1
|
Park G, Rim YA, Sohn Y, Nam Y, Ju JH. Replacing Animal Testing with Stem Cell-Organoids : Advantages and Limitations. Stem Cell Rev Rep 2024; 20:1375-1386. [PMID: 38639829 PMCID: PMC11319430 DOI: 10.1007/s12015-024-10723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Various groups including animal protection organizations, medical organizations, research centers, and even federal agencies such as the U.S. Food and Drug Administration, are working to minimize animal use in scientific experiments. This movement primarily stems from animal welfare and ethical concerns. However, recent advances in technology and new studies in medicine have contributed to an increase in animal experiments throughout the years. With the rapid increase in animal testing, concerns arise including ethical issues, high cost, complex procedures, and potential inaccuracies.Alternative solutions have recently been investigated to address the problems of animal testing. Some of these technologies are related to stem cell technologies, such as organ-on-a-chip, organoids, and induced pluripotent stem cell models. The aim of the review is to focus on stem cell related methodologies, such as organoids, that can serve as an alternative to animal testing and discuss its advantages and limitations, alongside regulatory considerations.Although stem cell related methodologies has shortcomings, it has potential to replace animal testing. Achieving this requires further research on stem cells, with potential societal and technological benefits.
Collapse
Affiliation(s)
- Guiyoung Park
- School of Biopharmaceutical and Medical Sciences, Health & Wellness College, Sungshin Women's University, 55, Dobong-ro 76ga-gil, Gangbuk-gu, Seoul, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 4 3, Seoul, 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Yipscell Inc, L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, Korea.
| | - Ji Hyeon Ju
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 4 3, Seoul, 06591, Republic of Korea.
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Yipscell Inc, L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, Korea.
| |
Collapse
|
2
|
Huang YH, Vaez Ghaemi R, Cheon J, Yadav VG, Frostad JM. The mechanical effects of chemical stimuli on neurospheres. Biomech Model Mechanobiol 2024; 23:1319-1329. [PMID: 38613619 DOI: 10.1007/s10237-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/10/2024] [Indexed: 04/15/2024]
Abstract
The formulation of more accurate models to describe tissue mechanics necessitates the availability of tools and instruments that can precisely measure the mechanical response of tissues to physical loads and other stimuli. In this regard, neuroscience has trailed other life sciences owing to the unavailability of representative live tissue models and deficiency of experimentation tools. We previously addressed both challenges by employing a novel instrument called the cantilevered-capillary force apparatus (CCFA) to elucidate the mechanical properties of mouse neurospheres under compressive forces. The neurospheres were derived from murine stem cells, and our study was the first of its kind to investigate the viscoelasticity of living neural tissues in vitro. In the current study, we demonstrate the utility of the CCFA as a broadly applicable tool to evaluate tissue mechanics by quantifying the effect that oxidative stress has on the mechanical properties of neurospheres. We treated mouse neurospheres with non-cytotoxic levels of hydrogen peroxide and subsequently evaluated the storage and loss moduli of the tissues under compression and tension. We observed that the neurospheres exhibit viscoelasticity consistent with neural tissue and show that elastic modulus decreases with increasing size of the neurosphere. Our study yields insights for establishing rheological measurements as biomarkers by laying the groundwork for measurement techniques and showing that the influence of a particular treatment may be misinterpreted if the size dependence is ignored.
