1
|
Sarkhel S, Jaiswal A. Emerging Frontiers in In Situ Forming Hydrogels for Enhanced Hemostasis and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61503-61529. [PMID: 39479880 DOI: 10.1021/acsami.4c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
With a surge in the number of accidents and chronic wounds worldwide, there is a growing need for advanced hemostatic and wound care solutions. In this regard, in situ forming hydrogels have emerged as a revolutionary biomaterial due to their inherent properties, which include biocompatibility, biodegradability, porosity, and extracellular matrix (ECM)-like mechanical strength, that render them ideal for biomedical applications. This review demonstrates the advancements of in situ forming hydrogels, tracing their evolution from injectable to more sophisticated forms, such as sprayable and 3-D printed hydrogels. These hydrogels are designed to modulate the pathophysiology of wounds, enhancing hemostasis and facilitating wound repair. The review presents different methodologies for in situ forming hydrogel synthesis, spanning a spectrum of physical and chemical cross-linking techniques. Furthermore, it showcases the adaptability of hydrogels to the dynamic requirements of wound healing processes. Through a detailed discussion, this article sheds light on the multifunctional capabilities of these hydrogels such as their antibacterial, anti-inflammatory, and antioxidant properties. This review aims to inform and inspire continued advancement in the field, ultimately contributing to the development of sophisticated wound care solutions that meet the complexity of clinical needs.
Collapse
Affiliation(s)
- Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| |
Collapse
|
2
|
Chen K, Liang W, Zhang J, Lei K, Yang K, Lin F, Meng L, Hong Z, Li J, Xie Y. Chitosan-Based Composite Aerogel with a Rapid Tissue Hydration Layer-Triggered Response to Promote Hemostasis. Biomacromolecules 2024; 25:6570-6579. [PMID: 39305226 DOI: 10.1021/acs.biomac.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Aerogels exhibit poor adhesion to wet tissue surfaces, which is a significant factor that limits their hemostatic properties. In this work, we propose a new method for investigating aerogel hemostatic materials by introducing the concept of the 'rapid tissue hydration layer-triggered property' into the hemostatic material. A chitosan derivative (Csde) with a "swollen property" was prepared via an amide reaction, followed by the incorporation of the extracted bletilla striata complex (Bscai) into the chitosan derivative to fabricate the Bscai/Csde hemostatic material. The research results indicated that the Bscai/Csde hemostatic material exhibited a rapid tissue hydration layer-triggered response, outstanding hemostasis ability, as well as excellent hemocompatibility, antibacterial properties, and cytocompatibility. Additionally, the preparation method for the Bscai/Csde hemostatic material is straightforward, and the raw materials are readily available. Therefore, this study presents a novel method for developing a hemostatic material method, and the composite aerogel hemostatic material demonstrates considerable potential for future applications.
Collapse
Affiliation(s)
- Kaiqiang Chen
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Wencheng Liang
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Jiakang Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Keli Yang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, P. R. China
| | - Feng Lin
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Lingbin Meng
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Zongjian Hong
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Jun Li
- Department of Sports and Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
| | - Yan Xie
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| |
Collapse
|
3
|
