1
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Tang J, Zhang P, Liu Y, Hou D, Chen Y, Cheng L, Xue Y, Liu J. Revolutionizing pressure ulcer regeneration: Unleashing the potential of extracellular matrix-derived temperature-sensitive injectable antioxidant hydrogel for superior stem cell therapy. Biomaterials 2025; 314:122880. [PMID: 39383777 DOI: 10.1016/j.biomaterials.2024.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Pressure ulcers are a common issue in elderly and medically compromised individuals, posing significant challenges in healthcare. Human umbilical cord mesenchymal stem cells (HUMSCs) offer therapeutic benefits like inflammation modulation and tissue regeneration, yet challenges in cell survival, retention, and implantation rates limit their clinical application. Hydrogels in three-dimensional (3D) stem cell culture mimic the microenvironment, improving cell survival and therapeutic efficacy. A thermosensitive injectable hydrogel (adEHG) combining gallic acid-modified hydroxybutyl chitosan (HBC-GA) with soluble extracellular matrix (adECM) has been developed to address these challenges. The hybrid hydrogel, with favorable physical and chemical properties, shields stem cells from oxidative stress and boosts their therapeutic potential by clearing ROS. The adEHG hydrogel promotes angiogenesis, cell proliferation, and collagen deposition, further enhancing inflammation modulation and wound healing through the sustained release of therapeutic factors and cells. Additionally, the adEHG@HUMSC composite induces macrophage polarization towards an M2 phenotype, which is crucial for wound inflammation inhibition and successful healing. Our research significantly propels the field of stem cell-based therapies for pressure ulcer treatment and underscores the potential of the adEHG hydrogel as a valuable tool in advancing regenerative medicine.
Collapse
Affiliation(s)
- Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Penglei Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Dingyu Hou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - You Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Yifang Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China.
| |
Collapse
|
3
|
Chen Z, Zhou Z, Zhang X, Wang Z, Fan J, Wang W, Zheng Y, Wang S. A carboxymethyl chitosan and dextran hydrogel with slow and rapid photothermal conversion for sequential promoting burn wound healing and inhibiting scar proliferation. Carbohydr Polym 2025; 350:123045. [PMID: 39647948 DOI: 10.1016/j.carbpol.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Facilitating swift burn wound healing while effectively preventing scar formation continues to be a considerable challenge in medical practice. In this study, an injectable carboxymethyl chitosan/oxidized dextran/polyvinylpyrrolidone/dopamine (COPD) hydrogel was designed for the effective sequentially promotion of burn wound healing and inhibition of scar formation. The COPD hydrogel precursor solution was injected into the burn wound via a double-barreled syringe and transformed into an adherent hydrogel within 25 s. The inclusion of dopamine imparted good free radical scavenging properties to the hydrogel. In particular, the gradual oxidation of dopamine to polydopamine enabled a unique heat production pattern-initially slow (photothermal conversion efficiency: 30.3 %) and then rapidly temperature increasing (photothermal conversion efficiency: 42.8 %) -under single laser irradiation. The effect of promoting healing at the initial stage of the wound was evaluated by constructing a male C57BL/6 mice model with deep second-degree burns, observation of the wound area, PCR analysis, and immunohistochemical staining. Furthermore, the scar inhibition was confirmed by observing reduced expression levels of α-SMA and COLI, along with a decreased collagen I/III ratio. With tunable mechanical properties (maximum compressive strength of 966.4 ± 51.7 kPa), the COPD hydrogel holds significant promise as an adjunctive photothermal platform for intelligent burn wound management.
Collapse
Affiliation(s)
- Zheng Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China; School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Zixuan Zhou
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region.
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
4
|
Yang L, Wu Y, Yang B, Huang H, He H, Liu S, Huang C, Qin Z, Zheng L, Shen C, Zhao J. Bioactive Nanoparticle-Embedded Micro/Nanofibrous Dressing with Improved Angiogenesis and Immunoregulation for Facilitating Burn Wound Healing. Adv Healthc Mater 2024:e2402886. [PMID: 39632345 DOI: 10.1002/adhm.202402886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/24/2024] [Indexed: 12/07/2024]
Abstract
In the context of severe burn injuries, the presence of excessive reactive oxygen species (ROS), prolonged microbial infection, and compromised angiogenesis can contribute to the metabolic reprogramming of macrophages, resulting in a dysregulated inflammatory response that hinders the healing process. In this study, cerium oxide nanoparticles (CeNPs) are encapsulated within a silk fibroin-poly(e-caprolactone) polymer to create an electrospun PSF/CeNPs nanofiber membrane (PSF/membrane). This membrane is further modified through the addition of an angiopoietin-1 mimetic peptide, QHREDGS, resulting in the formation of QPSF/CeNPs (QHREDGS modified PSF/CeNPs membrane). In vitro assessments revealed that the QPSF/CeNPs displayed the intended ability to regulate ROS levels, favorable biocompatibility with cells, promoted endothelial cell attachment and growth, exhibited anti-inflammatory properties through the modulation of macrophage phenotypes from M1 to M2, as well as pro-angiogenetic and antibacterial effects. In vivo, the membrane dressing demonstrated an acceleration of burn wound healing, promotion of angiogenesis, downregulation of inflammatory factors, and enhancement of collagen deposition. This bioactive membrane dressing shows potential as a clinical therapy for promoting the regeneration of both acute and chronically damaged skin tissue.
