoum Egypt
- Institute of Basic and Applied Sciences, Faculty of Engineering, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Egypt
| |
Collapse
|
13
|
Yang S, Cheng J, Shang J, Hang C, Qi J, Zhong L, Rao Q, He L, Liu C, Ding L, Zhang M, Chakrabarty S, Jiang X. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat Commun 2023; 14:6494. [PMID: 37838683 PMCID: PMC10576757 DOI: 10.1038/s41467-023-42149-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/29/2023] [Indexed: 10/16/2023] Open
Abstract
Surface electromyography (sEMG) can provide multiplexed information about muscle performance. If current sEMG electrodes are stretchable, arrayed, and able to be used multiple times, they would offer adequate high-quality data for continuous monitoring. The lack of these properties delays the widespread use of sEMG in clinics and in everyday life. Here, we address these constraints by design of an adhesive dry electrode using tannic acid, polyvinyl alcohol, and PEDOT:PSS (TPP). The TPP electrode offers superior stretchability (~200%) and adhesiveness (0.58 N/cm) compared to current electrodes, ensuring stable and long-term contact with the skin for recording (>20 dB; >5 days). In addition, we developed a metal-polymer electrode array patch (MEAP) comprising liquid metal (LM) circuits and TPP electrodes. The MEAP demonstrated better conformability than commercial arrays, resulting in higher signal-to-noise ratio and more stable recordings during muscle movements. Manufactured using scalable screen-printing, these MEAPs feature a completely stretchable material and array architecture, enabling real-time monitoring of muscle stress, fatigue, and tendon displacement. Their potential to reduce muscle and tendon injuries and enhance performance in daily exercise and professional sports holds great promise.
Collapse
Grants
- We thank the National Key R&D Program of China (2021YFF1200800, 2021YFF1200100, 2022YFB3804700, and 2018YFA0902600), the National Natural Science Foundation of China (22234004), Shenzhen Science and Technology Program (JCYJ20200109141231365 and KQTD 20190929172743294), Shenzhen Key Laboratory of Smart Healthcare Engineering (ZDSYS20200811144003009), Guangdong Innovative and Entrepreneurial Research Team Program (2019ZT08Y191), Guangdong Provincial Key Laboratory of Advanced Biomaterials (2022B1212010003), Tencent Foundation through the XPLORER PRIZE, Guangdong Major Talent Introduction Project (2019CX01Y196). We also acknowledge the assistance of SUSTech Core Research Facilities.
Collapse
Affiliation(s)
- Shuaijian Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jinhao Cheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jin Shang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chen Hang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jie Qi
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Leni Zhong
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Qingyan Rao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lei He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chenqi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Ding
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Mingming Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
14
|
Timosina V, Cole T, Lu H, Shu J, Zhou X, Zhang C, Guo J, Kavehei O, Tang SY. A Non-Newtonian liquid metal enabled enhanced electrography. Biosens Bioelectron 2023; 235:115414. [PMID: 37236012 DOI: 10.1016/j.bios.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Biopotential signals, like electrocardiography (ECG), electromyography (EMG), and electroencephalography (EEG), can help diagnose cardiological, musculoskeletal and neurological disorders. Dry silver/silver chloride (Ag/AgCl) electrodes are commonly used to obtain these signals. While a conductive hydrogel can be added to Ag/AgCl electrodes to improve the contact and adhesion between the electrode and the skin, dry electrodes are prone to movement. Considering that the conductive hydrogel dries over time, the use of these electrodes often creates an imbalanced skin-electrode impedance and a number of sensing issues in the front-end analogue circuit. This issue can be extended to several other electrode types that are commonly in use, in particular, for applications with a need for long-term wearable monitoring such as ambulatory epilepsy monitoring. Liquid metal alloys, such as eutectic gallium indium (EGaIn), can address key critical requirements around consistency and reliability but present challenges on low viscosity and the risk of leakage. To solve these problems, here, we demonstrate the use of a non-eutectic Ga-In alloy as a shear-thinning non-Newtonian fluid to offer superior performance to commercial hydrogel electrodes, dry electrodes, and conventional liquid metals for electrography measurements. This material has high viscosity when still and can flow like a liquid metal when sheared, preventing leakage while allowing the effective fabrication of electrodes. Moreover, the Ga-In alloy not only has good biocompatibility but also offers an outstanding skin-electrode interface, allowing for the long-term acquisition of high-quality biosignals. The presented Ga-In alloy is a superior alternative to conventional electrode materials for real-world electrography or bioimpedance measurement.
