1
|
Power L, Shuhmaher R, Houtz P, Chen J, Rudolph S, Yuen J, Machour M, Levy E, Wu L, Levenberg S, Whalen M, Chen Y, Kaplan DL. 3D Neurovascular Unit Tissue Model to Assess Responses to Traumatic Brain Injury. J Biomed Mater Res A 2024. [PMID: 39440483 DOI: 10.1002/jbm.a.37816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The neurovascular unit (NVU) is a critical interface in the central nervous system that links vascular interactions with glial and neural tissue. Disruption of the NVU has been linked to the onset and progression of neurodegenerative diseases. Despite its significance the NVU remains challenging to study in a physiologically relevant manner. Here, a 3D cell triculture model of the NVU is developed that incorporates human primary brain microvascular endothelial cells, astrocytes, and pericytes into a tissue system that can be sustained in vitro for several weeks. This tissue model helps recapitulate the complexity of the NVU and can be used to interrogate the mechanisms of disease and cell-cell interactions. The NVU tissue model displays elevated cell death and inflammatory responses following mechanical damage, to emulate traumatic brain injury (TBI) under controlled laboratory conditions, including lactate dehydrogenase (LDH) release, elevated inflammatory markers TNF-α and monocyte chemoattractant cytokines MCP-2 and MCP-3 and reduced expression of the tight junction marker ZO-1. This 3D tissue model serves as a tool for deciphering mechanisms of TBIs and immune responses associated with the NVU.
Collapse
Affiliation(s)
- Liam Power
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Rita Shuhmaher
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Philip Houtz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jinpeng Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - John Yuen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Emily Levy
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michael Whalen
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
2
|
González-Cruz RD, Wan Y, Burgess A, Calvao D, Renken W, Vecchio F, Franck C, Kesari H, Hoffman-Kim D. Cortical spheroids show strain-dependent cell viability loss and neurite disruption following sustained compression injury. PLoS One 2024; 19:e0295086. [PMID: 39159236 PMCID: PMC11332998 DOI: 10.1371/journal.pone.0295086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Sustained compressive injury (SCI) in the brain is observed in numerous injury and pathological scenarios, including tumors, ischemic stroke, and traumatic brain injury-related tissue swelling. Sustained compressive injury is characterized by tissue loading over time, and currently, there are few in vitro models suitable to study neural cell responses to strain-dependent sustained compressive injury. Here, we present an in vitro model of sustained compressive neural injury via centrifugation. Spheroids were made from neonatal rat cortical cells seeded at 4000 cells/spheroid and cultured for 14 days in vitro. A subset of spheroids was centrifuged at 104, 209, 313 or 419 rads/s for 2 minutes. Modeling the physical deformation of the spheroids via finite element analyses, we found that spheroids centrifuged at the aforementioned angular velocities experienced pressures of 10, 38, 84 and 149 kPa, respectively, and compressive (resp. tensile) strains of 10% (5%), 18% (9%), 27% (14%) and 35% (18%), respectively. Quantification of LIVE-DEAD assay and Hoechst 33342 nuclear staining showed that centrifuged spheroids subjected to pressures above 10 kPa exhibited significantly higher DNA damage than control spheroids at 2, 8, and 24 hours post-injury. Immunohistochemistry of β3-tubulin networks at 2, 8, and 24 hours post-centrifugation injury showed increasing degradation of microtubules over time with increasing strain. Our findings show that cellular injuries occur as a result of specific levels and timings of sustained tissue strains. This experimental SCI model provides a high throughput in vitro platform to examine cellular injury, to gain insights into brain injury that could be targeted with therapeutic strategies.
