1
|
Wang K, Zhang S, Wang Y, Wu X, Wen L, Meng T, Jin X, Li S, Hong Y, Ke J, Xu Y, Yuan H, Hu F. Taprenepag restores maternal-fetal interface homeostasis for the treatment of neurodevelopmental disorders. J Neuroinflammation 2024; 21:307. [PMID: 39609821 PMCID: PMC11603931 DOI: 10.1186/s12974-024-03300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurodevelopmental disorders (NDDs) are characterized by abnormalities in brain development and neurobehaviors, including autism. The maternal-fetal interface (MFI) is a highly specialized tissue through which maternal factors affect fetal brain development. However, limited research exists on restoring and maintaining MFI homeostasis and its potential impact on NDDs. This study explores the role of placental indoleamine 2,3-dioxygenase (IDO-1) in MFI homeostasis and fetal brain development. EXPERIMENTAL APPROACH The maternal-fetal barrier was disrupted by sodium valproate (VPA) in pregnant mice, whose offspring show typical autism-like behaviors. Ultrastructural analysis and flow cytometric analysis were conducted to observe the morphological and immune system changes. Behavioral tests and immunofluorescence staining was used to investigate the ability and mechanism of taprenepag to alleviate the abnormal behaviors of VPA-exposed offspring and normalize the development of serotonergic neurons. KEY RESULTS In VPA-exposed pregnant mice, the downregulation of IDO-1 led to maternal immune overactivation and disruption of maternal-fetal barrier, resulting in excessive 5-HT synthesis in the placenta. This process disrupted the development of the serotonergic neuronal system in the offspring, resulting in impaired development of serotonergic neurons, thalamocortical axons, and NDDs in the progeny. However, a single injection of taprenepag at E13.5 ultimately upregulated placental IDO-1 through amplifying the positive feedback loop COX-2/PGE2/PTGER-2/IDO-1 and abolished these alterations. CONCLUSION Taprenepag improved autism-like behaviors in the offspring of VPA-exposed mice by addressing placental IDO-1 downregulation. This study highlights the potential of targeting IDO-1 to mitigate MFI disruption and NDD development.
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Shufen Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiaomei Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Lijuan Wen
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Tingting Meng
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Xiangyu Jin
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Sufen Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yiling Hong
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jia Ke
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yichong Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China.
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
2
|
Nelson KM, Ferrick BJ, Karimi H, Hatem CL, Gleghorn JP. A straightforward cell culture insert model to incorporate biochemical and biophysical stromal properties into transplacental transport studies. Placenta 2024:S0143-4004(24)00637-4. [PMID: 39266436 DOI: 10.1016/j.placenta.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The placental extracellular matrix (ECM) dynamically remodels over pregnancy and in disease. How these changes impact placental barrier function is poorly understood as there are limited in vitro models of the placenta with a modifiable stromal compartment to mechanistically investigate these extracellular factors. We developed a straightforward method to incorporate uniform hydrogels into standard cell culture inserts for transplacental transport studies. Uniform polyacrylamide (PAA) gels were polymerized within cell culture inserts by (re)using the insert packaging to create a closed, controllable environmental chamber. PAA pre-polymer solution was added dropwise via a syringe to the cell culture insert and the atmosphere was purged with an inert gas. Transport and cell culture studies were conducted to validate the model. We successfully incorporated ECM-functionalized uniform PAA gels into cell culture inserts, enabling cell adhesion and monolayer formation. Imaging and analyte transport studies validated gel formation and expected mass transport results, and successful cell studies confirmed cell viability, stiffness-mediated YAP translocation, and that the model could be used in transplacental transport studies. Detailed methods and validation protocols are included. The incorporation of a PAA gel within a cell culture insert enables independent study of placental ECM biophysical and biochemical properties in the context of transplacental transport. These straightforward and low-cost methods to build three-dimensional cellular models are readily adoptable by the wider scientific community.