Collapse
Affiliation(s)
- Yun-Han Huang
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Roza Vaez Ghaemi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - James Cheon
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Vikramaditya G Yadav
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| | - John M Frostad
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
- Department of Food Science, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Rubby MF, Fonder C, Uchayash S, Liang X, Sakaguchi DS, Que L. Assessment of the Behaviors of an In Vitro Brain Model On-Chip under Shockwave Impacts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33246-33258. [PMID: 38905518 DOI: 10.1021/acsami.4c08026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Herein we report the assessment of the effects of shockwave (SW) impacts on adult rat hippocampal progenitor cell (AHPC) neurospheres (NSs), which are used as in vitro brain models, for enhancing our understanding of the mechanisms of traumatic brain injury (TBI). The assessment has been achieved by using culture dishes and a new microchip. The microchip allows the chemicals released from the brain models cultured inside the cell culture chamber under SW impacts to diffuse to the nanosensors in adjacent sensor chambers through built-in diffusion barriers, which are used to prevent the cells from entering the sensor chambers, thereby mitigating the biofouling issues of the sensor surface. Experiments showed the negative impact of the SW on the viability, proliferation, and differentiation of the cells within the NSs. A qPCR gene expression analysis was performed and appeared to confirm some of the immunocytochemistry (ICC) results. Finally, we demonstrated that the microchip can be used to monitor lactate dehydrogenase (LDH) released from the AHPC-NSs subjected to SW impacts. As expected, LDH levels changed when AHPC-NSs were injured by SW impacts, verifying this chip can be used for assessing the degrees of injuries to AHPC-NSs by monitoring LDH levels. Taken together, these results suggest the feasibility of using the chip to better understand the interactions between SW impacts and in vitro brain models, paving the way for potentially establishing in vitro TBI models on a chip.
Collapse
Affiliation(s)
- Md Fazlay Rubby
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Catherine Fonder
- Molecular, Cellular, and Developmental Biology Program, Iowa State University, Ames, Iowa 50011, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Sajid Uchayash
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xiaogan Liang
- Department of Mechanical Engineering, University of Michigan at Ann Arbor, Ann Arbor, Michigan 48109, United States
| | - Donald S Sakaguchi
- Molecular, Cellular, and Developmental Biology Program, Iowa State University, Ames, Iowa 50011, United States
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Neuroscience Program, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Long Que
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Shi W, Jang S, Kuss MA, Alimi OA, Liu B, Palik J, Tan L, Krishnan MA, Jin Y, Yu C, Duan B. Digital Light Processing 4D Printing of Poloxamer Micelles for Facile Fabrication of Multifunctional Biocompatible Hydrogels as Tailored Wearable Sensors. ACS NANO 2024; 18:7580-7595. [PMID: 38422400 DOI: 10.1021/acsnano.3c12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The lack of both digital light processing (DLP) compatible and biocompatible photopolymers, along with inappropriate material properties required for wearable sensor applications, substantially hinders the employment of DLP 3D printing in the fabrication of multifunctional hydrogels. Herein, we discovered and implemented a photoreactive poloxamer derivative, Pluronic F-127 diacrylate, which overcomes these limitations and is optimized to achieve DLP 3D printed micelle-based hydrogels with high structural complexity, resolution, and precision. In addition, the dehydrated hydrogels exhibit a shape-memory effect and are conformally attached to the geometry of the detection point after rehydration, which implies the 4D printing characteristic of the fabrication process and is beneficial for the storage and application of the device. The excellent cytocompatibility and in vivo biocompatibility further strengthen the potential application of the poloxamer micelle-based hydrogels as a platform for multifunctional wearable systems. After processing them with a lithium chloride (LiCl) solution, multifunctional conductive ionic hydrogels with antifreezing and antiswelling properties along with good transparency and water retention are easily prepared. As capacitive flexible sensors, the DLP 3D printed micelle-based hydrogel devices exhibit excellent sensitivity, cycling stability, and durability in detecting multimodal deformations. Moreover, the DLP 3D printed conductive hydrogels are successfully applied as real-time human motion and tactile sensors with satisfactory sensing performances even in a -20 °C low-temperature environment.