Collapse
Affiliation(s)
- Veronika Timosina
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hongda Lu
- School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, University of Wollongong, Wollongong, Australia
| | - Jian Shu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Xiangbo Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Chengchen Zhang
- Graduate School of Biomedical Engineering, University of New South Wales, NSW, 2052, Australia
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Omid Kavehei
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
15
|
Zou X, Xue J, Li X, Chan CPY, Li Z, Li P, Yang Z, Lai KWC. High-Fidelity sEMG Signals Recorded by an on-Skin Electrode Based on AgNWs for Hand Gesture Classification Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19374-19383. [PMID: 37036803 DOI: 10.1021/acsami.2c21354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The human forearm is one of the most densely distributed parts of the human body, with the most irregular spatial distribution of muscles. A number of specific forearm muscles control hand motions. Acquiring high-fidelity sEMG signals from human forearm muscles is vital for human-machine interface (HMI) applications based on gesture recognition. Currently, the most commonly used commercial electrodes for detecting sEMG or other electrophysiological signals have a rigid nature without stretchability and cannot maintain conformal contact with the human skin during deformation, and the adhesive hydrogel used in them to reduce skin-electrode impedance may shrink and cause skin inflammation after long-term use. Therefore, developing elastic electrodes with stretchability and biocompatibility for sEMG signal recording is essential for developing HMI. Here, we fabricated a nanocomposite hybrid on-skin electrode by infiltrating silver nanowires (AgNWs), a one-dimensional (1D) nano metal material with conductivity, into polydimethylsiloxane (PDMS), a silicone elastomer with a similar Young's modulus to that of the human skin. The AgNW on-skin electrode has a thickness of 300 μm and low sheet resistance of 0.481 ± 0.014 Ω/sq and can withstand the mechanical strain of up to 54% and maintain a sheet resistance lower than 1 Ω/sq after 1000 dynamic strain cycles. The AgNW on-skin electrode can record high signal-to-noise ratio (SNR) sEMG signals from forearm muscles and can reflect various force levels of muscles by sEMG signals. Besides, four typical hand gestures were recognized by the multichannel AgNW on-skin electrodes with a recognition accuracy of 92.3% using machine learning method. The AgNW on-skin electrode proposed in this study has great potential and promise in various HMI applications that employ sEMG signals as control signals.
Collapse
Affiliation(s)
- Xiaoyang Zou
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Jiaqi Xue
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaoting Li
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Colin Pak Yu Chan
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Ziqi Li
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Pengyu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - King Wai Chiu Lai
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
16
|
Wang H, Lin H, Hu X, Zhou Z, Chen Q, Hong M, Fu H. Highly Flexible, Freezing-Resistant, Anisotropically Conductive Sandwich-Shaped Composite Hydrogels for Strain Sensors. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Hu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huang Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xulian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhaoxi Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. Chain
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. Chain
| | - Heqing Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. Chain
| |
Collapse
|
17
|
Ohm Y, Liao J, Luo Y, Ford MJ, Majidi C. Reconfigurable Electrical Networks within a Conductive Hydrogel Composite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209408. [PMID: 36574632 DOI: 10.1002/adma.202209408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Soft materials that exhibit compliance, programmability, and reconfigurability can have a transformative impact as electronic skin for applications in wearable electronics/soft robotics. There has been significant progress in soft conductive materials; however, achieving electrically controlled and reversible changes in conductivity and circuit connectivity remains challenging. To overcome this limitation, a soft material architecture with reconfigurable conductive networks of silver flakes embedded within a hydrogel matrix is presented. The conductive networks can be reversibly created/disconnected through various stimuli, including current, humidity, or temperature. Such stimuli affect electrical connectivity of the hydrogel by controlling its water content, which can be modulated by evaporation under ambient conditions (passive dehydration), evaporation through electrical Joule heating (active dehydration), or absorption of additional water (rehydration). The resulting change in electrical conductivity is reversible and repeatable, endowing the composite with on-demand reconfigurable conductivity. To highlight this material's unique properties, it is shown that conductive traces can be reconfigured after severe damage and revert to lower conductivity after rehydration. Additionally, a quadruped robot is demonstrated that can respond to stimuli by changing direction following exposure to excess water, thereby achieving reprogrammable locomotion behaviors.
Collapse
Affiliation(s)
- Yunsik Ohm
- Soft Machines Lab, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jiahe Liao
- Soft Machines Lab, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Yichi Luo
- Soft Machines Lab, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Michael J Ford
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Carmel Majidi
- Soft Machines Lab, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
18
|
Seong M, Kondaveeti S, Choi G, Kim S, Kim J, Kang M, Jeong HE. 3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11042-11052. [PMID: 36788742 DOI: 10.1021/acsami.2c21704] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ionotronic hydrogels have attracted significant attention in emerging fields such as wearable devices, flexible electronics, and energy devices. To date, the design of multifunctional ionotronic hydrogels with strong interfacial adhesion, rapid self-healing, three-dimensional (3D) printing processability, and high conductivity are key requirements for future wearable devices. Herein, we report the rational design and facile synthesis of 3D printable, self-adhesive, self-healing, and conductive ionotronic hydrogels based on the synergistic dual reversible interactions of poly(vinyl alcohol), borax, pectin, and tannic acid. Multifunctional ionotronic hydrogels exhibit strong adhesion to various substrates with different roughness and chemical components, including porcine skin, glass, nitrile gloves, and plastics (normal adhesion strength of 55 kPa on the skin). In addition, the ionotronic hydrogels exhibit intrinsic ionic conductivity imparting strain-sensing properties with a gauge factor of 2.5 up to a wide detection range of approximately 2000%, as well as improved self-healing behavior. Based on these multifunctional properties, we further demonstrate the use of ionotronic hydrogels in the 3D printing process for implementing complex patterns as wearable strain sensors for human motion detection. This study is expected to provide a new avenue for the design of multifunctional ionotronic hydrogels, enabling their potential applications in wearable healthcare devices.