Collapse
Affiliation(s)
- Rafael D. González-Cruz
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Yang Wan
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Amina Burgess
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| | - Dominick Calvao
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| | - William Renken
- Department of Neuroscience, Brown University, Providence, RI, United States of America
| | - Francesca Vecchio
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| | - Christian Franck
- Center for Traumatic Brain Injury, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Haneesh Kesari
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| |
Collapse
|
3
|
Wan Y, González-Cruz RD, Hoffman-Kim D, Kesari H. A mechanics theory for the exploration of a high-throughput, sterile 3D in vitro traumatic brain injury model. Biomech Model Mechanobiol 2024; 23:1179-1196. [PMID: 38970736 DOI: 10.1007/s10237-024-01832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/19/2024] [Indexed: 07/08/2024]
Abstract
Brain injuries resulting from mechanical trauma represent an ongoing global public health issue. Several in vitro and in vivo models for traumatic brain injury (TBI) continue to be developed for delineating the various complex pathophysiological processes involved in its onset and progression. Developing an in vitro TBI model that is based on cortical spheroids is especially of great interest currently because they can replicate key aspects of in vivo brain tissue, including its electrophysiology, physicochemical microenvironment, and extracellular matrix composition. Being able to mechanically deform the spheroids are a key requirement in any effective in vitro TBI model. The spheroids' shape and size, however, make mechanically loading them, especially in a high-throughput, sterile, and reproducible manner, quite challenging. To address this challenge, we present an idea for a spheroid-based, in vitro TBI model in which the spheroids are mechanically loaded by being spun by a centrifuge. (An experimental demonstration of this new idea will be published shortly elsewhere.) An issue that can limit its utility and scope is that imaging techniques used in 2D and 3D in vitro TBI models cannot be readily applied in it to determine spheroid strains. In order to address this issue, we developed a continuum mechanics-based theory to estimate the spheroids' strains when they are being spun at a constant angular velocity. The mechanics theory, while applicable here to a special case of the centrifuge-based TBI model, is also of general value since it can help with the further exploration and development of TBI models.
Collapse
Affiliation(s)
- Yang Wan
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Rafael D González-Cruz
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, 02906, USA
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, 02906, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | - Haneesh Kesari
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
4
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Zhang J, Li A, Gu R, Tong Y, Cheng J. Role and regulatory mechanism of microRNA mediated neuroinflammation in neuronal system diseases. Front Immunol 2023; 14:1238930. [PMID: 37637999 PMCID: PMC10457161 DOI: 10.3389/fimmu.2023.1238930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the unique ability to degrade or block specific RNAs and regulate many cellular processes. Neuroinflammation plays the pivotal role in the occurrence and development of multiple central nervous system (CNS) diseases. The ability of miRNAs to enhance or restrict neuroinflammatory signaling pathways in CNS diseases is an emerging and important research area, including neurodegenerative diseases, stroke, and traumatic brain injury (TBI). In this review, we summarize the roles and regulatory mechanisms of recently identified miRNAs involved in neuroinflammation-mediated CNS diseases, aiming to explore and provide a better understanding and direction for the treatment of CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|
6
|
Liaudanskaya V, Fiore NJ, Zhang Y, Milton Y, Kelly MF, Coe M, Barreiro A, Rose VK, Shapiro MR, Mullis AS, Shevzov-Zebrun A, Blurton-Jones M, Whalen MJ, Symes AJ, Georgakoudi I, Nieland TJF, Kaplan DL. Mitochondria dysregulation contributes to secondary neurodegeneration progression post-contusion injury in human 3D in vitro triculture brain tissue model. Cell Death Dis 2023; 14:496. [PMID: 37537168 PMCID: PMC10400598 DOI: 10.1038/s41419-023-05980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Traumatic Brain injury-induced disturbances in mitochondrial fission-and-fusion dynamics have been linked to the onset and propagation of neuroinflammation and neurodegeneration. However, cell-type-specific contributions and crosstalk between neurons, microglia, and astrocytes in mitochondria-driven neurodegeneration after brain injury remain undefined. We developed a human three-dimensional in vitro triculture tissue model of a contusion injury composed of neurons, microglia, and astrocytes and examined the contributions of mitochondrial dysregulation to neuroinflammation and progression of injury-induced neurodegeneration. Pharmacological studies presented here suggest that fragmented mitochondria released by microglia are a key contributor to secondary neuronal damage progression after contusion injury, a pathway that requires astrocyte-microglia crosstalk. Controlling mitochondrial dysfunction thus offers an exciting option for developing therapies for TBI patients.