Collapse
Affiliation(s)
- Katherine M Nelson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Bryan J Ferrick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Hassan Karimi
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christine L Hatem
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
3
|
Nelson KM, Ferrick BJ, Karimi H, Hatem CL, Gleghorn JP. A straightforward cell culture insert model to incorporate biochemical and biophysical stromal properties into transplacental transport studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590317. [PMID: 38712271 PMCID: PMC11071360 DOI: 10.1101/2024.04.19.590317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction The placental extracellular matrix (ECM) dynamically remodels over pregnancy and in disease. How these changes impact placental barrier function is poorly understood as there are limited in vitro models of the placenta with a modifiable stromal compartment to mechanistically investigate these extracellular factors. We developed a straightforward method to incorporate uniform hydrogels into standard cell culture inserts for transplacental transport studies. Methods Uniform polyacrylamide (PAA) gels were polymerized within cell culture inserts by (re)using the insert packaging to create a closed, controllable environmental chamber. PAA pre-polymer solution was added dropwise via a syringe to the cell culture insert and the atmosphere was purged with an inert gas. Transport and cell culture studies were conducted to validate the model. Results We successfully incorporated and ECM functionalized uniform PAA gels to cell culture inserts enable cell adhesion and monolayer formation. Imaging and analyte transport studies validated gel formation and expected mass transport results and successful cell studies confirmed cell viability, monolayer formation, and that the model could be used transplacental transport studies. Detailed methods and validation protocols are included. Discussion It is well appreciated that ECM biophysical and biochemical properties impact cell phenotype and cell signaling in many tissues including the placenta. The incorporation of a PAA gel within a cell culture insert enables independent study of placental ECM biophysical and biochemical properties in the context of transplacental transport. These straightforward and low-cost methods to build three dimensional cellular models are readily adoptable by the wider scientific community.
Collapse
Affiliation(s)
- Katherine M Nelson
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| | - Bryan J Ferrick
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| | - Hassan Karimi
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| | - Christine L Hatem
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| |
Collapse
|
4
|
Zheng L, Yang H, Dallmann A. Antidepressants and Antipsychotics in Human Pregnancy: Transfer Across the Placenta and Opportunities for Modeling Studies. J Clin Pharmacol 2022; 62 Suppl 1:S115-S128. [PMID: 36106784 DOI: 10.1002/jcph.2108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022]
Abstract
There is limited information about the transfer of antidepressants and antipsychotics across the human placenta. The objective of the current review was to systematically screen the scientific literature using relevant keywords to collect quantitative data on placental transfer of these drugs in humans and to give an overview of current modeling approaches used in this context. The collected data encompassed clinically measured fetal:maternal (F:M) concentration ratios (ie, the ratio between drug concentrations measured in the umbilical cord and drug concentrations measured in the mother) and transfer data obtained from ex vivo cotyledon perfusion experiments. These data were found for 18 antidepressants and some of their pharmacologically active metabolites, and for 10 antipsychotics and the metabolites thereof. Based on the collected data, similar maternal and fetal exposure could be observed for only a few compounds (eg, norfluoxetine and desvenlafaxine), whereas for most drugs (eg, paroxetine, sertraline, and quetiapine), fetal exposure appeared to be on average lower than maternal exposure. Venlafaxine appeared to be an exception in that the data indicated equivalent or higher concentrations in the umbilical cord than in the mother. Physiologically based pharmacokinetic (PBPK) models were sporadically used to investigate maternal pharmacokinetics of antidepressants or antipsychotics (eg, for sertraline, aripiprazole, and olanzapine), although without explicitly addressing fetal drug exposure. It is recommended that PBPK modeling is applied more frequently to these drugs. Although no substitute for clinical studies, these tools can help to better understand pregnancy-induced pharmacokinetic changes and ultimately contribute to a more evidence-based pharmacotherapy of depression and psychosis in pregnant subjects.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hongyi Yang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China.,Chengdu Gencore Pharmaceutical Technology Co., Ltd, Chengdu, China
| | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| |
Collapse
|
5
|
Chandrasekar V, Singh AV, Maharjan RS, Dakua SP, Balakrishnan S, Dash S, Laux P, Luch A, Singh S, Pradhan M. Perspectives on the Technological Aspects and Biomedical Applications of Virus‐Like Particles/Nanoparticles in Reproductive Biology: Insights on the Medicinal and Toxicological Outlook. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Ajay Vikram Singh
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Romi Singh Maharjan
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | | | | | - Sagnika Dash
- Obstetrics and Gynecology Apollo Clinic Qatar 23656 Doha Qatar
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Suyash Singh
- Department of Neurosurgery All India Institute of Medical Sciences Raebareli UP 226001 India
| | - Mandakini Pradhan
- Department of Fetal Medicine Sanjay Gandhi Post Graduate Institute of Medical Sciences Reabareli Road Lucknow UP 226014 India
| |
Collapse
|
6
|
Vaudin P, Augé C, Just N, Mhaouty-Kodja S, Mortaud S, Pillon D. When pharmaceutical drugs become environmental pollutants: Potential neural effects and underlying mechanisms. ENVIRONMENTAL RESEARCH 2022; 205:112495. [PMID: 34883077 DOI: 10.1016/j.envres.2021.112495] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs have become consumer products, with a daily use for some of them. The volume of production and consumption of drugs is such that they have become environmental pollutants. Their transfer to wastewater through urine, feces or rinsing in case of skin use, associated with partial elimination by wastewater treatment plants generalize pollution in the hydrosphere, including drinking water, sediments, soils, the food chain and plants. Here, we review the potential effects of environmental exposure to three classes of pharmaceutical drugs, i.e. antibiotics, antidepressants and non-steroidal anti-inflammatory drugs, on neurodevelopment. Experimental studies analyzing their underlying modes of action including those related to endocrine disruption, and molecular mechanisms including epigenetic modifications are presented. In addition, the contribution of brain imaging to the assessment of adverse effects of these three classes of pharmaceuticals is approached.
Collapse
Affiliation(s)
- Pascal Vaudin
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| | - Corinne Augé
- UMR 1253, IBrain, University of Tours, INSERM, 37000, Tours, France
| | - Nathalie Just
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Stéphane Mortaud
- Immunologie et Neurogénétique Expérimentales et Moléculaires, UMR7355, CNRS, Université D'Orléans, 45000, Orléans, France
| | - Delphine Pillon
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| |
Collapse
|
7
|
Nozari A, Gagné R, Lu C, Yauk C, Trudeau VL. Brief Developmental Exposure to Fluoxetine Causes Life-Long Alteration of the Brain Transcriptome in Zebrafish. Front Endocrinol (Lausanne) 2022; 13:847322. [PMID: 35573988 PMCID: PMC9097470 DOI: 10.3389/fendo.2022.847322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Fluoxetine (FLX) and other selective serotonin reuptake inhibitors are widely used to treat depressive disorders during pregnancy. Early-life exposure to FLX is known to disrupt the normal function of the stress axis in humans, rodents, and teleosts. We used a zebrafish line with a cortisol-inducible fluorescent transgene to study the effects of developmental daily exposure to FLX (54 µg/L) on the transcriptomic profile of brain tissues in exposed larvae and later as 6-month-old adults. High throughput RNA sequencing was conducted on brain tissues in unstressed and stressed conditions. Long-lasting effects of FLX were observed in telencephalon (Tel) and hypothalamus (Hyp) of adult zebrafish with 1927 and 5055 genes significantly (≥1.2 fold-change, false-discovery p-value < 0.05) dysregulated in unstressed condition, respectively. Similar findings were observed in Hyp with 1245 and 723 genes being significantly dysregulated in stressed adults, respectively. Differentially expressed genes converted to Homo sapiens orthologues were used for Ingenuity Pathway Analysis. The results showed alteration of pathways involved in neuroendocrine signaling, cholesterol metabolism and synaptogenesis. Enriched networks included lipid metabolism, molecular transport, and nervous system development. Analysis of putative upstream transcription regulators showed potential dysregulation of clocka and nr3c1 which control circadian rhythm, stress response, cholesterol metabolism and histone modifications. Several genes involved in epigenetic regulation were also affected by FLX, including dnmt3a, adarb1, adarb2, hdac4, hdac5, hdac8, and atf2. We report life-long disruptive effects of FLX on pathways associated with neuroendocrine signaling, stress response and the circadian rhythm, and all of which are implicated in the development of depressive disorders in humans. Our results raise concern for the persistent endocrine-disrupting potential of brief antidepressant exposure during embryonic development.