Collapse
Affiliation(s)
- Lerong Yang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Yiyang Wu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bangqi Yang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Hongjun Huang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Haoqiang He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Siyi Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Chanting Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Chong Shen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Jinmin Zhao
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| |
Collapse
|
5
|
Wang W, Ren Y, Yu Q, Jiang L, Yu C, Yue Z, Wang Y, Lu J, Che P, Li J, Sun H. Biodegradable exosome-engineered hydrogels for the prevention of peritoneal adhesions via anti-oxidation and anti-inflammation. Mater Today Bio 2024; 29:101312. [PMID: 39525394 PMCID: PMC11550211 DOI: 10.1016/j.mtbio.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Peritoneal adhesions (PA) are a common and severe complication after abdominal surgery, impacting millions of patients worldwide. The use of anti-adhesion materials as physical barriers is an effective strategy to prevent postoperative adhesions. However, the local inflammatory microenvironment exerts a significant impact on the efficacy of anti-adhesion therapies. In this study, an injectable hydrogel based on oxidized dextran/carboxymethyl chitosan (DCC) is designed and prepared. Furthermore, the DCC hydrogel is specifically engineered to load the adipose mesenchymal stem cells (ADSCs)-derived exosomes (Exos) for the treatment of PA. The prepared DCC hydrogel can act as the physical barrier via covering the irregular wound surface effectively. Moreover, it shows controlled degradation property, enabling the regulated release of Exos. The DCC hydrogel loaded Exos (DCC/Exo) system has high antioxidant capacity, and can effectively modulate the inflammatory microenvironments and diminish apoptosis. Notably, it promotes a polarization shift towards the M2-like phenotype in macrophages. The RNA-seq analysis confirms that the DCC/Exo system exhibits significant anti-inflammatory properties and promotes a reduction in collagen deposition. Consequently, the DCC/Exo system can inhibit peritoneal adhesions significantly in a mouse cecum-abdominal wall injury model. These results demonstrate the DCC/Exo is an ideal material for preventing postoperative adhesions.
Collapse
Affiliation(s)
- Weitong Wang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Yuchen Ren
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Qingyu Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Lijie Jiang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Chaojie Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhiwei Yue
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Yue Wang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Jiajun Lu
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Pengcheng Che
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, 063210, China
| | - Junjie Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| |
Collapse
|
6
|
Li G, Pu Z, Guo S, Liu Z, Deng M, Liu N, Li Z. Durable and biocompatible low adhesion wound dressing material based on interfacial behaviors for wound management. Colloids Surf B Biointerfaces 2024; 247:114413. [PMID: 39613500 DOI: 10.1016/j.colsurfb.2024.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound-dressing adhesion is a problem that has not been effectively addressed in the field of wound care for bleeding or burn wounds. Design of low adhesion wound dressing materials by leveraging interfacial behaviors has been an effective solution to this problem. However, previously reported superhydrophobic low adhesion materials either had durability or biocompatibility issue. To bridge this gap, this study presents a durable and biocompatible superhydrophobic low adhesion wound dressing material, which is designed on a normal gauze substrate with biocompatible components using a hybrid coating strategy. Outstanding low adhesion properties have been verified in vivo with bleeding wound or burn wound, with a peeling force that is only 0.3 %-14.5 % of the conventional non-woven gauze. Prepared low adhesion materials can robustly retain their superhydrophobicity and blood-repelling properties against harsh tests. Moreover, their biocompatibility has been confirmed through a series of tests including cell biocompatibility, hemolysis and skin irritation tests. With these demonstrated merits, the durable and biocompatible low adhesion material developed in this study will provide an effective solution to the wound adhesion problem in the practice of wound management.
Collapse
Affiliation(s)
- Guohao Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Zuo Pu
- Department of Vascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Peripheral vascular ward (Cardiac Surgery Ward 1), Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Shuang Guo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Zhuopeng Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Maosen Deng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Na Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Zhe Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China.
| |
Collapse
|
7
|
Jin C, Zhao R, Hu W, Wu X, Zhou L, Shan L, Wu H. Topical hADSCs-HA Gel Promotes Skin Regeneration and Angiogenesis in Pressure Ulcers by Paracrine Activating PPARβ/δ Pathway. Drug Des Devel Ther 2024; 18:4799-4824. [PMID: 39478872 PMCID: PMC11523932 DOI: 10.2147/dddt.s474628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Background Pressure ulcer is common in the bedridden elderly with high mortality and lack of effective treatment. In this study, human-adipose-derived-stem-cells-hyaluronic acid gel (hADSCs-HA gel) was developed and applied topically to treat pressure ulcers, of which efficacy and paracrine mechanisms were investigated through in vivo and in vitro experiments. Methods Pressure ulcers were established on the backs of C57BL/6 mice and treated topically with hADSCs-HA gel, hADSCs, hyaluronic acid, and normal saline respectively. The rate of wound closure was observed continuously during the following 14 days and the wound samples were obtained for Western blot, histopathology, immunohistochemistry, and proteomic analysis. Human dermal fibroblasts (HDFs) and human venous endothelial cells (HUVECs) under normal or hypoxic conditions were treated with conditioned medium of human ADSCs (ADSC-CM), then CCK-8, scratch test, tube formation, and Western blot were conducted to evaluate the paracrine effects of hADSCs and to explore the underlying mechanism. Results The in vivo data demonstrated that hADSCs-HA gel significantly accelerated the healing of pressure ulcers by enhancing collagen expression, angiogenesis, and skin proliferation. The in vitro data revealed that hADSCs strengthened the proliferation and wound healing capabilities of HDFs and HUVECs, meanwhile promoted collagen secretion and tube formation through paracrine mode. ADSC-CM was also proved to exert protective effects on hypoxic HDFs and HUVECs. Besides, the results of proteomic analysis and Western blot elucidated that lipid metabolism and PPARβ/δ pathway mediated the healing effect of hADSCs-HA gel on pressure ulcers. Conclusion Our research showed that topical application of hADSCs-HA gel played an important role in dermal regeneration and angiogenesis. Therefore, hADSCs-HA gel exhibited the potential as a novel stem-cell-based therapeutic strategy of treating pressure ulcers in clinical practices.