Collapse
Affiliation(s)
- Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stalin Kondaveeti
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Geonjun Choi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Somi Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeil Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
19
|
Zhang J, Shen S, Lin R, Huang J, Pu C, Chen P, Duan Q, You X, Xu C, Yan B, Gao X, Shen Z, Cai L, Qiu X, Hou H. Highly Stretchable and Biocompatible Wrinkled Nanoclay-Composite Hydrogel With Enhanced Sensing Capability for Precise Detection of Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209497. [PMID: 36527726 DOI: 10.1002/adma.202209497] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
It is challenging to balance high biocompability with good mechanical-electrical sensing performance, especially when triggering inflammatory stress response after in vivo implantation. Herein, a bioinspired wrinkle-reinforced adaptive nanoclay-interlocked soft strain-sensor based on a highly stretchable and elastic ionic-conductive hydrogel is reported. This novel nanoclay-composite hydrogel exhibits excellent tensile properties and high sensing capacity with steady and reliable sensing performance due to the structural-mechanical-electrical integrity of the nanoclay crosslinked and nano-reinforced interpenetrating network. The incorporation of amphiphilic ions provides the hydrogel with significant protein resistance, reducing its non-specific adsorption to proteins upon implantation, improving its biosafety as an implanted device, and maintaining the authenticity of the sensing results. Based on the revealed sensing enhanced mechanism based on hierarchical ordered structures as a proof-of-concept application, this hydrogel sensor is demonstrated to be able to accurately localize the region where myocardial infarction occurs and may become a novel strategy for real-time monitoring of pathological changes in heart disease.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Si Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jianxing Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chunyi Pu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Pinger Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qixiang Duan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chengzhong Xu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bing Yan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xinrui Gao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ziqi Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Liu Cai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
20
|
Niu Y, Tian G, Liang C, Wang T, Ma X, Gong G, Qi D. Thermal-Sinterable EGaIn Nanoparticle Inks for Highly Deformable Bioelectrode Arrays. Adv Healthc Mater 2022; 12:e2202531. [PMID: 36562213 DOI: 10.1002/adhm.202202531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Liquid metal (especially eutectic gallium indium, EGaIn) nanoparticle inks overcome the poor wettability of high surface tension EGaIn to elastomer substrates and show great potential in soft electronics. Normally, a sintering strategy is required to break the oxide shells of the EGaIn nanoparticles (EGaIn NPs) to achieve conductive paths. Herein, for the first time, thermal-sinterable EGaIn NP inks are prepared by introducing thermal expansion microspheres (TEMs) into EGaIn NP solution. Through the mechanical pressure induced by the expansion of the heated TEMs, the printed EGaIn NPs can be sintered into electrically conductive paths to achieve highly stretchable bioelectrode arrays, which exhibit giant electromechanical performance (up to 680% strain), good cyclic stability (over 2 × 104 cycles), and stable conductivity after high-speed rotation (6000 rpm). Simultaneously, the recording sites are hermetically sealed by ionic elastomer layers, ensuring the complete leakage-free property of EGaIn and reducing the electrochemical impedance of the electrodes (891.16 Ω at 1 kHz). The bioelectrode is successfully applied to monitor dynamic electromyographic signals. The sintering strategy overcomes the disadvantages of the traditional sintering strategies, such as leakage of EGaIn, reformation of large EGaIn droplets, and low throughput, which promotes the application of EGaIn in soft electronics.
Collapse
Affiliation(s)
- Yan Niu
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation, and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation, and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Tianchi Wang
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Xu Ma
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Guifen Gong
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation, and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
21
|
Parvini E, Hajalilou A, Lopes PA, Tiago MSM, de Almeida AT, Tavakoli M. Triple crosslinking conductive hydrogels with digitally printable and outstanding mechanical stability for high-resolution conformable bioelectronics. SOFT MATTER 2022; 18:8486-8503. [PMID: 36321471 DOI: 10.1039/d2sm01103d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft, conductive, and stretchable hydrogels offer a broad variety of applications, including skin-interfacing electrodes, biomonitoring patches, and electrostimulation. Despite rapid developments over the last decades, a combination of good electrical and mechanical properties, low-cost fabrication, and biocompatibility is yet to be demonstrated. Also, the current methods for deposition and patterning of these hydrogels are manual, and there is a need toward autonomous and digital fabrication techniques. In this work, we demonstrate a novel Gallium (Ga) embedded sodium-alginate-polyacrylamide-LAPONITE® (Ga-SA-PAAM-La) hydrogel, that is ultra-stretchable (Maximum strain tolerance of∼985%), tough (toughness ∼30 kJ m-3), bio-adhesive (adhesion energy ∼216 J m-2), conductive, and digitally printable. Ga nanoparticles are used as radical initiators. By adjusting the sonication parameters, we control the solution viscosity and curing time, thus allowing us to prepare pre-polymers with the desired properties for casting, or digital printing. These hydrogels benefit from a triple-network structure due to the role of Ga droplets as crosslinkers besides BIS (N,N'-methylene-bis-acrylamide) and LAPONITE®, thus resulting in tough composite hydrogels. The inclusion of LAPONITE® into the hydrogel network improved its electrical conductivity, adhesion, digital printability, and its mechanical properties, (>6× compared to the same hydrogel without LAPONITE®). As electrodes in the electrocardiogram, the signal-to-noise ratio was surprisingly higher than the medical-grade Ag/AgCl electrodes, which are applied for monitoring muscles, heart, respiration, and body joint angle through EMG, ECG, and bioimpedance measurements. The results obtained prove that such digitally printed conductive and tough hydrogels can be used as potential electrodes and sensors in practical applications in the next generation of printed wearable computing devices.
