1
|
Franko R, de Almeida Monteiro Melo Ferraz M. Exploring the potential of in vitro extracellular vesicle generation in reproductive biology. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70007. [PMID: 39238549 PMCID: PMC11375532 DOI: 10.1002/jex2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
The interest in the growing field of extracellular vesicle (EV) research highlights their significance in intercellular signalling and the selective transfer of biological information between donor and recipient cells. EV studies have provided valuable insights into intercellular communication mechanisms, signal identification and their involvement in disease states, offering potential avenues for manipulating pathological conditions, detecting biomarkers and developing drug-delivery systems. While our understanding of EV functions in reproductive tissues has significantly progressed, exploring their potential as biomarkers for infertility, therapeutic interventions and enhancements in assisted reproductive technologies remains to be investigated. This knowledge gap stems partly from the difficulties associated with large-scale EV production relevant to clinical applications. Most existing studies on EV production rely on conventional 2D cell culture systems, characterized by suboptimal EV yields and a failure to replicate in vivo conditions. This results in the generation of EVs that differ from their in vivo counterparts. Hence, this review firstly delves into the importance of EVs in reproduction to then expand on current techniques for in vitro EV production, specifically examining diverse methods of culture and the potential of bioengineering technologies to establish innovative systems for enhanced EV production.
Collapse
Affiliation(s)
- Roksan Franko
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| | - Marcia de Almeida Monteiro Melo Ferraz
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| |
Collapse
|
2
|
Wu D, Zhao X, Xie J, Yuan R, Li Y, Yang Q, Cheng X, Wu C, Wu J, Zhu N. Physical modulation of mesenchymal stem cell exosomes: A new perspective for regenerative medicine. Cell Prolif 2024; 57:e13630. [PMID: 38462759 PMCID: PMC11294442 DOI: 10.1111/cpr.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exo) offer promising therapeutic potential for various refractory diseases, presenting a novel therapeutic strategy. However, their clinical application encounters several obstacles, including low natural secretion, uncontrolled biological functions and inherent heterogeneity. On the one hand, physical stimuli can mimic the microenvironment dynamics where MSC-Exo reside. These factors influence not only their secretion but also, significantly, their biological efficacy. Moreover, physical factors can also serve as techniques for engineering exosomes. Therefore, the realm of physical factors assumes a crucial role in modifying MSC-Exo, ultimately facilitating their clinical translation. This review focuses on the research progress in applying physical factors to MSC-Exo, encompassing ultrasound, electrical stimulation, light irradiation, intrinsic physical properties, ionizing radiation, magnetic field, mechanical forces and temperature. We also discuss the current status and potential of physical stimuli-affected MSC-Exo in clinical applications. Furthermore, we address the limitations of recent studies in this field. Based on this, this review provides novel insights to advance the refinement of MSC-Exo as a therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Dan Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiansheng Zhao
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jiaheng Xie
- Department of Plastic SurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Ruoyue Yuan
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yue Li
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Quyang Yang
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiujun Cheng
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Changyue Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jinyan Wu
- Department of DermatologyChongzhou People's HospitalChengduChina
| | - Ningwen Zhu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
- Department of PlasticReconstructive and Burns Surgery, Huashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Liu Y, Pierre CJ, Joshi S, Sun L, Li Y, Guan J, Favor JDL, Holmes C. Cell-Specific Impacts of Surface Coating Composition on Extracellular Vesicle Secretion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29737-29759. [PMID: 38805212 DOI: 10.1021/acsami.4c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Biomaterial properties have recently been shown to modulate extracellular vesicle (EV) secretion and cargo; however, the effects of substrate composition on EV production remain underexplored. This study investigates the impacts of surface coatings composed of collagen I (COLI), fibronectin (FN), and poly l-lysine (PLL) on EV secretion for applications in therapeutic EV production and to further understanding of how changes in the extracellular matrix microenvironment affect EVs. EV secretion from primary bone marrow-derived mesenchymal stromal cells (BMSCs), primary adipose-derived stem cells (ASCs), HEK293 cells, NIH3T3 cells, and RAW264.7 cells was characterized on the different coatings. Expression of EV biogenesis genes and cellular adhesion genes was also analyzed. COLI coatings significantly decreased EV secretion in RAW264.7 cells, with associated decreases in cell viability and changes in EV biogenesis-related and cell adhesion genes at day 4. FN coatings increased EV secretion in NIH3T3 cells, while PLL coatings increased EV secretion in ASCs. Surface coatings had significant effects on the capacity of EVs derived from RAW264.7 and NIH3T3 cells to impact in vitro macrophage proliferation. Overall, surface coatings had different cell-specific effects on EV secretion and in vitro functional capacity, thus highlighting the potential of substrate coatings to further the development of clinical EV production systems.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Clifford J Pierre
- Department of Health, Nutrition, and Food Science, College of Education, Health and Human Sciences, Florida State University, 1114 West Call Street, Tallahasee, Florida 32306, United States