Collapse
Affiliation(s)
- Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Ruolin Zhao
- Yichen Biotechnology Co., Ltd, Hangzhou, Zhejiang, 311200, People’s Republic of China
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Weihang Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| | - Xiaolong Wu
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Letian Shan
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| |
Collapse
|
8
|
Al-Naymi HAS, Al-Musawi MH, Mirhaj M, Valizadeh H, Momeni A, Danesh Pajooh AM, Shahriari-Khalaji M, Sharifianjazi F, Tavamaishvili K, Kazemi N, Salehi S, Arefpour A, Tavakoli M. Exploring nanobioceramics in wound healing as effective and economical alternatives. Heliyon 2024; 10:e38497. [PMID: 39391491 PMCID: PMC11466581 DOI: 10.1016/j.heliyon.2024.e38497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Wound healing is a sophisticated process for which various treatment methods have been developed. Bioceramics with the ability to release inorganic ions in biological environments play a crucial role in cellular metabolism and exhibit bactericidal activity, contributing to numerous physiological processes. Their multifaceted roles in biological systems highlight their significance. The release of different metallic ions from bioceramics enables the repair of both hard and soft tissues. These ions may be effective in cell motility, proliferation, differentiation, adhesion, angiogenesis, and antibiosis. Unlike conventional medications, the bioactivity and antibacterial properties of bioceramics are typically not associated with side effects or bacterial resistance. Bioceramics are commonly recognized for their capcity to facilitate the healing of hard tissues due to their exceptional mechanical properties. In this review, we first explore wound treatment and its prevalent methods, and subsequently, we discuss the application of three primary categories of bioceramics-oxide ceramics, silicate-based ceramics, and calcium-phosphate ceramics-in the context of wound treatment. This review introduces bioceramics as a cost-effective and efficient alternative for wound repair. Our aim is to inspire researchers to incorporate bioceramics with other biomaterials to achieve enhanced, economical, expedited, and safer wound healing.
Collapse
Affiliation(s)
- Hanan Adnan Shaker Al-Naymi
- Department of Chemistry, College of Education for Pure Science/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Mastafa H. Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hamideh Valizadeh
- Department of tissue engineering and regenerative medicine, Faculty of advanced technologies in medicine, Iran university of medical sciences, Tehran, Iran
| | - Arefeh Momeni
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Amir Mohammad Danesh Pajooh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia
- Department of Civil Engineering, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., Tbilisi, 0160, Georgia
| | - Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ahmadreza Arefpour
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
9
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
10
|
Gandolfi S, Sanouj A, Chaput B, Coste A, Sallerin B, Varin A. The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair. Biol Direct 2024; 19:85. [PMID: 39343924 PMCID: PMC11439310 DOI: 10.1186/s13062-024-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Skin healing is a complex and dynamic physiological process that follows mechanical alteration of the skin barrier. Under normal conditions, this complex process can be divided into at least three continuous and overlapping phases: an inflammatory reaction, a proliferative phase that leads to tissue reconstruction and a phase of tissue remodeling. Macrophages critically contribute to the physiological cascade for tissue repair. In fact, as the inflammatory phase progresses, macrophage gene expression gradually shifts from pro-inflammatory M1-like to pro-resolutive M2-like characteristics, which is critical for entry into the repair phase. A dysregulation in this macrophage' shift phenotype leads to the persistence of the inflammatory phase. Mesenchymal stromal cells and specifically the MSC-derived from adipose tissue (ADSCs) are more and more use to treat inflammatory diseases and several studies have demonstrated that ADSCs promote the wound healing thanks to their neoangiogenic, immunomodulant and regenerative properties. In several studies, ADSCs and macrophages have been injected directly into the wound bed, but the delivery of exogenous cells directly to the wound raise the problem of cell engraftment and preservation of pro-resolutive phenotype and viability of the cells. Complementary approaches have therefore been explored, such as the use of biomaterials enriched with therapeutic cell to improve cell survival and function. This review will present a background of the current scaffold models, using adipose derived stromal-cells and macrophage as therapeutic cells for wound healing, through a discussion on the potential impact for future applications in skin regeneration. According to the PRISMA statement, we resumed data from investigations reporting the use ADSCs and bioscaffolds and data from macrophages behavior with functional biomaterials in wound healing models. In the era of tissue engineering, functional biomaterials, that can maintain cell delivery and cellular viability, have had a profound impact on the development of dressings for the treatment of chronic wounds. Promising results have been showed in pre-clinical reports using ADSCs- and macrophages-based scaffolds to accelerate and to improve the quality of the cutaneous healing.
Collapse
Affiliation(s)
- S Gandolfi
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France.
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France.
| | - A Sanouj
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Coste
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Sallerin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
- Department of Pharmacology, Toulouse University Hospital, 1 Av Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Varin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| |
Collapse
|
11
|
Zhang W, Zhao J, Zou X, Yu J, Liao J, Huang F. Multifunctional hydrogels for the healing of oral ulcers. J Biomed Mater Res A 2024. [PMID: 39210659 DOI: 10.1002/jbm.a.37776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Oral ulcers are one of the most common oral diseases in clinical practice. Its etiology is complex and varied. Due to the dynamic nature of the oral environment, the wound surface is painful due to contact and wear, which seriously affects the quality of life of patients. Oral ulcers are often treated with topical drug therapy. Studies have shown that functional hydrogels play a positive role in promoting wound healing, showing unique advantages in wound dressings. In this paper, the causes and healing characteristics of oral ulcers are discussed in depth, and then the common treatment methods for oral ulcers are summarized and compared. Finally, the potential of functional hydrogels in the treatment of oral ulcers is discussed and projected through a review of the literature in recent years.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Zhao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinxin Zou
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jingrong Yu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jinlong Liao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Kaveti R, Jakus MA, Chen H, Jain B, Kennedy DG, Caso EA, Mishra N, Sharma N, Uzunoğlu BE, Han WB, Jang TM, Hwang SW, Theocharidis G, Sumpio BJ, Veves A, Sia SK, Bandodkar AJ. Water-powered, electronics-free dressings that electrically stimulate wounds for rapid wound closure. SCIENCE ADVANCES 2024; 10:eado7538. [PMID: 39110791 PMCID: PMC11305378 DOI: 10.1126/sciadv.ado7538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Chronic wounds affect ~2% of the U.S. population and increase risks of amputation and mortality. Unfortunately, treatments for such wounds are often expensive, complex, and only moderately effective. Electrotherapy represents a cost-effective treatment; however, its reliance on bulky equipment limits its clinical use. Here, we introduce water-powered, electronics-free dressings (WPEDs) that offer a unique solution to this issue. The WPED performs even under harsh conditions-situations wherein many present treatments fail. It uses a flexible, biocompatible magnesium-silver/silver chloride battery and a pair of stimulation electrodes; upon the addition of water, the battery creates a radial electric field. Experiments in diabetic mice confirm the WPED's ability to accelerate wound closure and promote healing by increasing epidermal thickness, modulating inflammation, and promoting angiogenesis. Across preclinical wound models, the WPED-treated group heals faster than the control with wound closure rates comparable to treatments requiring expensive biologics and/or complex electronics. The results demonstrate the WPED's potential as an effective and more practical wound treatment dressing.
