1
|
Sun Q, Kong N, Zhao H, Zhang X, Tao Q, Jiang H, Xuan A, Li X. pH-sensitive and redox-responsive poly(tetraethylene glycol) nanoparticle-based platform for cancer treatment. NANOTECHNOLOGY 2024; 35:495707. [PMID: 39293467 DOI: 10.1088/1361-6528/ad7c54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Effective drug delivery with precise tumour targeting is crucial for cancer treatment. To address the challenges posed by the specificity and complexity of the tumour microenvironment, we developed a poly(tetraethylene glycol)-based disulfide nanoparticle (NP) platform and explored its potential in cancer treatment, focusing on drug loading and controlled release performance. Poly(tetraethylene glycol) NPs were characterised using nuclear magnetic resonance spectroscopy, mass spectrometry, and ultraviolet-visible spectroscopy. Additionally, we evaluated physicochemical properties, including dynamic light scattering, zeta potential analysis, drug loading capacity (DLC), and drug loading efficiency (DLE). The impact of NPs on the mouse colorectal cancer cell line (CT26) and NIH3T3 cells was assessed using a cytotoxicity assay, live/dead staining assay, flow cytometry, and confocal fluorescence microscopy. The experimental results align with the expected chemical structure and physicochemical properties of poly(tetraethylene glycol) NPs. These NPs exhibit high DLE (78.7%) and DLC (12%), with minimal changes in particle size over time in different media.In vitroexperiments revealed that the NPs can induce significant cytotoxicity and apoptosis in CT26 cells. Cellular uptake notably increases with increasing concentration and exposure time. The confocal microscopic analysis confirmed the effective distribution and accumulation of NPs within cells. In conclusion, poly(tetraethylene glycol) NPs hold promise for improving drug-delivery efficiency, offering potential advancements in cancer treatment.
Collapse
Affiliation(s)
- Qian Sun
- Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Nuocheng Kong
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Hanqing Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Xianwen Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Qimeng Tao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Hao Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Aili Xuan
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Xianming Li
- Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
- Department of Radiation Oncology, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
3
|
Twal S, Jaber N, Al-Remawi M, Hamad I, Al-Akayleh F, Alshaer W. Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting. RSC Adv 2024; 14:3070-3084. [PMID: 38239437 PMCID: PMC10795518 DOI: 10.1039/d3ra08074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
A dual stimuli-responsive nanocarrier was developed from smart biocompatible chitosan and soluplus graft copolymers. The copolymerization was investigated by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared (FTIR). The optimized chitosan-soluplus nanoparticles (CS-SP NPs) were further used for the encapsulation of a poorly water-soluble anticancer drug. Tamoxifen citrate (TC) was used as the model drug and it was loaded in CS-SP NPs. TC CS-SP NPs were characterized in terms of particle size, zeta potential, polydispersity, morphology, encapsulation efficiency, and physical stability. The nanoparticles showed homogenous spherical features with a size around 94 nm, a slightly positive zeta potential, and an encapsulation efficiency around 96.66%. Dynamic light scattering (DLS), in vitro drug release, and cytotoxicity confirmed that the created nano-system is smart and exhibits pH and temperature-responsive behavior. In vitro cellular uptake was evaluated by flow cytometry and confocal microscopy. The nanoparticles revealed a triggered increase in size upon reaching the lower critical solution temperature of SP, with 70% of drug release at acidic pH and 40 °C within the first hour and a 3.5-fold increase in cytotoxicity against MCF7 cells incubated at 40 °C. The cellular uptake study manifested that the prepared nanoparticles succeeded in delivering drug molecules to MCF7 and MDA-MB-231 cells. In summary, the distinctive characteristics provided by these novel CS-SP NPs result in a promising nano-platform for effective drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Shrouq Twal