| | - Sailesti Joshi
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Li Sun
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahasee, Florida 32306-4300, United States
| | - Yan Li
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Jingjiao Guan
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Justin D La Favor
- Department of Health, Nutrition, and Food Science, College of Education, Health and Human Sciences, Florida State University, 1114 West Call Street, Tallahasee, Florida 32306, United States
| | - Christina Holmes
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| |
Collapse
|
4
|
Zhu Y, Liao ZF, Mo MH, Xiong XD. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Vasculopathies and Angiogenesis: Therapeutic Applications and Optimization. Biomolecules 2023; 13:1109. [PMID: 37509145 PMCID: PMC10377109 DOI: 10.3390/biom13071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs), as part of the cellular secretome, have emerged as essential cell-cell communication regulators in multiple physiological and pathological processes. Previous studies have widely reported that mesenchymal stromal cell-derived EVs (MSC-EVs) have potential therapeutic applications in ischemic diseases or regenerative medicine by accelerating angiogenesis. MSC-EVs also exert beneficial effects on other vasculopathies, including atherosclerosis, aneurysm, vascular restenosis, vascular calcification, vascular leakage, pulmonary hypertension, and diabetic retinopathy. Consequently, the potential of MSC-EVs in regulating vascular homeostasis is attracting increasing interest. In addition to native or naked MSC-EVs, modified MSC-EVs and appropriate biomaterials for delivering MSC-EVs can be introduced to this area to further promote their therapeutic applications. Herein, we outline the functional roles of MSC-EVs in different vasculopathies and angiogenesis to elucidate how MSC-EVs contribute to maintaining vascular system homeostasis. We also discuss the current strategies to optimize their therapeutic effects, which depend on the superior bioactivity, high yield, efficient delivery, and controlled release of MSC-EVs to the desired regions, as well as the challenges that need to be overcome to allow their broad clinical translation.
Collapse
Affiliation(s)
- Ying Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Zhao-Fu Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Miao-Hua Mo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
5
|
Qu Q, Fu B, Long Y, Liu ZY, Tian XH. Current Strategies for Promoting the Large-scale Production of Exosomes. Curr Neuropharmacol 2023; 21:1964-1979. [PMID: 36797614 PMCID: PMC10514529 DOI: 10.2174/1570159x21666230216095938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 02/18/2023] Open
Abstract
Exosomes, as nanoscale biological vesicles, have been shown to have great potential for biomedical applications. However, the low yield of exosomes limits their application. In this review, we focus on methods to increase exosome yield. Two main strategies are used to increase exosome production, one is based on genetic manipulation of the exosome biogenesis and release pathway, and the other is by pretreating parent cells, changing the culture method or adding different components to the medium. By applying these strategies, exosomes can be produced on a large scale to facilitate their practical application in the clinic.
Collapse
Affiliation(s)
- Qing Qu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Bin Fu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Yong Long
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Zi-Yu Liu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Xiao-Hong Tian
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| |
Collapse
|
6
|
Sun D, Mou S, Chen L, Yang J, Wang R, Zhong A, Wang W, Tong J, Wang Z, Sun J. High yield engineered nanovesicles from ADSC with enriched miR-21-5p promote angiogenesis in adipose tissue regeneration. Biomater Res 2022; 26:83. [PMID: 36528594 PMCID: PMC9758932 DOI: 10.1186/s40824-022-00325-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been found to have a great potential for soft tissue repair due to various biological functions, including pro-angiogenesis and low immunogenicity. However, the low yield and heterogeneity of MSC-EVs limited their clinical transformation. This study was designed to develop a novel adipose-derived stem cell engineered nanovesicles (ADSC-NVs) with high production and explore its pro-angiogenetic effect and application in adipose tissue regeneration. METHODS Adipose-derived stem cell-derived extracellular vesicles (ADSC-EVs) were isolated from an EVs-free culture medium for human ADSCs (hADSCs). ADSC-NVs were prepared by sequentially extruding ADSCs followed by iodixanol density gradient ultracentrifugation and were compared with ADSC-EVs in morphology, size distribution, protein contents and yield. The pro-angiogenetic effect of ADSC-NVs in different doses (0, 5, 20 and 80 μg/mL) in vitro was determined using transwell assay, tube formation assay, western blot and qRT-PCR. In vivo, BALB/c nude mice were administered injection of a mixture of fat granules and different dose of ADSC-NVs and grafts were harvested at 12 weeks post-transplantation for further analysis. By analyzing the weight and volume of grafts and histological evaluation, we investigated the effect of ADSC-NVs in vessel formation and adipose tissue regeneration. RESULTS Our results showed yield of purified ADSC-NVs was approximately 20 times more than that of ADSC-EVs secreted by the same number of ADSCs. In vitro, both ADSC-NVs and ADSC-EVs exhibited a dose-dependent pro-angiogenetic effect, despite their distinct miRNA profiles. These effects of ADSC-NVs may be mediated by enriched miR-21-5p via PTEN inhibition and PI3K/p-Akt signaling activation. Furthermore, after a mixed injection of ADSC-NVs, vessel formation and adipose regeneration were observed in vivo in fat implants. CONCLUSIONS Our study developed a potent alternative of ADSC-EVs. ADSC-NVs have a high pro-angiogenesis potential and can be used as cell-free therapeutic biomaterials in soft tissue regeneration.
