1
|
Dey S, Bhat A, Janani G, Shandilya V, Gupta R, Mandal BB. Microfluidic human physiomimetic liver model as a screening platform for drug induced liver injury. Biomaterials 2024; 310:122627. [PMID: 38823194 DOI: 10.1016/j.biomaterials.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The pre-clinical animal models often fail to predict intrinsic and idiosyncratic drug induced liver injury (DILI), thus contributing to drug failures in clinical trials, black box warnings and withdrawal of marketed drugs. This suggests a critical need for human-relevant in vitro models to predict diverse DILI phenotypes. In this study, a porcine liver extracellular matrix (ECM) based biomaterial ink with high printing fidelity, biocompatibility and tunable rheological and mechanical properties is formulated for supporting both parenchymal and non-parenchymal cells. Further, we applied 3D printing and microfluidic technology to bioengineer a human physiomimetic liver acinus model (HPLAM), recapitulating the radial hepatic cord-like structure with functional sinusoidal microvasculature network, biochemical and biophysical properties of native liver acinus. Intriguingly, the human derived hepatic cells incorporated HPLAM cultured under physiologically relevant microenvironment, acts as metabolic biofactories manifesting enhanced hepatic functionality, secretome levels and biomarkers expression over several weeks. We also report that the matured HPLAM reproduces dose- and time-dependent hepatotoxic response of human clinical relevance to drugs typically recognized for inducing diverse DILI phenotypes as compared to conventional static culture. Overall, the developed HPLAM emulates in vivo like functions and may provide a useful platform for DILI risk assessment to better determine safety and human risk.
Collapse
Affiliation(s)
- Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amritha Bhat
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - G Janani
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vartik Shandilya
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Raghvendra Gupta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Biman B Mandal
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Hassan S, Rezaei Z, Luna E, Yilmaz-Aykut D, Lee MC, Perea AM, Jamaiyar A, Bassous N, Hirano M, Tourk FM, Choi C, Becker M, Yazdi I, Fan K, Avila-Ramirez A, Ge D, Abdi R, Fisch S, Leijten J, Feinberg MW, Mandal BB, Liao R, Shin SR. Injectable Self-Oxygenating Cardio-Protective and Tissue Adhesive Silk-Based Hydrogel for Alleviating Ischemia After Mi Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312261. [PMID: 38733225 PMCID: PMC11309903 DOI: 10.1002/smll.202312261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Myocardial infarction (MI) is a significant cardiovascular disease that restricts blood flow, resulting in massive cell death and leading to stiff and noncontractile fibrotic scar tissue formation. Recently, sustained oxygen release in the MI area has shown regeneration ability; however, improving its therapeutic efficiency for regenerative medicine remains challenging. Here, a combinatorial strategy for cardiac repair by developing cardioprotective and oxygenating hybrid hydrogels that locally sustain the release of stromal cell-derived factor-1 alpha (SDF) and oxygen for simultaneous activation of neovascularization at the infarct area is presented. A sustained release of oxygen and SDF from injectable, mechanically robust, and tissue-adhesive silk-based hybrid hydrogels is achieved. Enhanced endothelialization under normoxia and anoxia is observed. Furthermore, there is a marked improvement in vascularization that leads to an increment in cardiomyocyte survival by ≈30% and a reduction of the fibrotic scar formation in an MI animal rodent model. Improved left ventricular systolic and diastolic functions by ≈10% and 20%, respectively, with a ≈25% higher ejection fraction on day 7 are also observed. Therefore, local delivery of therapeutic oxygenating and cardioprotective hydrogels demonstrates beneficial effects on cardiac functional recovery for reparative therapy.