Collapse
Affiliation(s)
- Elahe Parvini
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Abdollah Hajalilou
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Miguel Soares Maranha Tiago
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Anibal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| |
Collapse
|
22
|
Li BM, Reese BL, Ingram K, Huddleston ME, Jenkins M, Zaets A, Reuter M, Grogg MW, Nelson MT, Zhou Y, Ju B, Sennik B, Farrell ZJ, Jur JS, Tabor CE. Textile-Integrated Liquid Metal Electrodes for Electrophysiological Monitoring. Adv Healthc Mater 2022; 11:e2200745. [PMID: 35734914 DOI: 10.1002/adhm.202200745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Indexed: 01/27/2023]
Abstract
Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented. The liquid metal system employs functionalized liquid metal nanoparticles that provide a simple "peel-off to activate" means of imparting conductivity. The spray coating approach combined with the functionalized liquid metal system enables the creation of long-term reusable textile-integrated liquid metal electrodes (TILEs). Although the TILEs are dry electrodes by nature, they show equal skin-electrode impedances and sensing capabilities with improved wearability compared to commercial wet electrodes. Biocompatibility of TILEs in an in vivo skin environment is demonstrated, while providing improved sensing performance compared to previously reported textile-based dry electrodes. The "spray on dry-behave like wet" characteristics of TILEs opens opportunities for textile-based wearable health monitoring, haptics, and augmented/virtual reality applications that require the use of flexible and conformable dry electrodes.
Collapse
Affiliation(s)
- Braden M Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA.,Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,Air Force Life Cycle Management Center, Human Systems Division, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Brandon L Reese
- Department of Physics, Miami University, Oxford, OH, 45056, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Katherine Ingram
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Mary E Huddleston
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Meghan Jenkins
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Allison Zaets
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew Reuter
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew W Grogg
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - M Tyler Nelson
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Ying Zhou
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Beomjun Ju
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Busra Sennik
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Zachary J Farrell
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Jesse S Jur
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Christopher E Tabor
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| |
Collapse
|
23
|
Fonseca RG, De Bon F, Pereira P, Carvalho FM, Freitas M, Tavakoli M, Serra AC, Fonseca AC, Coelho JFJ. Photo-degradable, tough and highly stretchable hydrogels. Mater Today Bio 2022; 15:100325. [PMID: 35757031 PMCID: PMC9218832 DOI: 10.1016/j.mtbio.2022.100325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
We present for the first time highly stretchable and tough hydrogels with controlled light-triggered photodegradation. A double-network of alginate/polyacrylamide (PAAm) is formed by using covalently and ionically crosslinked subnetworks. The ionic Ca2+ alginate interpenetrates a PAAm network covalently crosslinked by a bifunctional acrylic crosslinker containing the photodegradable o-nitrobenzyl (ONB) core instead of the commonly used methylene bisacrylamide (MBAA). Remarkably, due to the developed protocol, the change of the crosslinker did not affect the hydrogel's mechanical properties. The incorporation of photosensitive components in hydrogels allows external temporal control of their properties and tuneable degradation. Cell viability and cell proliferation assays revealed that hydrogels and their photodegradation products are not cytotoxic to the NIH3T3 cell line. In one example of application, we used these hydrogels for bio-potential acquisition in wearable electrocardiography. Surprisingly, these hydrogels showed a lower skin-electrode impedance, compared to the common medical grade Ag/AgCl electrodes. This work lays the foundation for the next generation of tough and highly stretchable hydrogels that are environmentally friendly and can find applications in a variety of fields such as health, electronics, and energy, as they combine excellent mechanical properties with controlled degradation.
Collapse
Affiliation(s)
- Rita G Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Francesco De Bon
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Patrícia Pereira
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal.,IPN - Instituto Pedro Nunes, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| | - Francisca M Carvalho
- ISR - Institute of Systems and Robotics, University of Coimbra, 3030-194, Coimbra, Portugal
| | - Marta Freitas
- ISR - Institute of Systems and Robotics, University of Coimbra, 3030-194, Coimbra, Portugal
| | - Mahmoud Tavakoli
- ISR - Institute of Systems and Robotics, University of Coimbra, 3030-194, Coimbra, Portugal
| | - Arménio C Serra
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Ana C Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| |
Collapse
|
24
|
Chun KY, Seo S, Han CS. A Wearable All-Gel Multimodal Cutaneous Sensor Enabling Simultaneous Single-Site Monitoring of Cardiac-Related Biophysical Signals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110082. [PMID: 35178764 DOI: 10.1002/adma.202110082] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The human cutaneous sensory organ is a highly evolved biosensor that is efficient, sensitive, selective, and adaptable. Recently, with the development of various materials and structures inspired by sensory organs, artificial cutaneous sensors have been widely studied. In this study, the acquisition of biophysical signals is demonstrated at one point on the body using a wearable all-gel-integrated multimodal sensor composed of four element sensors, inspired by the slow/rapid adapting functions of the skin sensory receptors. The gel-type sensors ensure flexibility, compactness, portability, adherence, and integrity. The wearable all-gel multimodal sensor is easily attached to the wrist and simultaneously gathers blood pressure (BP), electrocardiogram (ECG), electromyogram (EMG), and mechanomyogram (MMG) signals related to cardiac and muscle health. Human activity causes muscle contraction, which affects blood flow; therefore, the relationship between the muscle and heart is crucial for screening and predicting heart health. Cardiac health is monitored by obtaining the two types of phase time differences (i.e., Δtbe : BP and ECG, Δtem : ECG and MMG) generated during muscle movement. The suggested multimodal sensor has potential applicability in monitoring biophysical conditions and diagnosing cardiac-related health problems.