Collapse
Affiliation(s)
- Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Margaret A. Jakus
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry Chen
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| | - Bhavya Jain
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Darragh G. Kennedy
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Elizabeth A. Caso
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Navya Mishra
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Nivesh Sharma
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Baha Erim Uzunoğlu
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brandon J. Sumpio
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Amay J. Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| |
Collapse
|
13
|
Zhao M, Kang M, Wang J, Yang R, Zhong X, Xie Q, Zhou S, Zhang Z, Zheng J, Zhang Y, Guo S, Lin W, Huang J, Guo G, Fu Y, Li B, Fan Z, Li X, Wang D, Chen X, Tang BZ, Liao Y. Stem Cell-Derived Nanovesicles Embedded in Dual-Layered Hydrogel for Programmed ROS Regulation and Comprehensive Tissue Regeneration in Burn Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401369. [PMID: 38822749 DOI: 10.1002/adma.202401369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Burn wounds often bring high risks of delayed healing process and even death. Reactive oxygen species (ROS) play a crucial role in burn wound repair. However, the dynamic process in wound healing requires both the generation of ROS to inhibit bacteria and the subsequent reduction of ROS levels to initiate and promote tissue regeneration, which calls for a more intelligent ROS regulation dressing system. Hence, a dual-layered hydrogel (Dual-Gel) tailored to the process of burn wound repair is designed: the inner layer hydrogel (Gel 2) first responds to bacterial hyaluronidase (Hyal) to deliver aggregation-induced emission photosensitizer functionalized adipose-derived stem cell nanovesicles, which generate ROS upon light irradiation to eliminate bacteria; then the outer layer hydrogel (Gel 1) continuously starts a long-lasting consumption of excess ROS at the wound site to accelerate tissue regeneration. Simultaneously, the stem cell nanovesicles trapped in the burns wound also provide nutrients and mobilize neighboring tissues to thoroughly assist in inflammation regulation, cell proliferation, migration, and angiogenesis. In summary, this study develops an intelligent treatment approach on burn wounds by programmatically regulating ROS and facilitating comprehensive wound tissue repair.
Collapse
Affiliation(s)
- Meijiao Zhao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingru Wang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Qihu Xie
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Sitong Zhou
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yixun Zhang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Shuang Guo
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Weiqiang Lin
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jialin Huang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Genghong Guo
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu Fu
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Bin Li
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xipeng Li
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xu Chen
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Yuhui Liao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, P. R. China
| |
Collapse
|
14
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
15
|
He H, Huang W, Zhang S, Li J, Zhang J, Li B, Xu J, Luo Y, Shi H, Li Y, Xiao J, Ezekiel OC, Li X, Wu J. Microneedle Patch for Transdermal Sequential Delivery of KGF-2 and aFGF to Enhance Burn Wound Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307485. [PMID: 38623988 DOI: 10.1002/smll.202307485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Indexed: 04/17/2024]
Abstract
Severe burn wounds usually destroy key cells' functions of the skin resulting in delayed re-epithelization and wound regeneration. Promoting key cells' activities is crucial for burn wound repair. It is well known that keratinocyte growth factor-2 (KGF-2) participates in the proliferation and morphogenesis of epithelial cells while acidic fibroblast growth factor (aFGF) is a key mediator for fibroblast and endothelial cell growth and differentiation. However, thick eschar and the harsh environment of a burn wound often decrease the delivery efficiency of fibroblast growth factor (FGF) to the wound site. Therefore, herein a novel microneedle patch for sequential transdermal delivery of KGF-2 and aFGF is fabricated to enhance burn wound therapy. aFGF is first loaded in the nanoparticle (NPaFGF) and then encapsulated NPaFGF with KGF-2 in the microneedle patch (KGF-2/NPaFGF@MN). The result shows that KGF-2/NPaFGF@MN can successfully get across the eschar and sequentially release KGF-2 and aFGF. Additional data demonstrated that KGF-2/NPaFGF@MN achieved a quicker wound closure rate with reduced necrotic tissues, faster re-epithelialization, enhanced collagen deposition, and increased neo-vascularization. Further evidence suggests that improved wound healing is regulated by significantly elevated expressions of hypoxia-inducible factor-1 alpha (HIF-1ɑ) and heat shock protein 90 (Hsp90) in burn wounds. All these data proved that KGF-2/NPaFGF@MN is an effective treatment for wound healing of burns.