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan (+962) 797683190
- Faculty of Health Sciences, American University of Madaba Amman 11821 Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan Amman 11733 Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan (+962) 797683190
| | - Islam Hamad
- Faculty of Health Sciences, American University of Madaba Amman 11821 Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan (+962) 797683190
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan Amman 11942 Jordan (+962) 790823678
| |
Collapse
|
4
|
Wei D, Sun Y, Zhu H, Fu Q. Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics. ACS NANO 2023; 17:23223-23261. [PMID: 38041800 DOI: 10.1021/acsnano.3c06019] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Stimuli-responsive polymers can respond to internal stimuli, such as reactive oxygen species (ROS), glutathione (GSH), and pH, biological stimuli, such as enzymes, and external stimuli, such as lasers and ultrasound, etc., by changing their hydrophobicity/hydrophilicity, degradability, ionizability, etc., and thus have been widely used in biomedical applications. Due to the characteristics of the tumor microenvironment (TME), stimuli-responsive polymers that cater specifically to the TME have been extensively used to prepare smart nanovehicles for the targeted delivery of therapeutic and diagnostic agents to tumor tissues. Compared to conventional drug delivery nanosystems, TME-responsive nanosystems have many advantages, such as high sensitivity, broad applicability among different tumors, functional versatility, and improved biosafety. In recent years, a great deal of research has been devoted to engineering efficient stimuli-responsive polymeric nanosystems, and significant improvement has been made to both cancer diagnosis and therapy. In this review, we summarize some recent research advances involving the use of stimuli-responsive polymer nanocarriers in drug delivery, tumor imaging, therapy, and theranostics. Various chemical stimuli will be described in the context of stimuli-responsive nanosystems. Accordingly, the functional chemical groups responsible for the responsiveness and the strategies to incorporate these groups into the polymer will be discussed in detail. With the research on this topic expending at a fast pace, some innovative concepts, such as sequential and cascade drug release, NIR-II imaging, and multifunctional formulations, have emerged as popular strategies for enhanced performance, which will also be included here with up-to-date illustrations. We hope that this review will offer valuable insights for the selection and optimization of stimuli-responsive polymers to help accelerate their future applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hu Zhu
- Maoming People's Hospital, Guangdong 525000, China
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
5
|
Liu Y, Wang D, Liu H, Liu L, Li S, Zhou Z, Lu L, Liu X, He L, He D, Yu CY, Wei H. A Clinically Translatable Ternary Platinum(IV) Prodrug for Synergistically Reversing Drug Resistance . J Med Chem 2023; 66:4045-4058. [PMID: 36897884 DOI: 10.1021/acs.jmedchem.2c01924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Scalable production of a clinically translatable formulation with enhanced therapeutic efficacy against cisplatin-resistant tumors without the use of any clinically unapproved reagents and additional manipulation remains a challenge. For this purpose, we report herein the construction of TPP-Pt-acetal-CA based on all commercially available, clinically approved reagents consisting of a cinnamaldehyde (CA) unit for reactive oxygen species generation, a mitochondrially targeted triphenylphosphonium (TPP)-modified Pt(IV) moiety for mitochondrial dysfunction, and an intracellular acidic pH-cleavable acetal link between these two moieties. The resulting self-assembled, stabilized TPP-Pt-acetal-CA nanoparticles mediated an IC50 value approximately 6-fold lower than that of cisplatin in A549/DDP cells and a tumor weight reduction 3.6-fold greater than that of cisplatin in A549/DDP tumor-bearing BALB/c mice with insignificant systematic toxicity due to the synergistic mitochondrial dysfunction and markedly amplified oxidative stress. Therefore, this study presents the first example of a clinically translatable Pt(IV) prodrug with enhanced efficiency for synergistically reversing drug resistance.