Collapse
Affiliation(s)
- Di Sun
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Shan Mou
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Lifeng Chen
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Jie Yang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Rongrong Wang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Aimei Zhong
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Wei Wang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Jing Tong
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Zhenxing Wang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Jiaming Sun
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| |
Collapse
|
7
|
Yao Y, Jiang Y, Song J, Wang R, Li Z, Yang L, Wu W, Zhang L, Peng Q. Exosomes as Potential Functional Nanomaterials for Tissue Engineering. Adv Healthc Mater 2022:e2201989. [PMID: 36253093 DOI: 10.1002/adhm.202201989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Indexed: 11/10/2022]
Abstract
Exosomes are cell-derived extracellular vesicles of 40-160 nm diameter, which carry numerous biomolecules and transmit information between cells. They are used as functional nanomaterials with great potential in biomedical areas, such as active agents and delivery systems for advanced drug delivery and disease therapy. In recent years, potential applications of exosomes in tissue engineering have attracted significant attention, and some critical progress has been made. This review gives a complete picture of exosomes and their applications in the regeneration of various tissues, such as the central nervous systems, kidney, bone, cartilage, heart, and endodontium. Approaches employed for modifying exosomes to equip them with excellent targeting capacity are summarized. Furthermore, current concerns and future outlook of exosomes in tissue engineering are discussed.
Collapse
Affiliation(s)
- Yang Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Yuhuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Jialu Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Ruojing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Zhaoping Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Weimin Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Luyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| |
Collapse
|
8
|
Li J, Yan S, Han W, Dong Z, Li J, Wu Q, Fu X. Phospholipid-grafted PLLA electrospun micro/nanofibers immobilized with small extracellular vesicles from rat adipose mesenchymal stem cells promote wound healing in diabetic rats. Regen Biomater 2022; 9:rbac071. [PMID: 36246766 PMCID: PMC9555996 DOI: 10.1093/rb/rbac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) can deliver a variety of bioactive factors to create a favorable local microenvironment, thereby holding huge potential in chronic wound repair. However, free sEVs administrated intravenously or locally are usually cleared rapidly, resulting in an insufficient duration of the efficacy. Thus, strategies that enable optimized retention and release profiles of sEVs at wound sites are desirable. Herein, we fabricated novel functional phosphoethanolamine phospholipid-grafted poly-l-lactic acid micro/nanofibers (DSPE-PLLA) to carry and retain sEVs from rat adipose MSCs, enabling the slow local release of sEVs. Our results showed that sEVs@DSPE-PLLA promoted the proliferation, migration and gene expression (Col I, Col III, TGF-β, α-SMA, HIF-1α) of fibroblasts. It also promoted keratinocyte proliferation. In addition, sEVs@DSPE-PLLA helped polarize macrophages toward the M2 phenotype by increasing the expression of anti-inflammatory genes (Arginase 1, CD 206, IL-10) and inhibiting the expression of pro-inflammatory genes (IL-1β, TNF-α). Further in vivo study in diabetic rat models showed that sEVs@DSPE-PLLA improved the wound-healing process by alleviating the inflammatory responses, stimulating cell proliferation, collagen deposition and angiogenesis. These results highlight the potential of using DSPE-grafted scaffolds for extracellular vesicle immobilization and suggest sEVs@DSPE-PLLA micro/nanofibers as promising functional wound dressings for diabetic wounds.
Collapse
Affiliation(s)
- Jing Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Shunshun Yan
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Weiju Han
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Zixuan Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Junliang Li
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Qi Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Xiaoling Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| |
Collapse
|
9
|
Zhu M, Zhang R, Mao Z, Fang J, Ren F. Topographical biointerface regulating cellular functions for bone tissue engineering. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mingyu Zhu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Rui Zhang
- Department of Prosthodontics Stomatology Center Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - Zhixiang Mao
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Ju Fang
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Fuzeng Ren
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| |
Collapse
|
10
|
Feng ZY, Zhang QY, Tan J, Xie HQ. Techniques for increasing the yield of stem cell-derived exosomes: what factors may be involved? SCIENCE CHINA. LIFE SCIENCES 2022; 65:1325-1341. [PMID: 34637101 PMCID: PMC8506103 DOI: 10.1007/s11427-021-1997-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Exosomes are nano-scale extracellular vesicles secreted by cells and constitute an important part in the cell-cell communication. The main contents of the exosomes include proteins, microRNAs, and lipids. The mechanism and safety of stem cell-derived exosomes have rendered them a promising therapeutic strategy for regenerative medicine. Nevertheless, limited yield has restrained full explication of their functions and clinical applications To address this, various attempts have been made to explore the up- and down-stream manipulations in a bid to increase the production of exosomes. This review has recapitulated factors which may influence the yield of stem cell-derived exosomes, including selection and culture of stem cells, isolation and preservation of the exosomes, and development of artificial exosomes.
Collapse
Affiliation(s)
- Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|