Collapse
Affiliation(s)
- Huacheng He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, P. R. China
| | - Wen Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Shihui Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jian Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Bingxin Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yuting Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Huiling Shi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yue Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Odinaka Cassandra Ezekiel
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jiang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
16
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
17
|
Wang Z, Chen D, Wang H, Bao S, Lang L, Cui C, Song H, Yang J, Liu W. The Unprecedented Biodegradable Polyzwitterion: A Removal-Free Patch for Accelerating Infected Diabetic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404297. [PMID: 38734972 DOI: 10.1002/adma.202404297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Zwitterionic polymers have emerged as an important class of biomaterials to construct wound dressings and antifouling coatings over the past decade due to their excellent hydrophilicity. However, all the reported zwitterionic polymers as wound dressings are nondegradable because of noncleavable carbon─carbon bonding backbones, and must be removed periodically after treatment to avoid hypoxia in the wound, thus leading to potential secondary injury. In this work, a biodegradable polyzwitterion patch is fabricated for the first time by ring-opening polymerization of carboxybetaine dithiolane (CBDS), which is self-crosslinked via inter-amide hydrogen bonds and zwitterionic dipole-dipole interactions on the side chains. The unprecedented polyCBDS (PCBDS) patch demonstrates enough ductility owing to the intermolecular physical interactions to fully cover irregular wounds, also showing excellent biodegradability and antifouling performance resulted from the existence of disulfide bonds and carboxybetaine groups. Besides, the PCBDS degradation-induced released CBDS owns potent antioxidant and antibacterial activities. This PCBDS patch is used as a diabetic wound dressing, inhibiting bacterial adhesion on the external surface, and its degradation products can exactly kill bacteria and scavenge excessive reactive oxygen species (ROS) at the wound site to regulate local microenvironment, including regulation of cytokine express and macrophage polarization, accelerating infected diabetic wound repair, and also avoiding the potential secondary injury.
Collapse
Affiliation(s)
- Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Danyang Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Hongying Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Siyu Bao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Liping Lang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Haotian Song
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
18
|
Yu Y, Yang M, Zhao H, Zhang C, Liu K, Liu J, Li C, Cai B, Guan F, Yao M. Natural blackcurrant extract contained gelatin hydrogel with photothermal and antioxidant properties for infected burn wound healing. Mater Today Bio 2024; 26:101113. [PMID: 38933414 PMCID: PMC11201118 DOI: 10.1016/j.mtbio.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Burns represent a prevalent global health concern and are particularly susceptible to bacterial infections. Severe infections may lead to serious complications, posing a life-threatening risk. Near-infrared (NIR)-assisted photothermal antibacterial combined with antioxidant hydrogel has shown significant potential in the healing of infected wounds. However, existing photothermal agents are typically metal-based, complicated to synthesize, or pose biosafety hazards. In this study, we utilized plant-derived blackcurrant extract (B) as a natural source for both photothermal and antioxidant properties. By incorporating B into a G-O hydrogel crosslinked through Schiff base reaction between gelatin (G) and oxidized pullulan (O), the resulting G-O-B hydrogel exhibited good injectability and biocompatibility along with robust photothermal and antioxidant activities. Upon NIR irradiation, the controlled temperature (around 45-50 °C) generated by the G-O-B hydrogel resulted in rapid (10 min) and efficient killing of Staphylococcus aureus (99 %), Escherichia coli (98 %), and Pseudomonas aeruginosa (82 %). Furthermore, the G-O-B0.5 hydrogel containing 0.5 % blackcurrant extract promoted collagen deposition, angiogenesis, and accelerated burn wound closure conclusively, demonstrating that this well-designed and extract-contained hydrogel dressing holds immense potential for enhancing the healing process of bacterial-infected burn wounds.
Collapse
Affiliation(s)
- Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Jingmei Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chenghao Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Bingjie Cai
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Jabbari F, Babaeipour V. Bacterial cellulose as an ideal potential treatment for burn wounds: A comprehensive review. Wound Repair Regen 2024; 32:323-339. [PMID: 38445725 DOI: 10.1111/wrr.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Burn wound regeneration is a complex process, which has many serious challenges such as slow wound healing, secondary infection, and inflammation. Therefore, it is essential to utilise appropriate biomaterials to accelerate and guide the wound healing process. Bacterial cellulose (BC), a natural polymer synthesised by some bacteria, has attracted much attention for wound healing applications due to its unique properties including excellent physicochemical and mechanical properties, simple purification process, three-dimensional (3D) network structure similar to extracellular matrix, high purity, high water holding capacity and significant permeability to gas and liquid. BC's lack of antibacterial activity significantly limits its biomedical and tissue engineering application, but adding antimicrobial agents to it remarkably improves its performance in tissue regeneration applications. Burn wound healing is a complex long-lasting process. Using biomaterials in wound treatment has shown that they can satisfactorily accelerate wound healing. The purpose of this review is to elaborate on the importance of BC-based structures as one of the most widely used modern wound dressings in the treatment of burn wounds. In addition, the combination of various drugs, agents, cells and biomolecules with BC to expand its application in burn injury regeneration is discussed. Finally, the main challenges and future development direction of BC-based structures for burn wound repair are considered. The four most popular search engines PubMed/MEDLINE, Science Direct, Scopus and Google Scholar were used to help us find relevant papers. The most frequently used keywords were bacterial cellulose, BC-based biocomposite, wound healing, burn wound and vascular graft.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran, Iran
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Zhao Z, Sun H, Yu C, Liu B, Liu R, Yang Q, Guo B, Li X, Yao M, Yao F, Zhang H, Li J. Injectable Asymmetric Adhesive-Antifouling Bifunctional Hydrogel for Peritoneal Adhesion Prevention. Adv Healthc Mater 2024; 13:e2303574. [PMID: 38115543 DOI: 10.1002/adhm.202303574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Peritoneal adhesion is a common problem after abdominal surgery and can lead to various medical problems. In response to the lack of in situ retention and pro-wound healing properties of existing anti-adhesion barriers, this work reports an injectable adhesive-antifouling bifunctional hydrogel (AAB-hydrogel). This AAB-hydrogel can be constructed by "two-step" injection. The tissue adhesive hydrogel based on gallic acid-modified chitosan and aldehyde-modified dextran is prepared as the bottom hydrogel (B-hydrogel) by Schiff base reaction. The aldehyde-modified zwitterionic dextran/carboxymethyl chitosan-based hydrogel is formed on the B-hydrogel surface as the antifouling top hydrogel (T-hydrogel). The AAB-hydrogel exhibits good bilayer binding and asymmetric properties, including tissue adhesive, antifouling, and antimicrobial properties. To evaluate the anti-adhesion effect in vivo, the prepared hydrogels are injected onto the wound surface of a mouse abdominal wall abrasion-cecum defect model. Results suggest that the AAB-hydrogel has antioxidant capacity and can reduce the postoperative inflammatory response by modulating the macrophage phenotype. Moreover, the AAB-hydrogel could effectively inhibit the formation of postoperative adhesions by reducing protein deposition, and resisting fibroblast adhesions and bacteria attacking. Therefore, AAB-hydrogel is a promising candidate for the prevention of postoperative peritoneal adhesions.