Collapse
Affiliation(s)
- Ying Liu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dun Wang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hongbing Liu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Li Liu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Shuang Li
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zongtao Zhou
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Linyin Lu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Xuyue Liu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Lifang He
- College of Life Science, Hengyang Normal University, Hengyang 421001, China
| | - Dongxiu He
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| |
Collapse
|
6
|
Docking Design of the Different Microcapsules in Aqueous Solution and Its Quantitative On-Off Study. Polymers (Basel) 2023; 15:polym15051131. [PMID: 36904372 PMCID: PMC10007416 DOI: 10.3390/polym15051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
To avoid risk, spacecraft docking technologies can transport batches of different astronauts or cargoes to a space station. Before now, spacecraft-docking multicarrier/multidrug delivery systems have not been reported on. Herein, inspired by spacecraft docking technology, a novel system including two different docking units, one made of polyamide (PAAM) and on of polyacrylic acid (PAAC), grafted respectively onto polyethersulfone (PES) microcapsules, is designed, based on intermolecular hydrogen bonds in aqueous solution. VB12 and vancomycin hydrochloride were chosen as the release drugs. The release results show that the docking system is perfect, and has a good responsiveness to temperature when the grafting ratio of PES-g-PAAM and PES-g-PAAC is close to 1:1. Below 25 °C, this system exhibited an "off" effect because the polymer chains on the microcapsule's surface produced intermolecular hydrogen bonds. Above 25 °C, when the hydrogen bonds were broken, the microcapsules separated from each other, and the system exhibited an "on" state. The results provide valuable guidance for improving the feasibility of multicarrier/multidrug delivery systems.
Collapse
|
7
|
Smart Polymeric Micelles for Anticancer Hydrophobic Drugs. Cancers (Basel) 2022; 15:cancers15010004. [PMID: 36612002 PMCID: PMC9817890 DOI: 10.3390/cancers15010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has become one of the deadliest diseases in our society. Surgery accompanied by subsequent chemotherapy is the treatment most used to prolong or save the patient's life. Still, it carries secondary risks such as infections and thrombosis and causes cytotoxic effects in healthy tissues. Using nanocarriers such as smart polymer micelles is a promising alternative to avoid or minimize these problems. These nanostructured systems will be able to encapsulate hydrophilic and hydrophobic drugs through modified copolymers with various functional groups such as carboxyls, amines, hydroxyls, etc. The release of the drug occurs due to the structural degradation of these copolymers when they are subjected to endogenous (pH, redox reactions, and enzymatic activity) and exogenous (temperature, ultrasound, light, magnetic and electric field) stimuli. We did a systematic review of the efficacy of smart polymeric micelles as nanocarriers for anticancer drugs (doxorubicin, paclitaxel, docetaxel, lapatinib, cisplatin, adriamycin, and curcumin). For this reason, we evaluate the influence of the synthesis methods and the physicochemical properties of these systems that subsequently allow an effective encapsulation and release of the drug. On the other hand, we demonstrate how computational chemistry will enable us to guide and optimize the design of these micelles to carry out better experimental work.
Collapse
|
8
|
Wang D, Zhang N, Yang T, Zhang Y, Jing X, Zhou Y, Long J, Meng L. Amino acids and doxorubicin as building blocks for metal ions-driven self-assembly of biodegradable polyprodrugs for tumor theranostics. Acta Biomater 2022; 147:245-257. [PMID: 35487428 DOI: 10.1016/j.actbio.2022.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
On-demand designed theranostics nanoagents show promising applications for next-generation precision-and-personalized oncotherapy. Researchers have since aimed to develop nanoplatforms that can efficiently deliver drugs and contrast medium to tumor and release active ingredients in response to tumor microenvironment (TME) conditions. Herein, we propose a modular strategy, and develop a series of nanoplatforms based on metal-coordinated-polyprodrugs for cancer theranostics. The polyprodrugs were synthesized through a click-reaction between amino acid and doxorubicin (DOX) with dipropiolate. The backbones of the polyprodrugs had intrinsic sensitivities to pH and/or GSH, and provided abundant -COOH, -NH2, or -S-S- to chelate with functional metal ions and further self-assembled to form different morphologies. Dicysteine, which contains disulfide bond (-S-S-), was chosen to copolymerize with DOX and triethylene glycol dipropiolate (TEP) to prepare the pH/GSH dual-responsive polyprodrug poly(dicysteine-co-TEP-co-DOX) (pDTD), then separately coordinated with Gd3+, Fe3+, and Mn2+ to construct nanoplatforms pDTD@M (M representing the metal ions). In vitro and in vivo investigations suggest the metal-coordinated-polyprodrug nanoplatforms have good magnetic resonance imaging (MRI) ability and efficient tumor-growth inhibition with high safety. The design strategy of nanoplatforms based on metal-coordinated-polyprodrugs provides a new idea for on-demand construction of promising theranostics agents. STATEMENT OF SIGNIFICANCE: Compared to small molecule antitumor drugs, polymeric drugs have high drug loading ratio and are easily enriched at the tumor site to achieve improved therapy efficacy. This work utilizes click reactions to link amino acids with anticancer drugs to produce polymeric drugs that are degraded in response to tumor microenvironment and released small molecule antitumor drugs mainly in tumor sites, and subtly utilizes the coordination of amino acid to chelate MRI functional metal ion to realize enhanced MRI imaging mediated tumor therapy. This strategy provides a new idea for the convenient construction of polymeric drugs for tumor theranostics.
