1
|
Rahman RT, Koo BI, Jang J, Lee DJ, Choi S, Lee JB, Nam YS. Multilayered collagen-lipid hybrid nanovesicles for retinol stabilization and efficient skin delivery. Int J Pharm 2024; 661:124409. [PMID: 38955241 DOI: 10.1016/j.ijpharm.2024.124409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024]
Abstract
Lipid-based nanocarriers have been extensively utilized for the solubilization and cutaneous delivery of water-insoluble active ingredients in skincare formulations. However, their practical application is often limited by structural instability, leading to premature release and degradation of actives. Here we present highly robust multilamellar nanovesicles, prepared by the polyionic self-assembly of unilamellar vesicles with hydrolyzed collagen peptides, to stabilize all-trans-retinol and enhance its cutaneous delivery. Our results reveal that the reinforced multilayer structure substantially enhances dispersion stability under extremely harsh conditions, like freeze-thaw cycles, and stabilizes the encapsulated retinol. Interestingly, these multilamellar vesicles exhibit significantly lower cytotoxicity to human dermal fibroblasts than their unilamellar counterparts, likely due to their smaller particle number per weight, minimizing potential disruptions to cellular membranes. In artificial skin models, retinol-loaded multilamellar vesicles effectively upregulate collagen-related gene expression while suppressing the synthesis of metalloproteinases. These findings suggest that the robust multilamellar vesicles can serve as effective nanocarriers for the efficient delivery and stabilization of bioactive compounds in cutaneous applications.
Collapse
Affiliation(s)
- Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Bon Il Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jihui Jang
- Innovation Lab, Cosmax Research & Innovation Center, 662 Sampyong-dong, Bundang-gu, Seongnam, Gyeonggi-do 13486, Republic of Korea
| | - Dong Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab, Cosmax Research & Innovation Center, 662 Sampyong-dong, Bundang-gu, Seongnam, Gyeonggi-do 13486, Republic of Korea.
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Koo BI, Lee DJ, Rahman RT, Nam YS. Biomimetic Multilayered Lipid Nanovesicles for Potent Protein Vaccination. Adv Healthc Mater 2024; 13:e2304109. [PMID: 38849130 DOI: 10.1002/adhm.202304109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Lipid vesicles are widely used for drug and gene delivery, but their structural instability reduces in vivo efficacy and requires specialized handling. To address these limitations, strategies like lipid cross-linking and polymer-lipid conjugation are suggested to enhance stability and biological efficacy. However, the in vivo metabolism of these altered lipids remains unclear, necessitating further studies. A new stabilization technique without chemical modification is urgently needed. Here, a bio-mimetic approach for fabricating robust multilamellar lipid vesicles to enhance in vivo delivery and stabilization of protein antigens is presented. This method leverages 1-O-acylceramide, a natural skin lipid, to facilitate the self-assembly of lipid nanovesicles. Incorporating 1-O-acylceramide, anchoring lipid bilayers akin to its role in the stratum corneum, provides excellent stability under environmental stresses, including freeze-thaw cycles. Encapsulating ovalbumin as a model antigen and the adjuvant monophosphoryl lipid A demonstrates the vesicle's potential as a nanovaccine platform. In vitro studies show enhanced immune responses with both unilamellar and multilamellar vesicles, but in vivo analyses highlight the superior efficiency of multilamellar vesicles in inducing higher antibody and cytokine levels. This work suggests ceramide-induced multilamellar lipid vesicles as an effective nanovaccine platform for enhanced antigen delivery and stability.