Wang X, Fadlilah FN, Yang Q, Hong Y, Wu D, Peng M, Peng X, Wu J, Luo Y. A biodegradable shape memory polyurethane film as a postoperative anti-adhesion barrier for minimally invasive surgery. Acta Biomater 2024:S1742-7061(24)00535-X. [PMID: 39322042 DOI: 10.1016/j.actbio.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Postoperative adhesions commonly form in various tissues, resulting in serious implications and an increased risk of secondary surgery. The application of anti-adhesion films as physical barriers has proven effective in reducing adhesion incidence and severity. However, existing anti-adhesion films require manual deployment during minimally invasive surgery, posing inconvenience and possibility of further injury. To address these limitations, we have developed an intelligent anti-adhesion film based on shape memory polyurethane. In this work, a linear shape memory polyurethane (ISO2-PU), incorporating hexamethylene isocyanate and isosorbitol as hard segments and poly(D, L-lactic acid) macrodiol as soft segments, was fabricated into an anti-adhesion film. The favorable shape memory effect of the ISO2-PU film ensures its convenient delivery and automatic unfolding, as revealed by a simulation experiment for endoscopic surgical implantation. Furthermore, the glass transition temperature (Tg) close to body temperature endows the ISO2-PU film with good mechanical compliance, thus ensuring a reliable fit with the wounded tissue to avoid undesired folding. Finally, in vivo experiments using a rat cecal abdominal wall injury model demonstrated that the combination of reliable fit, appropriate degradation rate, and good cytocompatibility promises the ISO2-PU film with high anti-adhesion efficacy. This work validates the concept of shape memory anti-adhesion barrier and expands future directions for advanced anti-adhesion biomaterials. STATEMENT OF SIGNIFICANCE: Postoperative adhesions are a common complication that occurs widely after various surgeries. This work developed an intelligent anti-adhesion film based on a linear shape memory polyurethane (ISO2-PU). This film is featured with remarkable shape memory effect and mechanical compliance at body temperature, appropriate degradability, and good cytocompatibility. These merits ensure convenient delivery and smart unfolding of ISO2-PU film during minimally invasive surgery and favorable postoperative anti-adhesion efficacy. The results validate the concept of shape memory anti-adhesion barrier and paves a way for designing next-generation anti-adhesion biomaterials.
Collapse
Affiliation(s)
- Xiwan Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Febyana Noor Fadlilah
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qian Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yawen Hong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Di Wu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Min Peng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xingjie Peng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jinchuan Wu
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China.
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
4
|
Wu E, Huang L, Shen Y, Wei Z, Li Y, Wang J, Chen Z. Application of gelatin-based composites in bone tissue engineering. Heliyon 2024; 10:e36258. [PMID: 39224337 PMCID: PMC11367464 DOI: 10.1016/j.heliyon.2024.e36258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Natural bone tissue has the certain function of self-regeneration and repair, but it is difficult to repair large bone damage. Recently, although autologous bone grafting is the "gold standard" for improving bone repair, it has high cost, few donor sources. Besides, allogeneic bone grafting causes greater immune reactions, which hardly meet clinical needs. The bone tissue engineering (BTE) has been developed to promote bone repair. Gelatin, due to its biocompatibility, receives a great deal of attention in the BTE research field. However, the disadvantages of natural gelatin are poor mechanical properties and single structural property. With the development of BTE, gelatin is often used in combination with a range of natural, synthetic polymers, and inorganic materials to achieve synergistic effects for the complex physiological process of bone repair. The review delves into the fundamental structure and unique properties of gelatin, as well as the excellent properties necessary for bone scaffold materials. Then this review explores the application of modified gelatin three-dimensional (3D) scaffolds with various structures in bone repair, including 3D fiber scaffolds, hydrogels, and nanoparticles. In addition, the review focuses on the excellent efficacy of composite bone tissue scaffolds consisting of modified gelatin, various natural or synthetic polymeric materials, as well as bioactive ceramics and inorganic metallic/non-metallic materials in the repair of bone defects. The combination of these gelatin-based composite scaffolds provides new ideas for the design of scaffold materials for bone repair with good biosafety.