Collapse
Affiliation(s)
- Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Baijun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rui Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qi Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiuqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
21
|
He Y, Cen Y, Tian M. Immunomodulatory hydrogels for skin wound healing: cellular targets and design strategy. J Mater Chem B 2024; 12:2435-2458. [PMID: 38284157 DOI: 10.1039/d3tb02626d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Skin wounds significantly impact the global health care system and represent a significant burden on the economy and society due to their complicated dynamic healing processes, wherein a series of immune events are required to coordinate normal and sequential healing phases, involving multiple immunoregulatory cells such as neutrophils, macrophages, keratinocytes, and fibroblasts, since dysfunction of these cells may impede skin wound healing presenting persisting inflammation, impaired vascularization, and excessive collagen deposition. Therefore, cellular target-based immunomodulation is promising to promote wound healing as cells are the smallest unit of life in immune response. Recently, immunomodulatory hydrogels have become an attractive avenue to promote skin wound healing. However, a detailed and comprehensive review of cellular targets and related hydrogel design strategies remains lacking. In this review, the roles of the main immunoregulatory cells participating in skin wound healing are first discussed, and then we highlight the cellular targets and state-of-the-art design strategies for immunomodulatory hydrogels based on immunoregulatory cells that cover defect, infected, diabetic, burn and tumor wounds and related scar healing. Finally, we discuss the barriers that need to be addressed and future prospects to boost the development and prosperity of immunomodulatory hydrogels.
Collapse
Affiliation(s)
- Yinhai He
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Chen F, Wu P, Zhang H, Sun G. Signaling Pathways Triggering Therapeutic Hydrogels in Promoting Chronic Wound Healing. Macromol Biosci 2024; 24:e2300217. [PMID: 37831962 DOI: 10.1002/mabi.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Indexed: 10/15/2023]
Abstract
In recent years, there has been a significant increase in the prevalence of chronic wounds, such as pressure ulcers, diabetic foot ulcers, and venous ulcers of the lower extremities. The main contributors to chronic wound formation are bacterial infection, prolonged inflammation, and peripheral vascular disease. However, effectively treating these chronic wounds remains a global challenge. Hydrogels have extensively explored as wound healing dressing because of their excellent biocompatibility and structural similarity to extracellular matrix (ECM). Nonetheless, much is still unknown how the hydrogels promote wound repair and regeneration. Signaling pathways play critical roles in wound healing process by controlling and coordinating cells and biomolecules. Hydrogels, along with their therapeutic ingredients that impact signaling pathways, have the potential to significantly enhance the wound healing process and its ultimate outcomes. Understanding this interaction will undoubtedly provide new insights into developing advanced hydrogels for wound repair and regeneration. This paper reviews the latest studies on classical signaling pathways and potential targets influenced by hydrogel scaffolds in chronic wound healing. This work hopes that it will offer a different perspective in developing more efficient hydrogels for treating chronic wounds.
Collapse
Affiliation(s)
- Fang Chen
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
- First Department of Bone Injury, Luzhou Municipal Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, 646000, China
| | - Pingli Wu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Haisong Zhang
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Guoming Sun
- Sunogel Biotechnologies Inc., Lutherville Timonium, 9 W Ridgely Road Ste 270, Maryland, 21093, USA
| |
Collapse
|
23
|
Bao X, Huo S, Wang Z, Yang S, Dou L, Liu Y, Huang J, Cai C, Fang B, Xu G. Multifunctional biomimetic hydrogel dressing provides anti-infection treatment and improves immunotherapy by reprogramming the infection-related wound microenvironment. J Nanobiotechnology 2024; 22:80. [PMID: 38418972 PMCID: PMC10902999 DOI: 10.1186/s12951-024-02337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The advancement of biomaterials with antimicrobial and wound healing properties continues to present challenges. Macrophages are recognized for their significant role in the repair of infection-related wounds. However, the interaction between biomaterials and macrophages remains complex and requires further investigation. In this research, we propose a new sequential immunomodulation method to enhance and expedite wound healing by leveraging the immune properties of bacteria-related wounds, utilizing a novel mixed hydrogel dressing. The hydrogel matrix is derived from porcine acellular dermal matrix (PADM) and is loaded with a new type of bioactive glass nanoparticles (MBG) doped with magnesium (Mg-MBG) and loaded with Curcumin (Cur). This hybrid hydrogel demonstrates controlled release of Cur, effectively eradicating bacterial infection in the early stage of wound infection, and the subsequent release of Mg ions (Mg2+) synergistically inhibits the activation of inflammation-related pathways (such as MAPK pathway, NF-κB pathway, TNF-α pathway, etc.), suppressing the inflammatory response caused by infection. Therefore, this innovative hydrogel can safely and effectively expedite wound healing during infection. Our design strategy explores novel immunomodulatory biomaterials, offering a fresh approach to tackle current clinical challenges associated with wound infection treatment.