Collapse
Affiliation(s)
- Amin Nozari
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Vance L. Trudeau,
| |
Collapse
|
8
|
Organ-on-a-chip technology for the study of the female reproductive system. Adv Drug Deliv Rev 2021; 173:461-478. [PMID: 33831478 DOI: 10.1016/j.addr.2021.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Over the past decade, organs-on-a-chip and microphysiological systems have emerged as a disruptive in vitro technology for biopharmaceutical applications. By enabling new capabilities to engineer physiological living tissues and organ units in the precisely controlled environment of microfabricated devices, these systems offer great promise to advance the frontiers of basic and translational research in biomedical sciences. Here, we review an emerging body of interdisciplinary work directed towards harnessing the power of organ-on-a-chip technology for reproductive biology and medicine. The focus of this topical review is to provide an overview of recent progress in the development of microengineered female reproductive organ models with relevance to drug delivery and discovery. We introduce the engineering design of these advanced in vitro systems and examine their applications in the study of pregnancy, infertility, and reproductive diseases. We also present two case studies that use organ-on-a-chip design principles to model placental drug transport and hormonally regulated crosstalk between multiple female reproductive organs. Finally, we discuss challenges and opportunities for the advancement of reproductive organ-on-a-chip technology.
Collapse
|
9
|
Robinson J, Shikanov A, Harley B. Special Issue on Tissue Engineering for Women's Health. Tissue Eng Part A 2021; 26:685-687. [PMID: 32697675 DOI: 10.1089/ten.tea.2020.29017.jro] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jenny Robinson
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
| | | | - Brendan Harley
- Department of Chemical and Biological Engineering, University of Illinois at Urbana-Campaign, Urbana, Illinois, USA.,Cancer Center at Illinois (CCIL), and University of Illinois at Urbana-Campaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Campaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Arumugasaamy N, Rock KD, Kuo CY, Bale TL, Fisher JP. Microphysiological systems of the placental barrier. Adv Drug Deliv Rev 2020; 161-162:161-175. [PMID: 32858104 DOI: 10.1016/j.addr.2020.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Methods to evaluate maternal-fetal transport across the placental barrier have generally involved clinical observations after-the-fact, ex vivo perfused placenta studies, or in vitro Transwell assays. Given the ethical and technical limitations in these approaches, and the drive to understand fetal development through the lens of transport-induced injury, such as with the examples of thalidomide and Zika Virus, efforts to develop novel approaches to study these phenomena have expanded in recent years. Notably, within the past 10 years, placental barrier models have been developed using hydrogel, bioreactor, organ-on-a-chip, and bioprinting approaches. In this review, we discuss the biology of the placental barrier and endeavors to recapitulate this barrier in vitro using these approaches. We also provide analysis of current limitations to drug discovery in this context, and end with a future outlook.
Collapse
|
11
|
Gargus ES, Rogers HB, McKinnon KE, Edmonds ME, Woodruff TK. Engineered reproductive tissues. Nat Biomed Eng 2020; 4:381-393. [PMID: 32251392 PMCID: PMC7416444 DOI: 10.1038/s41551-020-0525-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Engineered male and female biomimetic reproductive tissues are being developed as autonomous in vitro units or as integrated multi-organ in vitro systems to support germ cell and embryo function, and to display characteristic endocrine phenotypic patterns, such as the 28-day human ovulatory cycle. In this Review, we summarize how engineered reproductive tissues facilitate research in reproductive biology, and overview strategies for making engineered reproductive tissues that might eventually allow the restoration of reproductive capacity in patients.