Collapse
Affiliation(s)
- Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Nicholas J Fiore
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Yuka Milton
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Marilyn F Kelly
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Marly Coe
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ariana Barreiro
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Victoria K Rose
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Matthew R Shapiro
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Adam S Mullis
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
7
|
Loussert-Fonta C, Stoppini L, Neuenschwander Y, Righini O, Prim D, Schmidt C, Heuschkel MO, Gomez Baisac L, Jovic´ M, Pfeifer ME, Extermann J, Roux A. Opening the black box of traumatic brain injury: a holistic approach combining human 3D neural tissue and an in vitro traumatic brain injury induction device. Front Neurosci 2023; 17:1189615. [PMID: 37397462 PMCID: PMC10308006 DOI: 10.3389/fnins.2023.1189615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Traumatic brain injury (TBI) is caused by a wide range of physical events and can induce an even larger spectrum of short- to long-term pathophysiologies. Neuroscientists have relied on animal models to understand the relationship between mechanical damages and functional alterations of neural cells. These in vivo and animal-based in vitro models represent important approaches to mimic traumas on whole brains or organized brain structures but are not fully representative of pathologies occurring after traumas on human brain parenchyma. To overcome these limitations and to establish a more accurate and comprehensive model of human TBI, we engineered an in vitro platform to induce injuries via the controlled projection of a small drop of liquid onto a 3D neural tissue engineered from human iPS cells. With this platform, biological mechanisms involved in neural cellular injury are recorded through electrophysiology measurements, quantification of biomarkers released, and two imaging methods [confocal laser scanning microscope (CLSM) and optical projection tomography (OPT)]. The results showed drastic changes in tissue electrophysiological activities and significant releases of glial and neuronal biomarkers. Tissue imaging allowed us to reconstruct the injured area spatially in 3D after staining it with specific nuclear dyes and to determine TBI resulting in cell death. In future experiments, we seek to monitor the effects of TBI-induced injuries over a prolonged time and at a higher temporal resolution to better understand the subtleties of the biomarker release kinetics and the cell recovery phases.
Collapse
Affiliation(s)
- Céline Loussert-Fonta
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Luc Stoppini
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Yoan Neuenschwander
- Micro-Nanotechnology Group, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Ophélie Righini
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Denis Prim
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Cédric Schmidt
- Micro-Nanotechnology Group, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Marc O. Heuschkel
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Loris Gomez Baisac
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Milica Jovic´
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Marc E. Pfeifer
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Jérôme Extermann
- Micro-Nanotechnology Group, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Adrien Roux
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| |
Collapse
|
8
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
9
|
Snapper DM, Reginauld B, Liaudanskaya V, Fitzpatrick V, Kim Y, Georgakoudi I, Kaplan DL, Symes AJ. Development of a novel bioengineered 3D brain-like tissue for studying primary blast-induced traumatic brain injury. J Neurosci Res 2023; 101:3-19. [PMID: 36200530 DOI: 10.1002/jnr.25123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022]
Abstract
Primary blast injury is caused by the direct impact of an overpressurization wave on the body. Due to limitations of current models, we have developed a novel approach to study primary blast-induced traumatic brain injury. Specifically, we employ a bioengineered 3D brain-like human tissue culture system composed of collagen-infused silk protein donut-like hydrogels embedded with human IPSC-derived neurons, human astrocytes, and a human microglial cell line. We have utilized this system within an advanced blast simulator (ABS) to expose the 3D brain cultures to a blast wave that can be precisely controlled. These 3D cultures are enclosed in a 3D-printed surrogate skull-like material containing media which are then placed in a holder apparatus inside the ABS. This allows for exposure to the blast wave alone without any secondary injury occurring. We show that blast induces an increase in lactate dehydrogenase activity and glutamate release from the cultures, indicating cellular injury. Additionally, we observe a significant increase in axonal varicosities after blast. These varicosities can be stained with antibodies recognizing amyloid precursor protein. The presence of amyloid precursor protein deposits may indicate a blast-induced axonal transport deficit. After blast injury, we find a transient release of the known TBI biomarkers, UCHL1 and NF-H at 6 h and a delayed increase in S100B at 24 and 48 h. This in vitro model will enable us to gain a better understanding of clinically relevant pathological changes that occur following primary blast and can also be utilized for discovery and characterization of biomarkers.