Collapse
Affiliation(s)
- Xiaogang Bao
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zhenhua Wang
- Department of Laboratory Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Shengyan Yang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Linyun Dou
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yifei Liu
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jian Huang
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Chang Cai
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Bin Fang
- Department of Orthopedics, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| | - Guohua Xu
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
24
|
Yu Q, Sun H, Zhang L, Jiang L, Liang L, Yu C, Dong X, Guo B, Qiu Y, Li J, Zhang H, Yao F, Zhu D, Li J. A Zwitterionic Hydrogel with Anti-Oxidative and Anti-Inflammatory Properties for the Prevention of Peritoneal Adhesion by Inhibiting Mesothelial-Mesenchymal Transition. Adv Healthc Mater 2023; 12:e2301696. [PMID: 37669499 DOI: 10.1002/adhm.202301696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/04/2023] [Indexed: 09/07/2023]
Abstract
Postoperative peritoneal adhesion is a serious clinical complication. Various hydrogel barriers have been developed to prevent peritoneal adhesion. However, it remains a challenge to design a hydrogel with desirable physicochemical properties and bioactivities. In this study, a zwitterionic polysaccharide-based multifunctional hydrogel is developed using epigallocatechin-3-gallate (EGCG) to prevent postoperative abdominal adhesion. This hydrogel is simple to use and has desirable properties, such as excellent injectability, self-healing, and non-swelling properties. The hydrogel also has ultralow fouling capabilities, such as superior bactericidal performance, cell and protein adhesion, and low immunogenicity resistance. Moreover, the hydrogel exhibits good antioxidant activity, which is attributed to the integration of EGCG. Furthermore, the detailed mechanism from in vivo and in vitro experimental studies illustrates that hydrogel compositions can synergistically prevent adhesion formation through multiple pathways, including anti-inflammatory and antioxidant capabilities and inhibition effects on the mesothelial-mesenchymal transition (MMT) process induced by transforming growth factor (TGF-β). In summary, this zwitterionic multifunctional hydrogel has great potential to prevent postoperative adhesion formation in the clinical setting.
Collapse
Affiliation(s)
- Qingyu Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Lijie Jiang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Lei Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chaojie Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoru Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingyan Guo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuwei Qiu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jingwu Li
- Surgical Oncology, Tangshan People' Hospital, Tangshan, 063001, China
| | - Hong Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fanglian Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Junjie Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
25
|
Liang L, Li X, Tan Z, Liu M, Qiu Y, Yu Q, Yu C, Yao M, Guo B, Yao F, Che P, Zhang H, Li J. Injectable spontaneously formed asymmetric adhesive hydrogel with controllable removal for wound healing. J Mater Chem B 2023; 11:10845-10858. [PMID: 37937417 DOI: 10.1039/d3tb02014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Healing large-scale wounds has been a long-standing challenge in the field of biomedicine. Herein, we propose an injectable oxidated sodium alginate/gelatin/3,3'-dithiobis(propionic hydrazide)-aurum (Alg-CHO/gelatin/DTPH-Au) hydrogel filler with asymmetric adhesion ability and removability, which is formed by the Schiff-base reaction between aldehyde-based sodium alginate and multi-amino crosslinkers (gelatin and DTPH), combined with the coordination interaction between Au nanoparticles and disulfide bond of DTPH. Consequently, the prepared Alg-CHO/gelatin/DTPH-Au hydrogel exhibits high mechanical properties and injectable behaviors owing to its multiple-crosslinked interactions. Moreover, because various types of interaction bonding form on the contact side with the tissue, denser crosslinking of the upper layer relative to the lower layer occurs. Combined with the temperature difference between the upper and lower surfaces, this results in asymmetric adhesive properties. Owing to the photothermal effect, the reversible coordination interaction between Au nanoparticles and DTPH and the change in the triple helix structure of gelatin to a coil structure impart the filler-phased removability and antibacterial ability. The choice of all natural polymers also allows for favorable degradability of the wound filler and outstanding biocompatibility. Based on these features, this versatile wound filler can achieve a wide range of applications in the field of all-skin wound repair.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhouying Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Min Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingyu Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Pengcheng Che
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
26
|
Samie A, Alavian H, Vafaei-Pour Z, Mohammadpour AH, Jafarian AH, Danesh NM, Abnous K, Taghdisi SM. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Mol Pharm 2023; 20:5090-5107. [PMID: 37624646 DOI: 10.1021/acs.molpharmaceut.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Pharmaceutical cocrystals ( Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry; Food and Drug Administration, 2018) are crystalline solids produced through supramolecular chemistry to modulate the physicochemical properties of active pharmaceutical ingredients (APIs). Despite their extensive development in interdisciplinary sciences, this is a pioneering study on the efficacy of pharmaceutical cocrystals in wound healing and scar reducing. Curcumin-pyrogallol cocrystal (CUR-PYR) was accordingly cherry-picked since its superior physicochemical properties adequately compensate for limitative drawbacks of curcumin (CUR). CUR-PYR has been synthesized by a liquid-assisted grinding (LAG) method and characterized via FT-IR, DSC, and PXRD analyses. In vitro antibacterial study indicated that CUR-PYR cocrystal, CUR+PYR physical mixture (PM), and PYR are more effective against both Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria in comparison with CUR. In vitro results also demonstrated that the viability of HDF and NIH-3T3 cells treated with CUR-PYR were improved more than those received CUR which is attributed to the effect of PYR in the form of cocrystal. The wound healing process has been monitored through a 15 day in vivo experiment on 75 male rats stratified into six groups: five groups treated by CUR-PYR+Vaseline (CUR-PYR.ung), CUR+PYR+Vaseline (CUR+PYR.ung), CUR+Vaseline (CUR.ung), PYR+Vaseline (PYR.ung), and Vaseline (VAS) ointments and a negative control group of 0.9% sodium chloride solution (NS). It was revealed that the wounds under CUR-PYR.ung treatment closed by day 12 postsurgery, while the wounds in other groups failed to reach the complete closure end point until the end of the experiment. Surprisingly, a diminutive scar (3.89 ± 0.97% of initial wound size) was observed in the CUR-PYR.ung treated wounds by day 15 after injury, followed by corresponding values for PYR.ung (12.08 ± 2.75%), CUR+PYR.ung (13.89 ± 5.02%), CUR.ung (16.24 ± 6.39%), VAS (18.97 ± 6.89%), and NS (20.33 ± 5.77%). Besides, investigating histopathological parameters including inflammation, granulation tissue, re-epithelialization, and collagen deposition signified outstandingly higher ability of CUR-PYR cocrystal in wound healing than either of its two constituents separately or their simple PM. It was concluded that desired solubility of the prepared cocrystal was essentially responsible for accelerating wound closure and promoting tissue regeneration which yielded minimal scarring. This prototype research suggests a promising application of pharmaceutical cocrystals for the purpose of wound healing.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Zeinab Vafaei-Pour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948954, Iran