Collapse
Affiliation(s)
- Enguang Wu
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Lianghui Huang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yao Shen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zongyi Wei
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yangbiao Li
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
5
|
Dou W, Zeng X, Zhu S, Zhu Y, Liu H, Li S. Mussel-Inspired Injectable Adhesive Hydrogels for Biomedical Applications. Int J Mol Sci 2024; 25:9100. [PMID: 39201785 PMCID: PMC11354882 DOI: 10.3390/ijms25169100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The impressive adhesive capacity of marine mussels has inspired various fascinating designs in biomedical fields. Mussel-inspired injectable adhesive hydrogels, as a type of promising mussel-inspired material, have attracted much attention due to their minimally invasive property and desirable functions provided by mussel-inspired components. In recent decades, various mussel-inspired injectable adhesive hydrogels have been designed and widely applied in numerous biomedical fields. The rational incorporation of mussel-inspired catechol groups endows the injectable hydrogels with the potential to exhibit many properties, including tissue adhesiveness and self-healing, antimicrobial, and antioxidant capabilities, broadening the applications of injectable hydrogels in biomedical fields. In this review, we first give a brief introduction to the adhesion mechanism of mussels and the characteristics of injectable hydrogels. Further, the typical design strategies of mussel-inspired injectable adhesive hydrogels are summarized. The methodologies for integrating catechol groups into polymers and the crosslinking methods of mussel-inspired hydrogels are discussed in this section. In addition, we systematically overview recent mussel-inspired injectable adhesive hydrogels for biomedical applications, with a focus on how the unique properties of these hydrogels benefit their applications in these fields. The challenges and perspectives of mussel-inspired injectable hydrogels are discussed in the last section. This review may provide new inspiration for the design of novel bioinspired injectable hydrogels and facilitate their application in various biomedical fields.
Collapse
Affiliation(s)
- Wenguang Dou
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Zeng
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Shuzhuang Zhu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ye Zhu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Hongliang Liu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
| | - Sidi Li
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
6
|
Zhang M, Gu G, Xu Y, Luan X, Liu J, He P, Wei G. Injectable Self-Healing Antibacterial Hydrogels with Tailored Functions by Loading Peptide Nanofiber-Biomimetic Silver Nanoparticles. Macromol Rapid Commun 2024; 45:e2400173. [PMID: 38923127 DOI: 10.1002/marc.202400173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Polymer hydrogels find extensive application in biomedicine, serving specific purposes such as drug delivery, biosensing, bioimaging, cancer therapy, tissue engineering, and others. In response to the growing threat of bacterial infections and the escalating resistance to conventional antibiotics, this research introduces a novel injectable, self-healing antimicrobial hydrogel comprising bioactive aldolized hyaluronic acid (AHA) and quaternized chitosan (QCS). This designed QCS/AHA hydrogel incorporates self-assembling peptide nanofibers (PNFs) and small-sized silver nanoparticles (AgNPs) for tailored functionality. The resulting hybrid QCS/AHA/PNF/AgNPs hydrogel demonstrates impressive rheological characteristics, broad-spectrum antimicrobial efficacy, and high biocompatibility. Notably, its antimicrobial effectiveness against Escherichia coli and S. aureus surpasses 99.9%, underscoring its potential for treating infectious wounds. Moreover, the rheological analysis confirms its excellent shear-thinning and self-healing properties, enabling it to conform closely to irregular wound surfaces. Furthermore, the cytotoxicity assessment reveals its compatibility with human umbilical vein endothelial cells, exhibiting no significant adverse effects. The combined attributes of this bioactive QCS/AHA/PNF/AgNPs hydrogel position it as a promising candidate for antimicrobial applications and wound healing.
Collapse
Affiliation(s)
- Mingze Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Guanghui Gu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266035, PR China
| | - Youyin Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Jianyu Liu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
7
|
Geng A, Luo Y, Zheng M, Zheng J, Zhu R, Bai S. Silk fibroin-based hemostatic powders with instant and robust adhesion performance for sutureless sealing of gastrointestinal defects. J Mater Chem B 2024; 12:5439-5454. [PMID: 38726947 DOI: 10.1039/d4tb00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Powder-based hemostatic technology has offered unprecedented opportunities in surgical sealing and repair of irregularly shaped and noncompressible wounds. Despite their routine use, existing clinical hemostatic powders are challenged either by poor mechanical properties or inadequate adhesion to bleeding tissues in biological environments. Here, inspired by the mussel foot proteins' fusion assembly strategy, a novel silk fibroin-based hemostatic powder (named as SF/PEG/TA) with instant and robust adhesion performance is developed. Upon absorbing interfacial liquids, the SF/PEG/TA powders rapidly swell into micro-gels and subsequently contact with each other to transform into a macroscopically homogeneous hydrogel in situ, strengthening its interfacial bonding with various substrates in fluidic environments. The in vitro and in vivo results show that the SF/PEG/TA powder possesses ease of use, good biocompatibility, strong antibacterial activities, and effective blood clotting abilities. The superior hemostatic sealing capability of the SF/PEG/TA powder is demonstrated in the rat liver, heart, and gastrointestinal injury models. Moreover, in vivo investigation of rat skin incision and gastrointestinal perforation models validates that the SF/PEG/TA powder promotes wound healing and tissue regeneration. Taken together, compared to existing clinical hemostatic powders, the proposed SF/PEG/TA powder with superior wound treatment capabilities has high potential for clinical hemostasis and emergency rescue.