Collapse
Affiliation(s)
- Shabir Hassan
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
| | - Zahra Rezaei
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
| | - Eder Luna
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
| | - Dilara Yilmaz-Aykut
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Istanbul, Turkey
| | - Myung Chul Lee
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ana Marie Perea
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
| | - Anurag Jamaiyar
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Bassous
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
| | - Minoru Hirano
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
- Future Vehicle Research Department, Toyota Research Institute North America, Toyota Motor North America, Inc., 1555 Woodridge Ave., Ann Arbor, Michigan 48105, USA
| | - Fatima Mumtaza Tourk
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Cholong Choi
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
| | - Malin Becker
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Iman Yazdi
- School of Arts and Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA
| | - Kai Fan
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
- BoYu Intelligent Health Innovation Laboratory, Hangzhou 311121, China
| | - Alan Avila-Ramirez
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
- Division of Biological and Environmental Science Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - David Ge
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital / Harvard Medical School, Boston, MA 02115, USA
| | - Sudeshna Fisch
- Cardiovascular Physiology Core, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Mark W. Feinberg
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ronglih Liao
- School of Medicine, Stanford University, California 94305-5101, USA
- Stanford Amyloid Center, Stanford University, California 94305-5101, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Shaikh S, Gupta S, Mishra A, Sheikh PA, Singh P, Kumar A. Laser-assisted synthesis of nano-hydroxyapatite and functionalization with bone active molecules for bone regeneration. Colloids Surf B Biointerfaces 2024; 237:113859. [PMID: 38547794 DOI: 10.1016/j.colsurfb.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
The main goal of bone tissue engineering research is to replace the allogenic and autologous bone graft substitutes that can promote bone repair. Owing to excellent biocompatibility and osteoconductivity, hydroxyapatite is in extensive research and high demand for both medical and non-medical applications. Although various methods have been developed for the synthesis of hydroxyapatite, in the present study we have shown the use of nanosecond laser energy in the wet precipitation method of nano-hydroxyapatite (nHAP) synthesis without using ammonium solution or any other chemicals for pH maintenance. Here, the present study aimed to fabricate the nanohydroxyapatite using a nanosecond laser. The X-ray diffraction and Fourier transform infrared spectroscopy have confirmed the hydroxyapatite formation under laser irradiation in less time without aging. A transmission electron microscopy confirmed the nano size of synthesized nHAP, which is comparable to conventional nHAP. The length and width of the laser-assisted nHAP were found to be in the range of 50-200 nm and 15-20 nm, respectively, at various laser parameters. The crystallite size obtained by Debye Scherrer formulae was found to be in the range of ∼ 16-36 nm. In addition, laser-assisted nHAP based composite cryogel (nanohydroxyapatite/gelatin/collagen I) was synthesized and impregnated with bioactive molecules (bone morphogenic protein and zoledronic acid) that demonstrated significant osteogenic potential both in vitro in cell experiment and in vivo rat muscle pouch model (abdomen and tibia muscles). Dual-energy X-ray analysis, micro-CT, and histological analysis confirmed ectopic bone regeneration. Micro-CT based histomorphometry showed a higher amount (more than 10-fold) of mineralization for animal groups implanted with composite cryogels loaded with bioactive molecules compared to only composite cryogels groups. Our findings thus demonstrate a controlled and rapid synthetic method for the synthesis of nHAP with various physical, chemical, and biological properties exhibited as comparable to conventionally synthesized nHAP.
Collapse
Affiliation(s)
- Shazia Shaikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ankita Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Parvaiz A Sheikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
| |
Collapse
|
4
|
Mairal A, Mehrotra S, Kumar A, Maiwal R, Marsal J, Kumar A. Hyaluronic Acid-Conjugated Thermoresponsive Polymer-Based Bioformulation Enhanced Wound Healing and Gut Barrier Repair of a TNBS-Induced Colitis Injury Ex Vivo Model in a Dynamic Perfusion Device. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5382-5400. [PMID: 38266010 DOI: 10.1021/acsami.3c14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Impairment of intestinal epithelium is a typical feature of inflammatory bowel disease (IBD) that causes leakage of bacteria and antigens from the intestinal lumen and thus results in persistent immune activation. Hence, healing and regeneration of the damaged gut mucosa is a promising therapeutic approach to achieve deep remission in IBD. Currently, available systemic therapies have moderate effects and are often associated with numerous side effects and malignancies. In this study, we aimed to develop a topical therapy by chemically conjugating a temperature-responsive polymer, i.e., poly(N-isopropylacrylamide), along with hyaluronic acid to obtain a sprayable therapeutic formulation that upon colon instillation adheres to the damaged gut mucosa due to its temperature-induced phase transition and mucoadhesive properties. An ex vivo adhesion experiment demonstrates that this therapeutic formulation forms a thin physical coating on the mucosal lining at a physiological temperature within 5 min. Physicochemical characterization of (P(NIPAM-co-NTBAM)-HA) established this formulation to be biocompatible, hemo-compatible, and non-immunogenic. Prednisolone was encapsulated within the polymer formulation to achieve maximum therapeutic efficacy in the case of IBD-like conditions as assessed in a custom-fabricated perfusion-based ex vivo model system. Histological analysis suggests that the prednisolone-encapsulated polymer formulation nearly restored the mucosal architecture after 2,4,6-trinitrobenzenesulfonic acid-induced damage. Furthermore, a significant (p ≤ 0.001) increase in mRNA levels of Muc-2 and ZO-1 in treated groups further confirmed the mucosal epithelial barrier restoration.