Collapse
Affiliation(s)
- Kyoung-Yong Chun
- Institute of Advanced Machinery Design Technology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Seunghwan Seo
- School of Mechanical Engineering, College of Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Chang-Soo Han
- Institute of Advanced Machinery Design Technology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
- School of Mechanical Engineering, College of Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| |
Collapse
|
25
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
26
|
Biocompatibility Testing of Liquid Metal as an Interconnection Material for Flexible Implant Technology. NANOMATERIALS 2021; 11:nano11123251. [PMID: 34947600 PMCID: PMC8706733 DOI: 10.3390/nano11123251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022]
Abstract
Galinstan, a liquid metal at room temperature, is a promising material for use in flexible electronics. Since it has been successfully integrated in devices for external use, e.g., as stretchable electronic skin in tactile sensation, the possibility of using galinstan for flexible implant technology comes to mind. Usage of liquid metals in a flexible implant would reduce the risk of broken conductive pathways in the implants and therefore reduce the possibility of implant failure. However, the biocompatibility of the liquid metal under study, i.e., galinstan, has not been proven in state-of-the-art literature. Therefore, in this paper, a material combination of galinstan and silicone rubber is under investigation regarding the success of sterilization methods and to establish biocompatibility testing for an in vivo application. First cell biocompatibility tests (WST-1 assays) and cell toxicity tests (LDH assays) show promising results regarding biocompatibility. This work paves the way towards the successful integration of stretchable devices using liquid metals embedded in a silicone rubber encapsulant for flexible surface electro-cortical grid arrays and other flexible implants.
Collapse
|
27
|
Reversible polymer-gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing. Nat Commun 2021; 12:4666. [PMID: 34344880 PMCID: PMC8333313 DOI: 10.1038/s41467-021-25008-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022] Open
Abstract
Integration of solid-state microchips into soft-matter, and stretchable printed electronics has been the biggest challenge against their scalable fabrication. We introduce, Pol-Gel, a simple technique for self-soldering, self-encapsulation, and self-healing, that allows low cost, scalable, and rapid fabrication of hybrid microchip-integrated ultra-stretchable circuits. After digitally printing the circuit, and placing the microchips, we trigger a Polymer-Gel transition in physically cross-linked block copolymers substrate, and silver liquid metal composite ink, by exposing the circuits to the solvent vapor. Once in the gel state, microchips penetrate to the ink and the substrate (Self-Soldering), and the ink penetrates to the substrate (Self-encapsulation). Maximum strain tolerance of ~1200% for printed stretchable traces, and >500% for chip-integrated soft circuits is achieved, which is 5x higher than the previous works. We demonstrate condensed soft-matter patches and e-textiles with integrated sensors, processors, and wireless communication, and repairing of a fully cut circuits through Pol-Gel. Despite advances on fabrication of stretchable interconnects, realizing functional electronics with integrated solid-state technology (SST) remains a challenge. Here, the authors report a reversible Pol-Gel transition method for fabrication of liquid-metal based, chip-integrated, printed stretchable circuits.
Collapse
|
28
|
Chen X, Taguchi T. Enhanced skin adhesive property of α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex film. Carbohydr Polym 2021; 263:117993. [PMID: 33858580 DOI: 10.1016/j.carbpol.2021.117993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 03/24/2021] [Indexed: 01/02/2023]
Abstract
For skin contact medical devices, realizing a strong contact with skin is essential to precisely detect human biological information and enable human-machine interaction. In this study, we aimed to fabricate and characterize an inclusion complex film (ICF) for skin adhesion using α-cyclodextrin (α-CD) and nonanyl group-modified PVA (C9-PVA) under wet conditions. Based on the water insolubility of C9-PVA and the inclusion ability of α-CD for alkyl groups, α-CD/C9-PVA ICF was prepared. Among the prepared ICFs, α-CD/2.5C9-PVA (w/w = 0.5) ICF showed the highest bonding strength and T-peeling strength to porcine skin. Furthermore, α-CD/2.5C9-PVA (w/w = 0.5) ICF had better water vapor transmission rate than that of commercial tapes. In addition, the ion permeability test revealed that α-CD/2.5C9-PVA (w/w = 0.5) ICF exhibited excellent Na and Cl ion permeability. These results demonstrated that the multi-functional α-CD/2.5C9-PVA (w/w = 0.5) ICF can be a promising adhesive for skin contact medical devices.