| | - Amir Hossein Jafarian
- Cancer and Molecular Research Center, Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Noor Mohammad Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
27
|
Malekzadeh H, Tirmizi Z, Arellano JA, Egro FM, Ejaz A. Application of Adipose-Tissue Derived Products for Burn Wound Healing. Pharmaceuticals (Basel) 2023; 16:1302. [PMID: 37765109 PMCID: PMC10534650 DOI: 10.3390/ph16091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Burn injuries are a significant global health concern, leading to high morbidity and mortality. Deep burn injuries often result in delayed healing and scar formation, necessitating effective treatment options. Regenerative medicine, particularly cell therapy using adipose-derived stem cells (ASCs), has emerged as a promising approach to improving burn wound healing and reducing scarring. Both in vitro and preclinical studies have demonstrated the efficacy of ASCs and the stromal vascular fraction (SVF) in addressing burn wounds. The application of ASCs for burn healing has been studied in various forms, including autologous or allogeneic cells delivered in suspension or within scaffolds in animal burn models. Additionally, ASC-derived non-cellular components, such as conditioned media or exosomes have shown promise. Injection of ASCs and SVF at burn sites have been demonstrated to enhance wound healing by reducing inflammation and promoting angiogenesis, epithelialization, and granulation tissue formation through their paracrine secretome. This review discusses the applications of adipose tissue derivatives in burn injury treatment, encompassing ASC transplantation, as well as the utilization of non-cellular components utilization for therapeutic benefits. The application of ASCs in burn healing in the future will require addressing donor variability, safety, and efficacy for successful clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
28
|
Farazin A, Shirazi FA, Shafiei M. Natural biomarocmolecule-based antimicrobial hydrogel for rapid wound healing: A review. Int J Biol Macromol 2023:125454. [PMID: 37331533 DOI: 10.1016/j.ijbiomac.2023.125454] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Antibacterial hydrogels are a type of hydrogel that is designed to inhibit the growth of bacteria and prevent infections. These hydrogels typically contain antibacterial agents that are either integrated into the polymer network or coated onto the surface of the hydrogel. The antibacterial agents in these hydrogels can work through a variety of mechanisms, such as disrupting bacterial cell walls or inhibiting bacterial enzyme activity. Some examples of antibacterial agents that are commonly used in hydrogels include silver nanoparticles, chitosan, and quaternary ammonium compounds. Antibacterial hydrogels have a wide range of applications, including wound dressings, catheters, and medical implants. They can help to prevent infections, reduce inflammation, and promote tissue healing. In addition, they can be designed with specific properties to suit different applications, such as high mechanical strength or controlled release of antibacterial agents over time. Hydrogel wound dressings have come a long way in recent years, and the future looks very promising for these innovative wound care products. Overall, the future of hydrogel wound dressings is very promising, and we can expect to see continued innovation and advancement in this field in the years to come.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran.
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
29
|
Tan Z, Li X, Yu C, Yao M, Zhao Z, Guo B, Liang L, Wei Y, Yao F, Zhang H, Li J. A self-gelling powder based on polyacrylic acid/polyacrylamide/quaternate chitosan for rapid hemostasis. Int J Biol Macromol 2023; 232:123449. [PMID: 36709811 DOI: 10.1016/j.ijbiomac.2023.123449] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
In order to improve the hemostatic effect of the hemostatic dressing for non-compressible wounds, unknown bleeding points and irregularly shaped wounds, a self-gelling hemostasis powder based on polyacrylic acid/polyacrylamide/quaternate chitosan (PAA/PAM/QCS) is prepared in this study. When in contact with water, the PAA/PAM/QCS can fuse and rapidly form a stable hydrogel in a short time (< 0.25 min). The PAA/PAM ratio is the main parameter that modulates the formation of the self-gel. The PAA/PAM self-gel can be formed only when the PAA/PAM ratio is 5:5, and the introduction of QCS does not influence the self-gelling behaviors and hydrogel stability. Moreover, the PAA/PAM/QCS self-gel shows good adhesive properties on wet tissue surfaces. In addition, the introduction of QCS improves the antibacterial activity of the self-gelling hemostasis powder. Furthermore, the prepared PAA/PAM/QCS powder can rapidly adsorb lots of blood, aggregate blood cells and platelets. The hemostatic results in vivo show that PAA/PAM/QCS powder is superior to the control group and commercial product groups (chitosan powder) with performance similar to hemostatic zeolite in terms of the amount of bleeding and hemostatic time. Therefore, the PAA/PAM/QCS self-gelling powder shows great application prospects for rapid hemostasis.
Collapse
Affiliation(s)
- Zhouying Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Educatio, Tianjin University, Tianjin 300350, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Educatio, Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Educatio, Tianjin University, Tianjin 300350, China.
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Educatio, Tianjin University, Tianjin 300350, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
30
|
Modulation of Macrophage Function by Bioactive Wound Dressings with an Emphasis on Extracellular Matrix-Based Scaffolds and Nanofibrous Composites. Pharmaceutics 2023; 15:pharmaceutics15030794. [PMID: 36986655 PMCID: PMC10053223 DOI: 10.3390/pharmaceutics15030794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Bioactive wound dressings that are capable of regulating the local wound microenvironment have attracted a very large interest in the field of regenerative medicine. Macrophages have many critical roles in normal wound healing, and the dysfunction of macrophages significantly contributes to impaired or non-healing skin wounds. Regulation of macrophage polarization towards an M2 phenotype provides a feasible strategy to enhance chronic wound healing, mainly by promoting the transition of chronic inflammation to the proliferation phase of wound healing, upregulating the level of anti-inflammatory cytokines around the wound area, and stimulating wound angiogenesis and re-epithelialization. Based on this, modulation of macrophage functions by the rational design of bioactive scaffolds has emerged as a promising way to accelerate delayed wound healing. This review outlines current strategies to regulate the response of macrophages using bioactive materials, with an emphasis on extracellular matrix-based scaffolds and nanofibrous composites.
Collapse
|