Collapse
Affiliation(s)
- Aizhen Geng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yuting Luo
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Min Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jie Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Rui Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
8
|
Zhang X, Wang X, Yuan P, Ma C, Wang Y, Zhang Z, Wang P, Zhao Y, Wu W. A 3D-Printed Cuttlefish Bone Elastomeric Sponge Rapidly Controlling Noncompressible Hemorrhage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307041. [PMID: 38072798 DOI: 10.1002/smll.202307041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Indexed: 05/12/2024]
Abstract
Developing a self-expanding hemostatic sponge with high blood absorption and rapid shape recovery for noncompressible hemorrhage remains a challenge. In this study, a 3D-printed cuttlefish bone elastomeric sponge (CBES) is fabricated, which combined ordered channels and porous structures, presented tunable mechanical strength, and shape memory potentials. The incorporation of cuttlefish bone powder (CBp) plays key roles in concentrating blood components, promoting aggregation of red blood cells and platelets, and activating platelets, which makes CBES show enhanced hemostatic performance compared with commercial gelatin sponges in vivo. Moreover, CBES promotes more histiocytic infiltration and neovascularization in the early stage of degradation than gelatin sponges, which is conducive to the regeneration and repair of injured tissue. To conclude, CBp loaded 3D-printed elastomeric sponges can promote coagulation, present the potential to guide tissue healing, and broaden the hemostatic application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xinchi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xuqiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chaoqun Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yujiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zheqian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Pengyu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yimin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
9
|
Wang Y, Pan P, Liang H, Zhou J, Guo C, Zhao L, Wu J. Hemostatic Tranexamic Acid-Induced Fast Gelation and Mechanical Reinforcement of Polydimethylacrylamide/Carboxymethyl Chitosan Hydrogel for Hemostasis and Wound Healing. Biomacromolecules 2024; 25:819-828. [PMID: 38253524 DOI: 10.1021/acs.biomac.3c00999] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The combinational properties with excellent mechanical properties, adhesive performance, hemostatic ability, antibacterial action, and wound healing efficacy are highly desirable for injectable hydrogels' practical applications in hemorrhage control and wound closure, but designing one single hydrogel system integrating with such properties is still difficult. Herein, a simplified yet straightforward strategy is proposed to prepare an injectable and robust poly(N,N-dimethylacrylamide) (PDMAA)/carboxymethyl chitosan (CMCS) hydrogel induced by tranexamic acid (TXA). TXA not only promotes the rapid generation of free radicals but also introduces multiple hydrogen bonds into the hydrogel network. Moreover, as a common clinical hemostatic drug, TXA itself has excellent hemostatic effects. In addition, CMCS imparts sterilization and hemostasis effects to the hydrogel, thereby promoting wound healing. Besides, the amino and carboxyl groups on TXA molecules and the hydroxyl, amino, and carboxyl groups on CMCS molecules can form multiple hydrogen bonds with wet biological tissues, leading to good wet tissue adhesion of the hydrogel. As a result, the hydrogel with excellent mechanical properties (up to 1.83 MPa at 90% compression strain), adhesion performance (up to 18.7 kPa adhesion strength to porcine skin tissue), biocompatibility, hemostatic ability, antibacterial activity, and wound healing properties can be fabricated within several minutes. These combinational advantages enable the hydrogel to efficiently stop hemorrhage (blood loss amount: 110 mg; hemostasis time: 25 s) and promote the wound healing process (wound closure rate at 2 weeks: 83%), which can be verified using rat models of liver bleeding and infected full thickness skin defect. Overall, this facile strategy to design a hydrogel incorporating such unique advantages will greatly advance the hydrogel's clinical application in rapid hemostasis and wound healing.