Collapse
Affiliation(s)
- Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Seonmin Jang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Olawale A Alimi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jayden Palik
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
| | - Li Tan
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
| | - Mena Asha Krishnan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
5
|
Harley-Troxell ME, Dhar M. Assembling Spheroids of Rat Primary Neurons Using a Stress-Free 3D Culture System. Int J Mol Sci 2023; 24:13506. [PMID: 37686310 PMCID: PMC10488062 DOI: 10.3390/ijms241713506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Neural injuries disrupt the normal functions of the nervous system, whose complexities limit current treatment options. Because of their enhanced therapeutic effects, neurospheres have the potential to advance the field of regenerative medicine and neural tissue engineering. Methodological steps can pose challenges for implementing neurosphere assemblies; for example, conventional static cultures hinder yield and throughput, while the presence of the necrotic core, time-consuming methodology, and high variability can slow their progression to clinical application. Here we demonstrate the optimization of primary neural cell-derived neurospheres, developed using a high-throughput, stress-free, 3D bioreactor. This process provides a necessary baseline for future studies that could develop co-cultured assemblies of stem cells combined with endothelial cells, and/or biomaterials and nanomaterials for clinical therapeutic use. Neurosphere size and neurite spreading were evaluated under various conditions using Image J software. Primary neural cells obtained from the hippocampi of three-day-old rat pups, when incubated for 24 h in a reactor coated with 2% Pluronic and seeded on Poly-D-Lysine-coated plates establish neurospheres suitable for therapeutic use within five days. Most notably, neurospheres maintained high cell viability of ≥84% and expressed the neural marker MAP2, neural marker β-Tubulin III, and glial marker GFAP at all time points when evaluated over seven days. Establishing these factors reduces the variability in developing neurospheres, while increasing the ease and output of the culture process and maintaining viable cellular constructs.
Collapse
Affiliation(s)
| | - Madhu Dhar
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
6
|
Liang S, Su Y, Yao R. 3D Bioprinting of Induced Pluripotent Stem Cells and Disease Modeling. Handb Exp Pharmacol 2023; 281:29-56. [PMID: 36882603 DOI: 10.1007/164_2023_646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Patient-derived induced pluripotent stem cells (iPSCs), carrying the genetic information of the disease and capable of differentiating into multilineages in vitro, are valuable for disease modeling. 3D bioprinting enables the assembly of the cell-laden hydrogel into hierarchically three-dimensional architectures that recapitulate the natural tissues and organs. Investigation of iPSC-derived physiological and pathological models constructed by 3D bioprinting is a fast-growing field still in its infancy. Distinctly from cell lines and adult stem cells, iPSCs and iPSC-derived cells are more susceptible to external stimuli which can disturb the differentiation, maturation, and organization of iPSCs and their progeny. Here we discuss the fitness of iPSCs and 3D bioprinting from the perspective of bioinks and printing technologies. We provide a timely review of the progress of 3D bioprinting iPSC-derived physiological and pathological models by exemplifying the relatively prosperous cardiac and neurological fields. We also discuss scientific rigors and highlight the remaining issues to offer a guiding framework for bioprinting-assisted personalized medicine.
Collapse
Affiliation(s)
- Shaojun Liang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering,, Tsinghua University, Beijing, China
| | - Yijun Su
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering,, Tsinghua University, Beijing, China
| | - Rui Yao
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering,, Tsinghua University, Beijing, China.
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Modeling Central Nervous System Injury In Vitro: Current Status and Promising Future Strategies. Biomedicines 2022; 11:biomedicines11010094. [PMID: 36672601 PMCID: PMC9855387 DOI: 10.3390/biomedicines11010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The central nervous system (CNS) injury, which occurs because of mechanical trauma or ischemia/hypoxia, is one of the main causes of mortality and morbidity in the modern society. Until know, despite the fact that numerous preclinical and clinical studies have been undertaken, no significant neuroprotective strategies have been discovered that could be used in the brain trauma or ischemia treatment. Although there are many potential explanations for the failure of those studies, it is clear that there are questions regarding the use of experimental models, both in vivo and in vitro, when studying CNS injury and searching new therapeutics. Due to some ethical issues with the use of live animals in biomedical research, implementation of experimental strategies that prioritize the use of cells and tissues in the in vitro environment has been encouraged. In this review, we examined some of the most commonly used in vitro models and the most frequently utilized cellular platforms in the research of traumatic brain injury and cerebral ischemia. We also proposed some future strategies that could improve the usefulness of these studies for better bench-to-bedside translational outcomes.