Collapse
Affiliation(s)
- Emma S Gargus
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hunter B Rogers
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly E McKinnon
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maxwell E Edmonds
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Edvinsson Å, Hoyer A, Hansson M, Kallak TK, Sundström-Poromaa I, Skalkidou A, Lager S. Placental glucocorticoid receptors are not affected by maternal depression or SSRI treatment. Ups J Med Sci 2020; 125:30-36. [PMID: 31960733 PMCID: PMC7054983 DOI: 10.1080/03009734.2019.1702126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Prenatal depression is common, with an estimate that up to one in five pregnant women suffers from depressive symptoms. Maternal depression is associated with poor pregnancy outcomes such as preterm birth and low birth-weight. Such outcomes possibly affect offspring development. Previous studies suggest placental RNA levels of the glucocorticoid receptor are altered by maternal depression or anxiety; this stress may affect the placenta of male and female foetuses differently. However, it is unknown if the protein levels and activity of this receptor are additionally affected in women with depressive symptoms or being pharmacologically treated for depression.Methods: In this study, we investigated whether the glucocorticoid receptor (NR3C1) in the placenta is affected by maternal depression and/or selective serotonin reuptake inhibitor (SSRIs) treatment. Placentas from 45 women with singleton, term pregnancies were analysed by Western blot to determine glucocorticoid receptor levels, and by DNA-binding capacity to measure glucocorticoid receptor activation.Results: There were no differences in levels of the glucocorticoid receptor or activity between groups (control, depressive symptoms, and SSRI treatment; n = 45). Similarly, there was no difference in placental glucocorticoid receptor levels or activity dependent upon foetal sex.Conclusion: Maternal depression and SSRI treatment do not affect the glucocorticoid receptors in the placenta.
Collapse
Affiliation(s)
- Åsa Edvinsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Angela Hoyer
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Malin Hansson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | | | | | - Alkistis Skalkidou
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Susanne Lager
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- CONTACT Susanne Lager Department of Women’s and Children’s Health, Uppsala University, Uppsala, 751 85, Sweden
| |
Collapse
|
13
|
Arumugasaamy N, Hurley-Novatny A, Lembong J, Kim PC, Fisher JP. Assessing SSRIs' effects on fetal cardiomyocytes utilizing placenta-fetus model. Acta Biomater 2019; 99:258-268. [PMID: 31536839 DOI: 10.1016/j.actbio.2019.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been shown to hinder cardiomyocyte signaling, raising concerns about their safety during pregnancy. Approaches to assess SSRI-induced effects on fetal cardiovascular cells following passage of drugs through the placental barrier in vitro have only recently become available. Herein, we report that the SSRIs, fluoxetine and sertraline, lead to slowed cardiomyocyte calcium oscillations and induce increased secretion of troponin T and creatine kinase-MB with reduced secretion of NT-proBNP, three key cardiac injury biomarkers. We show the cardiomyocyte calcium handling effects are further amplified following indirect exposure through a placental barrier model. These studies are the first to investigate the effects of placental barrier co-culture with cardiomyocytes in vitro and to show cardiotoxicity of SSRIs following passage through the placental barrier. STATEMENT OF SIGNIFICANCE: Use of selective serotonin reuptake inhibitors (SSRIs), a class of antidepressants, during pregnancy continues to rise despite multiple studies showing potential for detrimental effects on the developing fetus. SSRIs are particularly thought to slow cardiovascular electrical activity, such as ion signaling, yet few, if any, methods exist to rigorously study these drug-induced effects on human pregnancy and the developing fetus. Within this study, we utilized a placenta-fetus model to evaluate these drug-induced effects on cardiomyocytes, looking the drugs' effects on calcium handling and secretion of multiple cardiac injury biomarkers. Together, with existing literature, this study provides a platform for assessing pharmacologic effects of drugs on cells mimicking the fetus and the role the placenta plays in this process.
Collapse
|