Collapse
Affiliation(s)
- Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Peiyue Pan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hao Liang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuan Guo
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Yu L, Liu Z, Tong Z, Ding Y, Qian Z, Wang W, Mao Z, Ding Y. Sequential-Crosslinking Fibrin Glue for Rapid and Reinforced Hemostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308171. [PMID: 38072663 PMCID: PMC10870078 DOI: 10.1002/advs.202308171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/17/2024]
Abstract
Achieving hemostasis effectively is essential for surgical success and excellent patient outcomes. However, it is challenging to develop hemostatic adhesives that are fast-acting, strongly adherent, long-lasting, and biocompatible for treating hemorrhage. In this study, a sequential crosslinking fibrin glue (SCFG) is developed, of which the first network of the fibrin glue forms in situ within 2 s to act as an initial physical barrier and locks the gelatin methacryloyl precursor for tight construction of the second network to enhance wet adhesion and durability for tissues covered with blood. The sequential crosslinking glue can provide large pressures (≈280 mmHg of burst pressure), makes strong (38 kPa of shear strength) and tough (≈60 J m-2 of interfacial toughness) interfaces with wet tissues, and outperforms commercial hemostatic agents and gelatin methacryloyl. SCFG are demonstrated as an effective and safe sealant to enhance the treatment outcomes of bleeding tissues in rat, rabbit, and pig models. The ultrafast gelation, strong adhesion and durability, excellent compatibility, and easy manufacture of SCFG make it a promising hemostatic adhesive for clinical applications.
Collapse
Affiliation(s)
- Lisha Yu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Zhaodi Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| | - Zongrui Tong
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Yihang Ding
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Zhefeng Qian
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| |
Collapse
|
11
|
Chen S, Kong C, Yu N, Xu X, Li B, Zhang J. Management of non-compressible hemorrhage and re-bleeding by a liquid hemostatic polysaccharide floccuronic acid. Int J Biol Macromol 2024; 257:128695. [PMID: 38072343 DOI: 10.1016/j.ijbiomac.2023.128695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Effective management of excessive bleeding requires liquid hemostatic agents, especially in scenarios involving uncompressible and postoperative hemorrhage. This study introduces the microbial exopolysaccharide floccuronic acid (FA) as a liquid hemostatic agent, characterized by a high weight average molecular weight of 2.38 × 108 Da. The investigation focuses on the flocculation effect, hemostatic efficiency in both in vitro and in vivo settings, elucidating its hemostatic mechanism, and assessing its safety profile. Results reveal that FA solution significantly accelerates the coagulation process, leading to the formation of compact clots while specifically interfering with fibrin. Notably, FA demonstrates excellent hemostatic effects in animal liver models and a rat arterial rebleeding model. The biocompatible and biodegradable characteristics further underscore FA's potential as a valuable liquid hemostatic material, particularly suited for non-compressible and re-bleeding scenarios.
Collapse
Affiliation(s)
- Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Bing Li
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing 211899, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China.
| |
Collapse
|
12
|
Wang X, Yang X, Sun Z, Guo X, Teng Y, Hou S, Shi J, Lv Q. Progress in injectable hydrogels for the treatment of incompressible bleeding: an update. Front Bioeng Biotechnol 2024; 11:1335211. [PMID: 38264581 PMCID: PMC10803650 DOI: 10.3389/fbioe.2023.1335211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Uncontrollable haemorrhage from deep, noncompressible wounds remains a persistent and intractable challenge, accounting for a very high proportion of deaths in both war and disaster situations. Recently, injectable hydrogels have been increasingly studied as potential haemostatic materials, highlighting their enormous potential for the management of noncompressible haemorrhages. In this review, we summarize haemostatic mechanisms, commonly used clinical haemostatic methods, and the research progress on injectable haemostatic hydrogels. We emphasize the current status of injectable hydrogels as haemostatic materials, including their physical and chemical properties, design strategy, haemostatic mechanisms, and application in various types of wounds. We discuss the advantages and disadvantages of injectable hydrogels as haemostatic materials, as well as the opportunities and challenges involved. Finally, we propose cutting-edge research avenues to address these challenges and opportunities, including the combination of injectable hydrogels with advanced materials and innovative strategies to increase their biocompatibility and tune their degradation profile. Surface modifications for promoting cell adhesion and proliferation, as well as the delivery of growth factors or other biologics for optimal wound healing, are also suggested. We believe that this paper will inform researchers about the current status of the use of injectable haemostatic hydrogels for noncompressible haemorrhage and spark new ideas for those striving to propel this field forward.