Collapse
Affiliation(s)
- Dustin M Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Bianca Reginauld
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Yeonho Kim
- Preclinical Behavior and Modeling Core, Uniformed Services University, Bethesda, Maryland, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Hanna ME, Pfister BJ. Advancements in in vitro models of traumatic brain injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
3D biocomposite culture enhances differentiation of dopamine-like neurons from SH-SY5Y cells: A model for studying Parkinson's disease phenotypes. Biomaterials 2022; 290:121858. [PMID: 36272218 DOI: 10.1016/j.biomaterials.2022.121858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
Abstract
Studies of underlying neurodegenerative processes in Parkinson's Disease (PD) have traditionally utilized cell cultures grown on two-dimensional (2D) surfaces. Biomimetic three-dimensional (3D) cell culture platforms have been developed to better emulate features of the brain's natural microenvironment. We here use our bioengineered brain-like tissue model, composed of a silk-hydrogel composite, to study the 3D microenvironment's contributions on the development and performance of dopaminergic-like neurons (DLNs). Compared with 2D culture, SH-SY5Y cells differentiated in 3D microenvironments were enriched for DLNs concomitant with a reduction in proliferative capacity during the neurodevelopmental process. Additionally, the 3D DLN cultures were more sensitive to oxidative stresses elicited by the PD-related neurotoxin 1-methyl-4-phenylpyridinium (MPP). MPP induced transcriptomic profile changes specific to 3D-differentiated DLN cultures, replicating the dysfunction of neuronal signaling pathways and mitochondrial dynamics implicated in PD. Overall, this physiologically-relevant 3D platform resembles a useful tool for studying dopamine neuron biology and interrogating molecular mechanisms underlying neurodegeneration in PD.
Collapse
|
12
|
Cortesi M, Giordano E. Non-destructive monitoring of 3D cell cultures: new technologies and applications. PeerJ 2022; 10:e13338. [PMID: 35582620 PMCID: PMC9107788 DOI: 10.7717/peerj.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
3D cell cultures are becoming the new standard for cell-based in vitro research, due to their higher transferrability toward in vivo biology. The lack of established techniques for the non-destructive quantification of relevant variables, however, constitutes a major barrier to the adoption of these technologies, as it increases the resources needed for the experimentation and reduces its accuracy. In this review, we aim at addressing this limitation by providing an overview of different non-destructive approaches for the evaluation of biological features commonly quantified in a number of studies and applications. In this regard, we will cover cell viability, gene expression, population distribution, cell morphology and interactions between the cells and the environment. This analysis is expected to promote the use of the showcased technologies, together with the further development of these and other monitoring methods for 3D cell cultures. Overall, an extensive technology shift is required, in order for monolayer cultures to be superseded, but the potential benefit derived from an increased accuracy of in vitro studies, justifies the effort and the investment.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, Australia
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Recent Advancements in In Vitro Models of Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Rathore RS, R Ayyannan S, Mahto SK. Emerging three-dimensional neuronal culture assays for neurotherapeutics drug discovery. Expert Opin Drug Discov 2022; 17:619-628. [DOI: 10.1080/17460441.2022.2061458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rahul S Rathore
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, UP, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, UP, India
| | - Sanjeev K Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, UP, India
| |
Collapse
|
15
|
Mazur RA, Yokosawa R, VandeVord PJ, Lampe KJ. The Need for Tissue Engineered Models to Facilitate the Study of Oligodendrocyte Progenitor Cells in Traumatic Brain Injury and Repair. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Bioengineered models of Parkinson's disease using patient-derived dopaminergic neurons exhibit distinct biological profiles in a 3D microenvironment. Cell Mol Life Sci 2022; 79:78. [PMID: 35044538 PMCID: PMC8908880 DOI: 10.1007/s00018-021-04047-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) in vitro culture systems using human induced pluripotent stem cells (hiPSCs) are useful tools to model neurodegenerative disease biology in physiologically relevant microenvironments. Though many successful biomaterials-based 3D model systems have been established for other neurogenerative diseases, such as Alzheimer's disease, relatively few exist for Parkinson's disease (PD) research. We employed tissue engineering approaches to construct a 3D silk scaffold-based platform for the culture of hiPSC-dopaminergic (DA) neurons derived from healthy individuals and PD patients harboring LRRK2 G2019S or GBA N370S mutations. We then compared results from protein, gene expression, and metabolic analyses obtained from two-dimensional (2D) and 3D culture systems. The 3D platform enabled the formation of dense dopamine neuronal network architectures and developed biological profiles both similar and distinct from 2D culture systems in healthy and PD disease lines. PD cultures developed in 3D platforms showed elevated levels of α-synuclein and alterations in purine metabolite profiles. Furthermore, computational network analysis of transcriptomic networks nominated several novel molecular interactions occurring in neurons from patients with mutations in LRRK2 and GBA. We conclude that the brain-like 3D system presented here is a realistic platform to interrogate molecular mechanisms underlying PD biology.