Collapse
|
8
|
Hanna ME, Pfister BJ. Advancements in in vitro models of traumatic brain injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Shao X, Liu Z, Mao S, Han L. Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Adv Healthc Mater 2022; 11:e2200760. [PMID: 35841392 DOI: 10.1002/adhm.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health and socioeconomic problem, associated with prolonged and complex neurological aftermaths, including a variety of functional deficits and neurodegenerative disorders. Research on the long-term effects has highlighted that TBI shall be regarded as a chronic health condition. The initiation and exacerbation of TBI involve a series of mechanical stimulations and perturbations, accompanied by mechanotransduction events within the brain tissues. Mechanobiology thus offers a unique perspective and likely promising approach to unravel the underlying molecular and biochemical mechanisms leading to neural cells dysfunction after TBI, which may contribute to the discovery of novel targets for future clinical treatment. This article investigates TBI and the subsequent brain dysfunction from a lens of neuromechanobiology. Following an introduction, the mechanobiological insights are examined into the molecular pathology of TBI, and then an overview is given of the latest research technologies to explore neuromechanobiology, with particular focus on microfluidics and biomaterials. Challenges and prospects in the current field are also discussed. Through this article, it is hoped that extensive technical innovation in biomedical devices and materials can be encouraged to advance the field of neuromechanobiology, paving potential ways for the research and rehabilitation of neurotrauma and neurological diseases.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China
| | - Zhongqian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
10
|
Mazur RA, Yokosawa R, VandeVord PJ, Lampe KJ. The Need for Tissue Engineered Models to Facilitate the Study of Oligodendrocyte Progenitor Cells in Traumatic Brain Injury and Repair. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Newman Frisch A, Debbi L, Shuhmaher M, Guo S, Levenberg S. Advances in vascularization and innervation of constructs for neural tissue engineering. Curr Opin Biotechnol 2022; 73:188-197. [PMID: 34481245 DOI: 10.1016/j.copbio.2021.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023]
Abstract
A growing number of technologies are being developed to promote vascularization and innervation in engineered tissues. Organ-on-a-chip, organoid and 3D printing technologies, as well as pre-vascularized and oriented scaffolds, have been employed for vascularization and innervation of engineered tissues both in vivo and in vitro. Both vascularization and innervation are critical for neural tissue engineering, as these complex tissues require provision of both blood and nerves. As such, this review will have particular focus on neural tissue engineering. We examine state-of-the-art approaches for tissue vascularization and innervation and identify promising methods for developing vascularized and innervated engineered neural constructs.
Collapse
Affiliation(s)
- Abigail Newman Frisch
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lior Debbi
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Margarita Shuhmaher
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shaowei Guo
- The First Affiliated Hospital, Shantou University Medical College, Shantou 515000, China
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
12
|
Bang S, Lee S, Hwang KS, Kim J, Choi N, Kim HN. Three-Dimensional Axotomy and Regeneration on Open-Access Microfluidic Platform. IEEE Trans Nanobioscience 2021; 21:395-404. [PMID: 34941516 DOI: 10.1109/tnb.2021.3136869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An increasing number of patients are suffering from central nervous system (CNS) injury, including spinal cord injury. However, no suitable treatment is available for such patients as yet. Various platforms have been utilized to recapitulate CNS injuries. However, animal models and in vitro two-dimensional (2D)-based cell culture platforms have limitations, such as genetic heterogeneity and loss of the neural-circuit ultrastructure. To overcome these limitations, we developed a method for performing axotomy on an open-access three-dimensional (3D) neuron-culture platform. In this platform, the 3D alignment of axons in the brain tissue was recapitulated. For direct access to the cultured axons, the bottom of the 3D neuron-culture device was disassembled, enabling exposure of the neuron-laden Matrigel to the outside. The mechanical damage to the axons was recapitulated by puncturing the neuron-laden Matrigel using a pin. Thus, precise axotomy of three-dimensionally aligned axons could be performed. Furthermore, it was possible to fill the punctuated area by re-injecting Matrigel. Consequently, neurites regenerated into re-injected Matrigel. Moreover, it was confirmed that astrocytes can be co-cultured on this open-access platform without interfering with the axon alignment. The proposed open-access platform is expected to be useful for developing treatment techniques for CNS injuries.
Collapse
|
13
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|