Collapse
Affiliation(s)
- Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China.
| | - Ning Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Tingting Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Yun Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Xunan Jing
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China; Instrumental analysis center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- School of Life Science and Technology; Ministry of Education Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China; Instrumental analysis center, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
9
|
Zhou J, Wang K, Ding S, Zeng L, Miao J, Cao Y, Zhang X, Tian G, Bian XW. Anti-VEGFR2-labeled enzyme-immobilized metal-organic frameworks for tumor vasculature targeted catalytic therapy. Acta Biomater 2022; 141:364-373. [PMID: 35063709 DOI: 10.1016/j.actbio.2022.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 02/07/2023]
Abstract
Tumor vasculature-targeting therapy either using angiogenesis inhibitors or vascular disrupting agents offers an important new avenue for cancer therapy. In this work, a tumor-specific catalytic nanomedicine for enhanced tumor ablation accompanied with tumor vasculature disruption and angiogenesis inhibition was developed through a cascade reaction with enzyme glucose oxidase (GOD) modified on Fe-based metal organic framework (Fe-MOF) coupled with anti-VEGFR2.The GOD enzyme could catalyze the intratumoral glucose decomposition to trigger tumor starvation and yet provide abundant hydrogen peroxide as the substrate for Fenton-like reaction catalyzed by Fe-MOF to produce sufficient highly toxic hydroxyl radicals for enhanced chemodynamic therapy and instantly attacked tumor vascular endothelial cells to destroy the existing vasculature, while the anti-VEGFR2 antibody guided the nanohybrids to target blood vessels and block the VEGF-VEGFR2 connection to prevent angiogenesis. Both in vitro and in vivo results demonstrated the smart nanohybrids could cause the tumor cell apoptosis and vasculature disruption, and exhibited enhanced tumor regression in A549 xenograft tumor-bearing mice model. This study suggested that synergistic targeting tumor growth and its vasculature network would be more promising for curing solid tumors. STATEMENT OF SIGNIFICANCE: Cooperative destruction of tumor cells and tumor vasculature offers a potential avenue for cancer therapy. Under this premise, a tumor-specific catalytic nanomedicine for enhanced tumor ablation accompanied with tumor vasculature disruption and new angiogenesis inhibition was developed through a cascade reaction with glucose oxidase modified on the surface of iron-based metal organic framework coupled with VEGFR2 antibody. The resulting data demonstrated that a therapeutic regimen targeting tumor growth as well as its vasculature with both existing vasculature disruption and neovasculature inhibition would be more potential for complete eradication of tumors.