Collapse
|
17
|
Wu L, Chung JY, Cao T, Jin G, Edmiston WJ, Hickman S, Levy ES, Whalen JA, Abrams ESL, Degterev A, Lo EH, Tozzi L, Kaplan DL, El Khoury J, Whalen MJ. Genetic inhibition of RIPK3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. Cell Death Dis 2021; 12:1064. [PMID: 34753914 PMCID: PMC8578385 DOI: 10.1038/s41419-021-04333-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability with no specific effective therapy, in part because disease driving mechanisms remain to be elucidated. Receptor interacting protein kinases (RIPKs) are serine/threonine kinases that assemble multi-molecular complexes that induce apoptosis, necroptosis, inflammasome and nuclear factor kappa B activation. Prior studies using pharmacological inhibitors implicated necroptosis in the pathogenesis of TBI and stroke, but these studies cannot be used to conclusively demonstrate a role for necroptosis because of the possibility of off target effects. Using a model of cerebral contusion and RIPK3 and mixed lineage kinase like knockout (MLKL-/-) mice, we found evidence for activation of RIPK3 and MLKL and assembly of a RIPK1-RIPK3-MLKL necrosome complex in pericontusional brain tissue. Phosphorylated forms of RIPK3 and MLKL were detected in endothelium, CD11b + immune cells, and neurons, and RIPK3 was upregulated and activated in three-dimensional human endothelial cell cultures subjected to CCI. RIPK3-/- and MLKL-/- mice had reduced blood-brain barrier damage at 24 h (p < 0.05), but no differences in neuronal death (6 h, p = ns in CA1, CA3 and DG), brain edema (24 h, p = ns), or lesion size (4 weeks, p = ns) after CCI. RIPK3-/-, but not MLKL-/- mice, were protected against postinjury motor and cognitive deficits at 1-4 weeks (RIPK3-/- vs WT: p < 0.05 for group in wire grip, Morris water maze hidden platform trials, p < 0.05 for novel object recognition test, p < 0.01 for rotarod test). RIPK3-/- mice had reduced infiltrating leukocytes (p < 0.05 vs WT in CD11b + cells, microglia and macrophages), HMGB1 release and interleukin-1 beta activation at 24-48 h (p < 0.01) after CCI. Our data indicate that RIPK3 contributes to functional outcome after cerebral contusion by mechanisms involving inflammation but independent of necroptosis.
Collapse
Affiliation(s)
- Limin Wu
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Joon Yong Chung
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tian Cao
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.13291.380000 0001 0807 1581Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Gina Jin
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - William J. Edmiston
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Suzanne Hickman
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Emily S. Levy
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jordyn A. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Eliza Sophie LaRovere Abrams
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Alexei Degterev
- grid.67033.310000 0000 8934 4045Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA USA
| | - Eng H. Lo
- grid.32224.350000 0004 0386 9924Department of Radiology, Massachusetts General Hospital, Boston, MA 02115 USA ,grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Lorenzo Tozzi
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - David L. Kaplan
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - Joseph El Khoury
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Michael J. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
18
|
Dulla CG, Pitkänen A. Novel Approaches to Prevent Epileptogenesis After Traumatic Brain Injury. Neurotherapeutics 2021; 18:1582-1601. [PMID: 34595732 PMCID: PMC8608993 DOI: 10.1007/s13311-021-01119-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) is defined as an alteration in brain function or other evidence of brain pathology caused by an external force. When epilepsy develops following TBI, it is known as post-traumatic epilepsy (PTE). PTE occurs in a subset of patients suffering from different types and severities of TBI, occurs more commonly following severe injury, and greatly impacts the quality of life for patients recovering from TBI. Similar to other types of epilepsy, PTE is often refractory to drug treatment with standard anti-seizure drugs. No therapeutic approaches have proven successful in the clinic to prevent the development of PTE. Therefore, novel treatment strategies are needed to stop the development of PTE and improve the quality of life for patients after TBI. Interestingly, TBI represents an excellent clinical opportunity for intervention to prevent epileptogenesis as typically the time of initiation of epileptogenesis (i.e., TBI) is known, the population of at-risk patients is large, and animal models for preclinical studies of mechanisms and treatment targets are available. If properly identified and treated, there is a true opportunity to prevent epileptogenesis after TBI and stop seizures from ever happening. With that goal in mind, here we review previous attempts to prevent PTE both in animal studies and in humans, we examine how biomarkers could enable better-targeted therapeutics, and we discuss how genetic variation may predispose individuals to PTE. Finally, we highlight exciting new advances in the field that suggest that there may be novel approaches to prevent PTE that should be considered for further clinical development.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Asla Pitkänen
- A. I. Virtanen Institute, University of Eastern Finland, 70 211, Kuopio, Finland.
