1
|
Li SS, Xue CD, Li YJ, Chen XM, Zhao Y, Qin KR. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Electrophoresis 2024; 45:1212-1232. [PMID: 37909658 DOI: 10.1002/elps.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| |
Collapse
|
2
|
Chen Y, Ni C, Zhang X, Ni Z, Xiang N. High-Throughput Sorting and Single-Cell Mechanotyping by Hydrodynamic Sorting-Mechanotyping Cytometry. SMALL METHODS 2024; 8:e2301195. [PMID: 38213022 DOI: 10.1002/smtd.202301195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/28/2023] [Indexed: 01/13/2024]
Abstract
The existence of many background blood cells hinders the accurate identification of circulating tumor cells (CTCs) in the blood of cancer patients. To unlock this limitation, a hydrodynamic sorting-mechanotyping cytometry (HSMC) integrated with a sorting-concentration chip and a detection chip is proposed for simultaneously achieving the high-throughput cell sorting and the multi-parameter mechanotyping of the sorted tumor cells. The HSMC adopts the spiral inertial microfluidics for label-free sorting of cells in a high-throughput manner, allowing the efficient enrichment of tumor cells from the large background blood cells. Then, the sorted cells are concentrated by the concentration unit and finally passed through the detection unit for hydrodynamic deformation. The HSMC has a high throughput for sorting and detection and can successfully reveal the differences in the cellular mechanical properties. After characterizing and optimizing the single chips, the identification of white blood cells (WBCs) and three types of tumor cells (A549, MCF-7, and MDA-MB-231 cells) is successfully achieved. The identification accuracies for WBCs and different tumor cells are all larger than 94%, while the highest identification accuracy is up to 99.2%. This study envisions that the HSMC will offer an avenue for the analysis of single cell intrinsic mechanics in clinical medicine.
Collapse
Affiliation(s)
- Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Chen Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
3
|
Chapman M, Rajagopal V, Stewart A, Collins DJ. Critical review of single-cell mechanotyping approaches for biomedical applications. LAB ON A CHIP 2024; 24:3036-3063. [PMID: 38804123 DOI: 10.1039/d3lc00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate mechanical measurements of cells has the potential to improve diagnostics, therapeutics and advance understanding of disease mechanisms, where high-resolution mechanical information can be measured by deforming individual cells. Here we evaluate recently developed techniques for measuring cell-scale stiffness properties; while many such techniques have been developed, much of the work examining single-cell stiffness is impacted by difficulties in standardization and comparability, giving rise to large variations in reported mechanical moduli. We highlight the role of underlying mechanical theories driving this variability, and note opportunities to develop novel mechanotyping devices and theoretical models that facilitate convenient and accurate mechanical characterisation. Moreover, many high-throughput approaches are confounded by factors including cell size, surface friction, natural population heterogeneity and convolution of elastic and viscous contributions to cell deformability. We nevertheless identify key approaches based on deformability cytometry as a promising direction for further development, where both high-throughput and accurate single-cell resolutions can be realized.
Collapse
Affiliation(s)
- Max Chapman
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Alastair Stewart
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
- Graeme Clarke Institute University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|
4
|
Chen Y, Ni C, Jiang L, Ni Z, Xiang N. Inertial Multi-Force Deformability Cytometry for High-Throughput, High-Accuracy, and High-Applicability Tumor Cell Mechanotyping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303962. [PMID: 37789502 DOI: 10.1002/smll.202303962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Indexed: 10/05/2023]
Abstract
Previous on-chip technologies for characterizing the cellular mechanical properties often suffer from a low throughput and limited sensitivity. Herein, an inertial multi-force deformability cytometry (IMFDC) is developed for high-throughput, high-accuracy, and high-applicability tumor cell mechanotyping. Three different deformations, including shear deformations and stretch deformations under different forces, are integrated with the IMFDC. The 3D inertial focusing of cells enables the cells to deform by an identical fluid flow, and 10 parameters, such as cell area, perimeter, deformability, roundness, and rectangle deformability, are obtained in three deformations. The IMFDC is able to evaluate the deformability of different cells that are sensitive to different forces on a single chip, demonstrating the high applicability of the IMFDC in analyzing different cell lines. In identifying cell types, the three deformations exhibit different mechanical responses to cells with different sizes and deformability. A discrimination accuracy of ≈93% for both MDA-MB-231 and MCF-10A cells and a throughput of ≈500 cells s-1 can be achieved using the multiple-parameters-based machine learning model. Finally, the mechanical properties of metastatic tumor cells in pleural and peritoneal effusions are characterized, enabling the practical application of the IMFDC in clinical cancer diagnosis.
Collapse
Affiliation(s)
- Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Chen Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
5
|
Chen Y, Jiang L, Zhang X, Ni Z, Xiang N. Viscoelastic-Sorting Integrated Deformability Cytometer for High-Throughput Sorting and High-Precision Mechanical Phenotyping of Tumor Cells. Anal Chem 2023; 95:18180-18187. [PMID: 38018866 DOI: 10.1021/acs.analchem.3c03792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The counts and phenotypes of circulating tumor cells (CTCs) in whole blood are useful for disease monitoring and prognostic assessment of cancer. However, phenotyping CTCs in the blood is difficult due to the presence of a large number of background blood cells, especially some blood cells with features similar to those of tumor cells. Herein, we presented a viscoelastic-sorting integrated deformability cytometer (VSDC) for high-throughput label-free sorting and high-precision mechanical phenotyping of tumor cells. A sorting chip for removing large background blood cells and a detection chip for detecting multiple cellular mechanical properties were integrated into our VSDC. Our VSDC has a sorting efficiency and a purity of over 95% and over 81% for tumor cells, respectively. Furthermore, multiple mechanical parameters were used to distinguish tumor cells from white blood cells using machine learning. An accuracy of over 97% for identifying tumor cells was successfully achieved with the highest identification accuracy of 99.4% for MCF-7 cells. It is envisioned that our VSDC will open up new avenues for high-throughput and label-free single-cell analysis in various biomedical applications.
Collapse
Affiliation(s)
- Yao Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Lin Jiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Zhong J, Liang M, Ai Y. DUPLETS: Deformability-Assisted Dual-Particle Encapsulation Via Electrically Activated Sorting. SMALL METHODS 2023; 7:e2300089. [PMID: 37246250 DOI: 10.1002/smtd.202300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Indexed: 05/30/2023]
Abstract
Co-encapsulation of bead carriers and biological cells in microfluidics has become a powerful technique for various biological assays in single-cell genomics and drug screening because of its distinct capability of single-cell confinement. However, current co-encapsulation approaches exist a trade-off between cell/bead pairing rate and probability of multiple cells in individual droplets, significantly limiting the effective throughput of single-paired cell-bead droplets production. Deformability-assisted dUal-Particle encapsuLation via Electrically acTivated Sorting (DUPLETS) system is reported to overcome this problem. The DUPLETS can differentiate the encapsulated content in individual droplets and sort out targeted droplets via a combined screening of mechanical and electrical characteristics of single droplets in label-free manners and with the highest effective throughput in comparison to current commercial platforms. The DUPLETS has been demonstrated to enrich single-paired cell-bead droplets to over 80% (above eightfold higher than current co-encapsulation techniques). It eliminates multicell droplets to 0.1% whereas up to ≈24% in 10× Chromium. It is believed that merging DUPLETS into the current co-encapsulation platforms can meaningfully elevate sample quality in terms of high purity of single-paired cell-bead droplets, low fraction of multicell droplets, and high cell viability, which can benefit a multitude of biological assay applications.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|