Collapse
Affiliation(s)
- Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Kai Wang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Xiao Zhang
- International Joint Research Center for Precision Biotherapy, and Department of Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China.
| |
Collapse
|
10
|
Luo J, Zhang S, Zhu P, Liu W, Du J. Fabrication of pH/Redox Dual-Responsive Mixed Polyprodrug Micelles for Improving Cancer Chemotherapy. Front Pharmacol 2022; 12:802785. [PMID: 35185545 PMCID: PMC8850636 DOI: 10.3389/fphar.2021.802785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
In this work, we prepared pH/redox dual-responsive mixed polyprodrug micelles (MPPMs), which were co-assembled from two polyprodrugs, namely, poly(ethylene glycol) methyl ether-b-poly (β-amino esters) conjugated with doxorubicin (DOX) via redox-sensitive disulfide bonds (mPEG-b-PAE-ss-DOX) and poly(ethylene glycol) methyl ether-b-poly (β-amino esters) conjugated with DOX via pH-sensitive cis-aconityl bonds (mPEG-b-PAE-cis-DOX) for effective anticancer drug delivery with enhanced therapeutic efficacy. The particle size of MPPMs was about 125 nm with low polydispersity index, indicating the reasonable size and uniform dispersion. The particle size, zeta-potential, and critical micelle concentration (CMC) of MPPMs at different mass ratios of the two kinds of polyprodrugs were dependent on pH value and glutathione (GSH) level, suggesting the pH and redox responsiveness. The drug release profiles in vitro of MPPMs at different conditions were further studied, showing the pH—and redox-triggered drug release mechanism. Confocal microscopy study demonstrated that MPPMs can effectively deliver doxorubicin molecules into MDA-MB-231 cells. Cytotoxicity assay in vitro proved that MPPMs possessed high toxic effect against tumor cells including A549 and MDA-MB-231. The results of in vivo experiments demonstrated that MPPMs were able to effectively inhibit the tumor growth with reduced side effect, leading to enhanced survival rate of tumor-bearing mice. Taken together, these findings revealed that this pH/redox dual-responsive MPPMs could be a potential nanomedicine for cancer chemotherapy. Furthermore, it could be a straightforward way to fabricate the multifunctional system basing on single stimuli-responsive polyprodrugs.
Collapse
|
11
|
Liang YX, Sun XY, Xu DZ, Huang JR, Tang Q, Lu ZL, Liu R. H 2O 2-Responsive amphiphilic polymer with aggregation-induced emission (AIE) for DOX delivery and tumor therapy. Bioorg Chem 2021; 119:105559. [PMID: 34952244 DOI: 10.1016/j.bioorg.2021.105559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 01/01/2023]
Abstract
Stimuli-responsive drug delivery systems (DDSs) based on amphiphilic polymers have attracted much attention. In this study, we reported an innovative H2O2-responsive amphiphilic polymer (TBP), bearing a H2O2-sensitive phenylboronic ester, AIE fluorophore tetraphenylethene (TPE) hydrophobic, and polyethylene glycol hydrophilic (PEG) moieties. TBP could self-assemble into micelles with an encapsulation efficiency as high as 74.9% for doxorubicin (DOX) in aqueous solution. In the presence of H2O2, TBP micelles was decomposed by oxidation, hydrolysis and rearrangement, leading to almost 80% DOX release from TBP@DOX micelles. TBP and the corresponding degradation products were biocompatible, while TBP@DOX micelles only displayed obvious toxicity toward cancer cells. Drug delivery process was clearly monitored by confocal laser scanning microscopic (CLSM) and flow cytometry (FCM) analysis. Moreover, in vivo anticancer study showed that TBP@DOX micelles were accumulated in tumor region of nude mice and effectively inhibited tumor growth. The results suggested that the reported H2O2-responsive amphiphilic polymer displayed great potential in drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Ya-Xuan Liang
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Xue-Yi Sun
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - De-Zhong Xu
- China National Institute for Food and Drug Control, Institute of Chemical Drug Control, TianTanXiLi 2, Beijing 100050, PR China
| | - Jun-Ru Huang