Collapse
Affiliation(s)
- Bon Il Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Zhang H, Heng X, Yang H, Rao Y, Yao L, Zhu Z, Chen G, Chen H. Metal-Free Atom Transfer Radical Polymerization to Prepare Recylable Micro-Adjuvants for Dendritic Cell Vaccine. Angew Chem Int Ed Engl 2024; 63:e202402853. [PMID: 38598262 DOI: 10.1002/anie.202402853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
In the development of dendritic cell (DC) vaccines, the maturation of DCs is a critical stage. Adjuvants play a pivotal role in the maturation of DCs, with a major concern being to ensure both efficacy and safety. This study introduces an innovative approach that combines high efficacy with safety through the synthesis of micro-adjuvants grafted with copolymers of 2-(methacrylamido) glucopyranose (MAG) and methacryloxyethyl trimethyl ammonium chloride (DMC). The utilization of metal-free surface-initiated atom transfer radical polymerization enables the production of safe and recyclable adjuvants. These micrometer-sized adjuvants surpass the optimal size range for cellular endocytosis, enabling the retrieval and reuse of them during the ex vivo maturation process, mitigating potential toxicity concerns associated with the endocytosis of non-metabolized nanoparticles. Additionally, the adjuvants exhibit a "micro-ligand-mediated maturation enhancement" effect for DC maturation. This effect is influenced by the shape of the particle, as evidenced by the distinct promotion effects of rod-like and spherical micro-adjuvants with comparable sizes. Furthermore, the porous structure of the adjuvants enables them to function as cargo-carrying "micro-shuttles", releasing antigens upon binding to DCs to facilitate efficient antigen delivery.
Collapse
Affiliation(s)
- Hengyuan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xingyu Heng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yu Rao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhichen Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
4
|
Heng X, Shan F, Yang H, Hu J, Feng R, Tian W, Chen G, Chen H. Glycopolymers With On/Off Anchors: Confinement Effect on Regulating Dendritic Cells. Adv Healthc Mater 2023; 12:e2301536. [PMID: 37590030 DOI: 10.1002/adhm.202301536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Insufficient activation or over-activation of T cells due to the dendritic cells (DCs) state can cause negative effects on immunotherapy, making it crucial for DCs to maintain different states in different treatments. Polysaccharides are one of the most studied substances to promote DCs maturation. However, in many methods, optimizing the spatial dimension of the interaction between polysaccharides and cells is often overlooked. Therefore, in this study, a new strategy from the perspective of spatial dimension is proposed to regulate the efficacy of polysaccharides in promoting DCs maturation. An anchoring molecule (DMA) is introduced to existing glycopolymers for the confinement effect, and the effect can be turned off by oxidation of DMA. Among the prepared on-confined (PMD2 ), off-confined (PMD2 -O), and norm (PM2 ) glycopolymers, PMD2 and PMD2 -O show the best and worst results, respectively, in terms of the amount of binding to DCs and the effect on promoting DCs maturation. This sufficiently shows that the turn-on and off of confinement effect can regulate the maturation of DCs by polysaccharides. Based on the all-atom molecular dynamics (MD) simulation, the mechanism of difference in the confinement effect is explained. This simple method can also be used to regulate other molecule-cell interactions to guide cell behavior.
Collapse
Affiliation(s)
- Xingyu Heng
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Fangjian Shan
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - He Yang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Hu
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Ruyan Feng
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Wende Tian
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Gaojian Chen
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Hong Chen
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
5
|
Li Y, Champion JA. Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 2022; 189:114462. [PMID: 35934126 DOI: 10.1016/j.addr.2022.114462] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Self-assembling proteins are valuable building blocks for constructing drug nanocarriers due to their self-assembly behavior, monodispersity, biocompatibility, and biodegradability. Genetic and chemical modifications allow for modular design of protein nanocarriers with effective drug encapsulation, targetability, stimuli responsiveness, and in vivo half-life. Protein nanocarriers have been developed to deliver various therapeutic molecules including small molecules, proteins, and nucleic acids with proven in vitro and in vivo efficacy. This article reviews recent advances in protein nanocarriers that are not derived from natural protein nanostructures, such as protein cages or virus like particles. The protein nanocarriers described here are self-assembled from rationally or de novo designed recombinant proteins, as well as recombinant proteins complexed with other biomolecules, presenting properties that are unique from those of natural protein carriers. Design, functionalization, and therapeutic application of protein nanocarriers will be discussed.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA 30332, United States; BioEngineering Program, Georgia Institute of Technology, United States.
| |
Collapse
|