Collapse
Affiliation(s)
- Ayushi Mairal
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Rakhi Maiwal
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Jan Marsal
- Department of Clinical Sciences, Lund University and Skåne University Hospital, SE-22185 Lund, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
5
|
Yilmaz-Aykut D, Torkay G, Kasgoz A, Shin SR, Bal-Ozturk A, Deligoz H. Injectable and self-healing dual crosslinked gelatin/kappa-carrageenan methacryloyl hybrid hydrogels via host-guest supramolecular interaction for wound healing. J Biomed Mater Res B Appl Biomater 2023; 111:1921-1937. [PMID: 37350561 DOI: 10.1002/jbm.b.35295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Injectable hydrogels based on natural polymers have shown great potential for various tissue engineering applications, such as wound healing. However, poor mechanical properties and weak self-healing ability are still major challenges. In this work, we introduce a host-guest (HG) supramolecular interaction between acrylate-β-cyclodextrin (Ac-β-CD) conjugated on methacrylated kappa-carrageenan (MA-κ-CA) and aromatic residues on gelatin to provide self-healing characteristics. We synthesize an MA-κ-CA to conjugate Ac-β-CD and fabricate dual crosslinked hybrid hydrogels with gelatin to mimic the native extracellular matrix (ECM). The dual crosslinking occurs on the MA-κ-CA backbone through the addition of KCl and photocrosslinking process, which enhances mechanical strength and stability. The hybrid hydrogels exhibit shear-thinning, self-healing, and injectable behavior, which apply easily under a minimally invasive manner and contribute to shear stress during the injection. In-vitro studies indicate enhanced cell viability. Furthermore, scratch assays are performed to examine cell migration and cell-cell interaction. It is envisioned that the combination of self-healing and injectable dual crosslinked hybrid hydrogels with HG interactions display a promising and functional biomaterial platform for wound healing applications.
Collapse
Affiliation(s)
- Dilara Yilmaz-Aykut
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Gulsah Torkay
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Alper Kasgoz
- Polymer Engineering Department, Faculty of Engineering, Yalova University, Yalova, Turkey
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Ayca Bal-Ozturk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
- Faculty of Pharmacy, Department of Analytical Chemistry, Istinye University, Istanbul, Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University, Zeytinburnu, Turkey
| | - Huseyin Deligoz
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| |
Collapse
|
6
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
7
|
Jaya Prakash N, Wang X, Kandasubramanian B. Regenerated silk fibroin loaded with natural additives: a sustainable approach towards health care. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-38. [PMID: 36648394 DOI: 10.1080/09205063.2023.2170137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to World Health Organization (WHO), on average, 0.5 Kg of hazardous waste is generated per bed every day in high-income countries. The adverse effects imposed by synthetic materials and chemicals on the environment and humankind have urged researchers to explore greener technologies and materials. Amidst of all the natural fibers, silk fibroin (SF), by virtue of its superior toughness (6 × 104∼16 × 104 J/kg), tensile strength (47.2-67.7 MPa), tunable biodegradability, excellent Young's modulus (1.9-3.9 GPa), presence of functional groups, ease of processing, and biocompatibility has garnered an enormous amount of scientific interests. The use of silk fibroin conjoint with purely natural materials can be an excellent solution for the adverse effects of chemical-based treatment techniques. Considering this noteworthiness, vigorous research is going on in silk-based biomaterials, and it is opening up new vistas of opportunities. This review enswathes the structural aspects of silk fibroin along with its potency to form composites with other natural materials, such as curcumin, keratin, alginate, hydroxyapatite, hyaluronic acid, and cellulose, that can replace the conventionally used synthetic materials, providing a sustainable pathway to biomedical engineering. It was observed that a large amount of polar functional moieties present on the silk fibroin surface enables them to compatibilize easily with the natural additives. The conjunction of silk with natural additives initiates synergistic interactions that mitigate the limitations offered by individual units as well as enhance the applicability of materials. Further the current status and challenges in the commercialization of silk-based biomedical devices are discussed.
Collapse
Affiliation(s)
- Niranjana Jaya Prakash
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| | - Xungai Wang
- Fiber Science and Technology, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| |
Collapse
|