- College of Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Quan Tang
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Zhong-Lin Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Rui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
12
|
Zhou Q, Mohammed F, Wang Y, Wang J, Lu N, Li J, Ge Z. Hypoxia-responsive block copolymer polyprodrugs for complementary photodynamic-chemotherapy. J Control Release 2021; 339:130-142. [PMID: 34560158 DOI: 10.1016/j.jconrel.2021.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023]
Abstract
The inherent hypoxic microenvironment of solid tumors has an important influence on tumor growth, distant metastasis, and invasiveness. The heterogeneous distribution of hypoxic regions inside tumors limits the therapeutic efficacy of O2-assisted therapeutic strategy (e.g. photodynamic therapy (PDT)). On the other hand, the hypoxia-activable prodrugs cannot work effectively in the regions with enough O2 concentration. To address the issues, we prepare a block copolymer polyprodrug consisting of polyethylene glycol (PEG) and copolymerized segments of nitroimidazole-linked camptothecin (CPT) methacrylate and 5,10,15,20-tetraphenylporphyrin (TPP)-containing methacrylate monomers for complementary photodynamic-chemotherapy. The polyprodrug can self-assemble into polymeric micelles in aqueous solution with suitable size and high stability. After intravenous injection, the polyprodrug micelles show tumor accumulation. Followed by light irradiation (650 nm) at tumor sites, TPP moieties induce singlet oxygen (1O2) production in the oxygen-rich area to exert PDT and cause transformation of the oxygen-rich areas into hypoxia. Simultaneously, in the hypoxic areas, the hypoxia-responsive polyprodrugs can be activated to release free CPT due to the cleavage of nitroimidazole linkages. The polyprodrug micelles with the segments for PDT and hypoxia-activable CPT efficiently suppress the growth of HeLa tumors. The well-defined polyprodrug amphiphiles offer an effective strategy to overcome the disadvantages of single treatment of PDT or hypoxia-responsive prodrugs for complementary photodynamic-chemotherapy of cancers.
Collapse
Affiliation(s)
- Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fathelrahman Mohammed
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingbo Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Junjie Li
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
13
|
Qiao L, Yuan X, Peng H, Shan G, Gao M, Yi X, He X. Targeted delivery and stimulus-responsive release of anticancer drugs for efficient chemotherapy. Drug Deliv 2021; 28:2218-2228. [PMID: 34668829 PMCID: PMC8530493 DOI: 10.1080/10717544.2021.1986602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Chemotherapy is currently an irreplaceable strategy for cancer treatment. Doxorubicin hydrochloride (DOX) is a clinical first-line drug for cancer chemotherapy. While its efficacy for cancer treatment is greatly compromised due to invalid enrichment or serious side effects. To increase the content of intracellular targets and boost the antitumor effect of DOX, a novel biotinylated hyaluronic acid-guided dual-functionalized CaCO3-based drug delivery system (DOX@BHNP) with target specificity and acid-triggered drug-releasing capability was synthesized. The ability of the drug delivery system on enriching DOX in mitochondria and nucleus, which further cause significant tumor inhibition, were investigated to provide a more comprehensive understanding of this CaCO3-based drug delivery system. After targeted endocytosis by tumor cells, DOX could release faster in the weakly acidic lysosome, and further enrich in mitochondria and nucleus, which cause mitochondrial destruction and nuclear DNA leakage, and result in cell cycle arrest and cell apoptosis. Virtually, an effective tumor inhibition was observed in vitro and in vivo. More importantly, the batch-to-batch variation of DOX loading level in the DOX@BHNP system is negligible, and no obvious histological changes in the main organs were observed, indicating the promising application of this functionalized drug delivery system in cancer treatment.