Collapse
Affiliation(s)
- Xi Chen
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
29
|
Chandra S, Li J, Afsharipour B, Cardona AF, Suresh NL, Tian L, Deng Y, Zhong Y, Xie Z, Shen H, Huang Y, Rogers JA, Rymer WZ. Performance Evaluation of a Wearable Tattoo Electrode Suitable for High-Resolution Surface Electromyogram Recording. IEEE Trans Biomed Eng 2021; 68:1389-1398. [PMID: 33079653 PMCID: PMC8015348 DOI: 10.1109/tbme.2020.3032354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE High-density surface electromyography (HD-sEMG) has been utilized extensively in neuromuscular research. Despite its potential advantages, limitations in electrode design have largely prevented widespread acceptance of the technology. Commercial electrodes have limited spatial fidelity, because of a lack of sharpness of the signal, and variable signal stability. We demonstrate here a novel tattoo electrode that addresses these issues. Our dry HD electrode grid exhibits remarkable deformability which ensures superior conformity with the skin surface, while faithfully recording signals during different levels of muscle contraction. METHOD We fabricated a 4 cm×3 cm tattoo HD electrode grid on a stretchable electronics membrane for sEMG applications. The grid was placed on the skin overlying the biceps brachii of healthy subjects, and was used to record signals for several hours while tracking different isometric contractions. RESULTS The sEMG signals were recorded successfully from all 64 electrodes across the grid. These electrodes were able to faithfully record sEMG signals during repeated contractions while maintaining a stable baseline at rest. During voluntary contractions, broad EMG frequency content was preserved, with accurate reproduction of the EMG spectrum across the full signal bandwidth. CONCLUSION The tattoo grid electrode can potentially be used for recording high-density sEMG from skin overlying major limb muscles. Layout programmability, good signal quality, excellent baseline stability, and easy wearability make this electrode a potentially valuable component of future HD electrode grid applications. SIGNIFICANCE The tattoo electrode can facilitate high fidelity recording in clinical applications such as tracking the evolution and time-course of challenging neuromuscular degenerative disorders.
Collapse
|
30
|
Lopes PA, Fernandes DF, Silva AF, Marques DG, de Almeida AT, Majidi C, Tavakoli M. Bi-Phasic Ag-In-Ga-Embedded Elastomer Inks for Digitally Printed, Ultra-Stretchable, Multi-layer Electronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14552-14561. [PMID: 33689286 DOI: 10.1021/acsami.0c22206] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A bi-phasic ternary Ag-In-Ga ink that demonstrates high electrical conductivity, extreme stretchability, and low electromechanical gauge factor (GF) is introduced. Unlike popular liquid metal alloys such as eutectic gallium-indium (EGaIn), this ink is easily printable and nonsmearing and bonds strongly to a variety of substrates. Using this ink and a simple extrusion printer, the ability to perform direct writing of ultrathin, multi-layer circuits that are highly stretchable (max. strain >600%), have excellent conductivity (7.02 × 105 S m-1), and exhibit only a modest GF (0.9) related to the ratio of percent increase in trace resistance with mechanical strain is demonstrated. The ink is synthesized by mixing optimized quantities of EGaIn, Ag microflakes, and styrene-isoprene block copolymers, which functions as a hyperelastic binder. When compared to the same composite without EGaIn, the Ag-In-Ga ink shows over 1 order of magnitude larger conductivity, up to ∼27× lower GF, and ∼5× greater maximum stretchability. No significant change over the resistance of the ink was observed after 1000 strain cycles. Microscopic analysis shows that mixing EGaIn and Ag microflakes promotes the formation of AgIn2 microparticles, resulting in a cohesive bi-phasic ink. The ink can be sintered at room temperature, making it compatible with many heat-sensitive substrates. Additionally, utilizing a simple commercial extrusion based printer, the ability to perform stencil-free, digital printing of multi-layer stretchable circuits over various substrates, including medical wound-dressing adhesives, is demonstrated for the first time.
Collapse
Affiliation(s)
- Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Daniel Félix Fernandes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - André F Silva
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Daniel Green Marques
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Aníbal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Carmel Majidi
- Integrated Soft Materials Lab, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| |
Collapse
|
31
|
Wu H, Yang G, Zhu K, Liu S, Guo W, Jiang Z, Li Z. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human-Machine Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001938. [PMID: 33511003 PMCID: PMC7816724 DOI: 10.1002/advs.202001938] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/19/2020] [Indexed: 05/05/2023]
Abstract
On-skin electrodes function as an ideal platform for collecting high-quality electrophysiological (EP) signals due to their unique characteristics, such as stretchability, conformal interfaces with skin, biocompatibility, and wearable comfort. The past decade has witnessed great advancements in performance optimization and function extension of on-skin electrodes. With continuous development and great promise for practical applications, on-skin electrodes are playing an increasingly important role in EP monitoring and human-machine interfaces (HMI). In this review, the latest progress in the development of on-skin electrodes and their integrated system is summarized. Desirable features of on-skin electrodes are briefly discussed from the perspective of performances. Then, recent advances in the development of electrode materials, followed by the analysis of strategies and methods to enhance adhesion and breathability of on-skin electrodes are examined. In addition, representative integrated electrode systems and practical applications of on-skin electrodes in healthcare monitoring and HMI are introduced in detail. It is concluded with the discussion of key challenges and opportunities for on-skin electrodes and their integrated systems.