Collapse
Affiliation(s)
- Xiudan Wang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Xinran Yang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Zhiguang Sun
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Yanjiao Teng
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Jie Shi
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qi Lv
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
13
|
Ito T, Mizuta R, Ito S, Taguchi T. Robust aortic media adhesion using hydrophobically modified Alaska pollock gelatin-based adhesive for aortic dissections. J Biomed Mater Res B Appl Biomater 2024; 112:e35361. [PMID: 38247245 DOI: 10.1002/jbm.b.35361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
Type-A aortic dissection is an acute injury involving the delamination of the aorta at the parts of the aortic media. Aldehyde crosslinker-containing glues have been used to adhere to the media of the dissected aorta before joining an artificial graft. These glues effectively adhere to the aortic media; however, they show low biocompatibility due to the release of aldehyde compounds. In this study, we report innovative adhesives based on hydrophobically modified Alaska pollock gelatin (hm-ApGltn) with different alkyl or cholesteryl (Chol) groups that adhere to the media of the dissected aorta by combining hm-ApGltns with a biocompatible crosslinker, pentaerythritol poly(ethylene glycol) ether tetrasuccinimidyl glutarate. The modification of alkyl or Chol groups contributed to enhanced adhesion strength between porcine aortic media. The adhesion strength increased with increasing modification ratios of alkyl groups from propanoyl to dodecanoyl groups and then decreased at a modification ratio of ~20 mol %. Porcine aortic media adhered using 7.5Chol-ApGltn adhesive showed stretchability even when expanded and shrunk vertically by 25% at least five times. Hm-ApGltn adhesives subcutaneously injected into the backs of mice showed no severe inflammation and were degraded during the implantation period. These results indicated that hm-ApGltn adhesives have potential applications in type-A aortic dissection.
Collapse
Affiliation(s)
- Temmei Ito
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| | - Ryo Mizuta
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| | - Shima Ito
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
14
|
Yuan M, Xu S, Zhou Y, Chen Y, Song J, Ma S, He Y, Mao H, Kong D, Gu Z. A facile bioorthogonal chemistry-based reversible to irreversible strategy to surmount the dilemma between injectability and stability of hyaluronic acid hydrogels. Carbohydr Polym 2023; 317:121103. [PMID: 37364964 DOI: 10.1016/j.carbpol.2023.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Injectable and stable hydrogels have great promise for clinical applications. Fine-tuning the injectability and the stability of the hydrogels at different stages has been challenging due to the limited number of coupling reactions. A distinct "reversible to irreversible" concept using a thiazolidine-based bioorthogonal reaction between 1,2-aminothiols and aldehydes in physiological conditions to surmount the dilemma between injectability and stability is presented for the first time. Upon mixing aqueous solutions of aldehyde-functionalized hyaluronic acid (SA-HA) and cysteine-capped ethylenediamine (DI-Cys), SA-HA/DI-Cys hydrogels formed through reversible hemithioacetal crosslinking within 2 min. The reversible kinetic intermediate facilitated thiol-triggered gel-to-sol transition, shear-thinning and injectability of the SA-HA/DI-Cys hydrogel but then converted to the irreversible thermodynamic network after injection, thereby permitting the resulting gel with improved stability. As compared to the Schiff base hydrogels, the hydrogels generated from this simple, yet effective concept awarded improved protection to the embedded mesenchymal stem cells and fibroblast during injection, retained the cells homogeneously within the gel, and allowed them further proliferation in vitro and in vivo. There is potential for the proposed approach of "reversible to irreversible" based on thiazolidine chemistry to be applied as a general coupling technique for developing injectable and stable hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Ming Yuan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Shuangshuang Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Yin Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Yi Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiliang Song
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yiyan He
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hongli Mao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, PR China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China; Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