Collapse
Affiliation(s)
- Lei Qiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xue Yuan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Hui Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Guisong Shan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Xiaoyan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Zhao M, Yang X, Fu H, Chen C, Zhang Y, Wu Z, Duan Y, Sun Y. Immune/Hypoxic Tumor Microenvironment Regulation-Enhanced Photodynamic Treatment Realized by pH-Responsive Phase Transition-Targeting Nanobubbles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32763-32779. [PMID: 34235912 DOI: 10.1021/acsami.1c07323] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to a special pathological type of triple-negative breast cancer (TNBC) and the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her 2), targeted therapies are not effective. The lack of effective treatment drugs and insensitivity to the current single-treatment methods are the biggest problems that we face with the TNBC treatment. Therefore, new strategies to achieve selective treatment and further visual efficacy evaluation will be powerful tools against TNBC. Herein, a novel tumor-targeted nanosized ultrasound contrast nanobubble loaded with chlorin e6 (Ce6), metformin (MET), and perfluorohexane (PFH) and covalently connected to the anti-PD-L1 peptide (DPPA-1) in the outer shell was fabricated. When accumulated in acidic tumor tissues, poly(ethylene glycol) (PEG) ligands detach, and DPPA-1 is exposed for programmed death-ligand 1 (PD-L1) targeting and blocking. The released metformin can relieve hypoxia by inhibiting mitochondrial complex I in the tumor microenvironment (TME) and enhance the therapeutic efficacy of Ce6 while synergizing with DPPA-1 by reducing PD-L1 expression. More significantly, photodynamic therapy (PDT) using multifunctional tumor-targeted nanosized ultrasound contrast agents (PD-L1-targeted pH-sensitive chlorin e6 (Ce6) and metformin (MET) drug-loaded phase transitional nanoparticles (Ce6/MET NPs-DPPA-1)) combined with PD-L1 checkpoint blocking can not only reduce tumor-mediated immunosuppression but also produce strong antitumor immunity. This finding provides a new idea for constructing multifunctional TNBC therapeutic nanoagents.
Collapse
Affiliation(s)
- Meng Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yanhua Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
15
|
Zhong XC, Shi MH, Liu HN, Chen JJ, Wang TT, Lin MT, Zhang ZT, Zhou Y, Lu YY, Xu WH, Gao JQ, Xu DH, Han M, Chen YD. Mitochondrial targeted doxorubicin derivatives delivered by ROS-responsive nanocarriers to breast tumor for overcoming of multidrug resistance. Pharm Dev Technol 2020; 26:21-29. [PMID: 33070673 DOI: 10.1080/10837450.2020.1832116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a serious challenge in chemotherapy and also a major threat to breast cancer treatment. As an intracellular energy factory, mitochondria provide energy for drug efflux and are deeply involved in multidrug resistance. Mitochondrial targeted delivery of doxorubicin can overcome multidrug resistance by disrupting mitochondrial function. By incorporating a reactive oxygen species (ROS)-responsive hydrophobic group into the backbone structure of hyaluronic acid - a natural ligand for the highly expressed CD44 receptor on tumor surfaces, a novel ROS-responsive and CD44-targeting nano-carriers was constructed. In this study, mitochondria-targeted triphenylphosphine modified-doxorubicin (TPP-DOX) and amphipathic ROS-responsive hyaluronic acid derivatives (HA-PBPE) were synthesized and confirmed by 1H NMR. The nanocarriers TPP-DOX @ HA-PBPE was prepared in a regular shape and particle size of approximately 200 nm. Compared to free DOX, its antitumor activity in vitro and tumor passive targeting in vivo has been enhanced. The ROS-responsive TPP-DOX@HA-PBPE nanocarriers system provide a promising strategy for the reverse of MDR and efficient delivery of doxorubicin derivatives into drug-resistant cancer cells.
Collapse
Affiliation(s)
- Xin-Cheng Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ming-Han Shi
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hui-Na Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jie-Jian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Tian-Tian Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng-Ting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhen-Tao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Ying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Wen-Hong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong-Hang Xu
- Department of Pharmacy, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Ding Chen
- Department of Breast Surgery, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic China
| |
Collapse
|
16
|
Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020; 25:molecules25173984. [PMID: 32882966 PMCID: PMC7504796 DOI: 10.3390/molecules25173984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - João B. Vicente
- Institute of Technology, Chemistry and Biology António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
- Correspondence: (J.B.V.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
- Correspondence: (J.B.V.); (J.S.)
| |
Collapse
|