Collapse
Affiliation(s)
- Hao Wu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Ganguang Yang
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Kanhao Zhu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Shaoyu Liu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Wei Guo
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Zhuo Jiang
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Zhuo Li
- Department of Materials ScienceFudan UniversityShanghai200433China
| |
Collapse
|
32
|
Silva AF, Tavakoli M. Domiciliary Hospitalization through Wearable Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6835. [PMID: 33260466 PMCID: PMC7729497 DOI: 10.3390/s20236835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews recent advances and existing challenges for the application of wearable bioelectronics for patient monitoring and domiciliary hospitalization. More specifically, we focus on technical challenges and solutions for the implementation of wearable and conformal bioelectronics for long-term patient biomonitoring and discuss their application on the Internet of medical things (IoMT). We first discuss the general architecture of IoMT systems for domiciliary hospitalization and the three layers of the system, including the sensing, communication, and application layers. In regard to the sensing layer, we focus on current trends, recent advances, and challenges in the implementation of stretchable patches. This includes fabrication strategies and solutions for energy storage and energy harvesting, such as printed batteries and supercapacitors. As a case study, we discuss the application of IoMT for domiciliary hospitalization of COVID 19 patients. This can be used as a strategy to reduce the pressure on the healthcare system, as it allows continuous patient monitoring and reduced physical presence in the hospital, and at the same time enables the collection of large data for posterior analysis. Finally, based on the previous works in the field, we recommend a conceptual IoMT design for wearable monitoring of COVID 19 patients.
Collapse
Affiliation(s)
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal;
| |
Collapse
|
33
|
Zhang L, Kumar KS, He H, Cai CJ, He X, Gao H, Yue S, Li C, Seet RCS, Ren H, Ouyang J. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun 2020; 11:4683. [PMID: 32943621 PMCID: PMC7499260 DOI: 10.1038/s41467-020-18503-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/18/2020] [Indexed: 12/05/2022] Open
Abstract
Wearable dry electrodes are needed for long-term biopotential recordings but are limited by their imperfect compliance with the skin, especially during body movements and sweat secretions, resulting in high interfacial impedance and motion artifacts. Herein, we report an intrinsically conductive polymer dry electrode with excellent self-adhesiveness, stretchability, and conductivity. It shows much lower skin-contact impedance and noise in static and dynamic measurement than the current dry electrodes and standard gel electrodes, enabling to acquire high-quality electrocardiogram (ECG), electromyogram (EMG) and electroencephalogram (EEG) signals in various conditions such as dry and wet skin and during body movement. Hence, this dry electrode can be used for long-term healthcare monitoring in complex daily conditions. We further investigated the capabilities of this electrode in a clinical setting and realized its ability to detect the arrhythmia features of atrial fibrillation accurately, and quantify muscle activity during deep tendon reflex testing and contraction against resistance. Reported wearable dry electrodes have limited long-term use due to their imperfect skin compliance and high motion artifacts. Here, the authors report an intrinsically conductive, stretchable polymer dry electrode with excellent self-adhesiveness for long-term high-quality biopotential detection.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Kirthika Senthil Kumar
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Hao He
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Catherine Jiayi Cai
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore.,Singapore Institute of Manufacturing Technology, A*STAR Singapore, Fusionopolis Two, 4 Fusionopolis Way, Singapore, 138635, Singapore
| | - Xu He
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Huxin Gao
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore.,National University of Singapore (Suzhou) Research Institute (NUSRI), Suzhou, China
| | - Shizhong Yue
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Changsheng Li
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore.,National University of Singapore (Suzhou) Research Institute (NUSRI), Suzhou, China.,Beijing Advanced Innovation Center for Intelligent Robots and Systems & School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Raymond Chee-Seong Seet
- Division of Neurology, Department of Medicine, National University Health System, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongliang Ren
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, 4 Engineering Drive 3, Singapore, 117583, Singapore. .,National University of Singapore (Suzhou) Research Institute (NUSRI), Suzhou, China. .,The Chinese University of Hong Kong (CUHK) Robotics Institute, Shatin, Hong Kong.
| | - Jianyong Ouyang
- Department of Materials Science & Engineering, National University of Singapore, Faculty of gineering, 7 Engineering Drive 1, Singapore, 117574, Singapore.
| |
Collapse
|
34
|
Saadatnia Z, GhaffariMosanenzadeh S, Marquez Chin M, Naguib HE, Popovic MR. Flexible, Air Dryable, and Fiber Modified Aerogel-Based Wet Electrode for Electrophysiological Monitoring. IEEE Trans Biomed Eng 2020; 68:1820-1827. [PMID: 32897858 DOI: 10.1109/tbme.2020.3022615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study presents a novel type of wet electrode material for electrophysiological monitoring based on a conductive aerogel film. The electrode material incorporates cellulose nanocrystal and fiber as a biocompatible polymer and multi-walled carbon nanotube as a conductive filler. The fabricated electrode is fully characterized to explore the chemical, mechanical, electrical, and water absorption properties. The wet aerogel film presents suitable mechanical flexibility owing to the use of fiber enabling it to be conformal to curved surfaces like human body. The water absorption percentage of the fabricated aerogel film is extremely high (∼500%) due to the porosity of the film and hydrophilicity of the base polymer allowing it for effective wet electrode applications. The film is air dryable with a fast (∼10 min) and facile wetting process granting the electrode application for long-term, multiple use, and remote monitoring of patients. The electrical impedance range of the fabricated aerogel electrodes is relatively low (20 Ω/cm2-370 Ω/cm2) which is within the range of use for various electrophysiological monitoring purposes such as electrocardiography (ECG) and electroencephalography (EEG). Overall, the presented study introduces a novel wet electrode based on porous and electrically conductive aerogel film to be used for various biomedical applications.