15
|
Ouyang C, Yu H, Wang L, Ni Z, Liu X, Shen D, Yang J, Shi K, Wang H. Tough adhesion enhancing strategies for injectable hydrogel adhesives in biomedical applications. Adv Colloid Interface Sci 2023; 319:102982. [PMID: 37597358 DOI: 10.1016/j.cis.2023.102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Injectable hydrogel adhesives have gained widespread attention due to their ease of use, fast application time, and suitability for minimally invasive procedures. Several biomedical applications depend on tough adhesion between hydrogel adhesives and tissues, including wound closure and healing, hemostasis, tissue regeneration, drug delivery, and wearable electronic devices. Compared with bulk hydrogel adhesives formed ex situ, injectable hydrogel adhesives are more difficult to achieve strong adhesion strength due to a further balance of cohesion and adhesion while maintaining their flowability. In this review, the critical principles in designing tough adhesion of injectable hydrogel adhesives are summarized, including simultaneously enhancing their intrinsic interfacial toughness (Γ0inter) and mechanical dissipation (ΓDinter). Thereafter, various design strategies to enhance the Γ0inter and ΓDinter are discussed and evaluated respectively, involving multiple noncovalent/covalent interactions, topological connections, and polymer network structures. Furthermore, targeted biomedical applications of injectable hydrogel adhesives for specific tissue needs are systematically highlighted. In the end, this review outlines the challenges and trends in producing next-generation multifunctional injectable hydrogels for both practical and translational applications.
Collapse
Affiliation(s)
- Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Zhipeng Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaowei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Kehang Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
16
|
Song H, Xing L, Liu W, Wang X, Hou Z, Wang Y, Zhang Z, Li Y, Li T, Wang X, Chen H, Xing S, Xu J. Biomimetic and Multifunctional Hemostatic Hydrogel with Rapid Thermoresponsive Gelation and Robust Wet Adhesion for Emergency Hemostasis: A Rational Design Based on Photo-Cross-Linking Coordinated Hydrophilic-Hydrophobic Balance Strategies. Biomacromolecules 2023. [PMID: 37366605 DOI: 10.1021/acs.biomac.3c00357] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Uncontrolled bleeding in emergency situations is a great threat to both military and civilian lives, and an ideal hemostat for effectively controlling prehospital hemorrhage is urgently needed but still lacking. Although hemostatic hydrogels are promising for emergency hemostasis, they are currently challenged by either the mutual exclusion between a short gelation time and strong adhesive network or the insufficient functionality of ingredients and complicated operations for in situ curing. Herein, an extracellular matrix biopolymer-based and multifunctional hemostatic hydrogel that simultaneously integrates rapid thermoresponsive gelation, robust wet adhesion, and ease of use in emergencies is rationally engineered. This hydrogel can be conveniently used via simple injection and achieves instant sol-gel phase transition at body temperature. Its comprehensive performance could be facilely regulated by tuning the proportions of components, and the optimal performance (gelation time 6-8 s, adhesion strength 125 ± 3.6 kPa, burst pressure 282 ± 4.1 mmHg) is established due to the coordinated enhancement of the photo-cross-linking pretreatment and the hydrophilic-hydrophobic balance among various interactions in the hydrogel system. Additionally, it exhibits significant coagulation effect in vitro and enables effective hemostasis and wound healing in vivo. This work provides a promising platform for versatile applications of hydrogel-based materials, including emergency hemostasis.
Collapse
Affiliation(s)
- Hongyang Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Lei Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Wentao Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Xue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250100, P. R. China
| | - Yue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Zhenhao Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yiming Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xiaolong Wang
- Laboratory Management Office, Shandong University of Traditional Chinese Medicine, Jinan 250353, P. R. China
| | - Hui Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Shu Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| |
Collapse
|