| |
Collapse
|
19
|
Zilberman A, Cornelison RC. Microphysiological models of the central nervous system with fluid flow. Brain Res Bull 2021; 174:72-83. [PMID: 34029679 DOI: 10.1016/j.brainresbull.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
There are over 1,000 described neurological and neurodegenerative disorders affecting nearly 100 million Americans - roughly one third of the U.S. population. Collectively, treatment of neurological conditions is estimated to cost $800 billion every year. Lowering this societal burden will require developing better model systems in which to study these diverse disorders. Microphysiological systems are promising tools for modeling healthy and diseased neural tissues to study mechanisms and treatment of neuropathology. One major benefit of microphysiological systems is the ability to incorporate biophysical forces, namely the forces derived from biological fluid flow. Fluid flow in the central nervous system (CNS) is a complex but important element of physiology, and pathologies as diverse as traumatic or ischemic injury, cancer, neurodegenerative disease, and natural aging have all been found to alter flow pathways. In this review, we summarize recent advances in three-dimensional microphysiological systems for studying the biology and therapy of CNS disorders and highlight the ability and growing need to incorporate biological fluid flow in these miniaturized model systems.
Collapse
Affiliation(s)
- Aleeza Zilberman
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States
| | - R Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States.
| |
Collapse
|
20
|
Dingle YTL, Bonzanni M, Liaudanskaya V, Nieland TJ, Kaplan DL. Integrated functional neuronal network analysis of 3D silk-collagen scaffold-based mouse cortical culture. STAR Protoc 2021; 2:100292. [PMID: 33537680 PMCID: PMC7841403 DOI: 10.1016/j.xpro.2020.100292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bioengineered 3D tunable neuronal constructs are a versatile platform for studying neuronal network functions, offering numerous advantages over existing technologies and providing for the discovery of new biological insights. Functional neural networks can be evaluated using calcium imaging and quantitatively described using network science. This protocol includes instructions for fabricating protein-based composite scaffolds, 3D in vitro culture of embryonic mouse cortical neurons, virally induced expression of GCaMP6f, wide-field calcium imaging, and computational analysis with open-source software and custom MATLAB code. For complete details on the use and execution of this protocol, please refer to Dingle et al. (2020).
Collapse
Affiliation(s)
- Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Corresponding author
| | - Mattia Bonzanni
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Corresponding author
| |
Collapse
|
21
|
Dingle YTL, Liaudanskaya V, Finnegan LT, Berlind KC, Mizzoni C, Georgakoudi I, Nieland TJF, Kaplan DL. Functional Characterization of Three-Dimensional Cortical Cultures for In Vitro Modeling of Brain Networks. iScience 2020; 23:101434. [PMID: 32805649 PMCID: PMC7452433 DOI: 10.1016/j.isci.2020.101434] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/27/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Three-dimensional (3D) in vitro cultures recapitulate key features of the brain including morphology, cell-cell and cell-extracellular matrix interactions, gradients of factors, and mechanical properties. However, there remains a need for experimental and computational tools to investigate network functions in these 3D models. To address this need, we present an experimental system based on 3D scaffold-based cortical neuron cultures in which we expressed the genetically encoded calcium indicator GCaMP6f to record neuronal activity at the millimeter-scale. Functional neural network descriptors were computed with graph-theory-based network analysis methods, showing the formation of functional networks at 3 weeks of culture. Changes to the functional network properties upon perturbations to glutamatergic neurotransmission or GABAergic neurotransmission were quantitatively characterized. The results illustrate the applicability of our 3D experimental system for the study of brain network development, function, and disruption in a biomimetic microenvironment.
Collapse
Affiliation(s)
- Yu-Ting L Dingle
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Liam T Finnegan
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Kyler C Berlind
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA.
| |
Collapse
|