Collapse
|
35
|
Tomotoshi D, Kawasaki H. Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1689. [PMID: 32867267 PMCID: PMC7559014 DOI: 10.3390/nano10091689] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Silver (Ag), gold (Au), and copper (Cu) have been utilized as metals for fabricating metal-based inks/pastes for printed/flexible electronics. Among them, Cu is the most promising candidate for metal-based inks/pastes. Cu has high intrinsic electrical/thermal conductivity, which is more cost-effective and abundant, as compared to Ag. Moreover, the migration tendency of Cu is less than that of Ag. Thus, recently, Cu-based inks/pastes have gained increasing attention as conductive inks/pastes for printed/flexible electronics. However, the disadvantages of Cu-based inks/pastes are their instability against oxidation under an ambient condition and tendency to form insulating layers of Cu oxide, such as cuprous oxide (Cu2O) and cupric oxide (CuO). The formation of the Cu oxidation causes a low conductivity in sintered Cu films and interferes with the sintering of Cu particles. In this review, we summarize the surface and interface designs for Cu-based conductive inks/pastes, in which the strategies for the oxidation resistance of Cu and low-temperature sintering are applied to produce highly conductive Cu patterns/electrodes on flexible substrates. First, we classify the Cu-based inks/pastes and briefly describe the surface oxidation behaviors of Cu. Next, we describe various surface control approaches for Cu-based inks/pastes to achieve both the oxidation resistance and low-temperature sintering to produce highly conductive Cu patterns/electrodes on flexible substrates. These surface control approaches include surface designs by polymers, small ligands, core-shell structures, and surface activation. Recently developed Cu-based mixed inks/pastes are also described, and the synergy effect in the mixed inks/pastes offers improved performances compared with the single use of each component. Finally, we offer our perspectives on Cu-based inks/pastes for future efforts.
Collapse
Affiliation(s)
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8680, Japan;
| |
Collapse
|
36
|
Ferrari LM, Keller K, Burtscher B, Greco F. Temporary tattoo as unconventional substrate for conformable and transferable electronics on skin and beyond. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2399-7532/aba6e3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Colachis M, Shqau K, Colachis S, Annetta N, Heintz AM. Soft mixed ionic–electronic conductive electrodes for noninvasive stimulation. J Appl Polym Sci 2020. [DOI: 10.1002/app.48998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew Colachis
- Department of Advanced Materials and MicrofabricationBattelle Memorial Institute Columbus Ohio
| | - Krenar Shqau
- Department of Advanced Materials and MicrofabricationBattelle Memorial Institute Columbus Ohio
| | - Samuel Colachis
- Department of Medical Devices and Health AnalyticsBattelle Memorial Institute Columbus Ohio
| | - Nicholas Annetta
- Department of Medical Devices and Health AnalyticsBattelle Memorial Institute Columbus Ohio
| | - Amy M. Heintz
- Department of Advanced Materials and MicrofabricationBattelle Memorial Institute Columbus Ohio
| |
Collapse
|
38
|
Leal C, Lopes PA, Serra A, Coelho JFJ, de Almeida AT, Tavakoli M. Untethered Disposable Health Monitoring Electronic Patches with an Integrated Ag 2O-Zn Battery, a AgInGa Current Collector, and Hydrogel Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3407-3414. [PMID: 31888325 DOI: 10.1021/acsami.9b18462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stretchable electronics stickers that adhere to the human skin and collect biopotentials are becoming increasingly popular for biomonitoring applications. Such stickers include electrodes, stretchable interconnects, silicon chips for processing and communication, and batteries. Here, we demonstrate a material architecture and fabrication technique for a multilayer, stretchable, low-cost, rapidly deployable, and disposable sticker that integrates skin-interfacing hydrogel electrodes, stretchable interconnects, and a Ag2O-Zn (silver oxide-zinc) battery. In addition, the application of a printed biphasic current collector (AgInGa) for the Ag2O-Zn battery is reported for the first time. Surprisingly, and unlike previously reported batteries, the battery capacity increases after being subjected to strain cycles and reaches a record-breaking areal capacity of 6.88 mAh cm-2 post stretch. As a proof of concept, an application of heart rate monitoring is presented. The disposable patch is interfaced with a miniature battery-free electronics circuit for data acquisition, processing, and wireless transmission. A version of the patch partially covering the patient's chest can supply enough energy for continuous operation for ∼6 days.
Collapse
Affiliation(s)
- Cristina Leal
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Arménio Serra
- Department of Chemical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Aníbal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| |
Collapse
|