1
|
Liu X, Luo D, Dai S, Cai Y, Chen T, Bao X, Hu M, Liu Z. Artificial Bacteriophages for Treating Oral Infectious Disease via Localized Bacterial Capture and Enhanced Catalytic Sterilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400394. [PMID: 39159066 PMCID: PMC11538703 DOI: 10.1002/advs.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/30/2024] [Indexed: 08/21/2024]
Abstract
With the rapid emergence of antibiotic-resistant pathogens, nanomaterial-assisted catalytic sterilization has been well developed to combat pathogenic bacteria by elevating the level of reactive oxygen species including hydroxyl radical (·OH). Although promising, the ultra-short lifetime and limited diffusion distance of ·OH severely limit their practical antibacterial usage. Herein, the rational design and preparation of novel virus-like copper silicate hollow spheres (CSHSs) are reported, as well as their applications as robust artificial bacteriophages for localized bacterial capture and enhanced catalytic sterilization in the treatment of oral infectious diseases. During the whole process of capture and killing, CSHSs can efficiently capture bacteria via shortening the distance between bacteria and CSHSs, produce massive ·OH around bacteria, and further iinducing the admirable effect of bacterial inhibition. By using mucosal infection and periodontitis as typical oral infectious diseases, it is easily found that the bacterial populations around lesions in animals after antibacterial treatment fall sharply, as well as the well-developed nanosystem can decrease the inflammatory reaction and promote the hard or soft tissue repair. Together, the high Fenton-like catalytic activity, strong bacterial affinity, excellent antibacterial activity, and overall safety of the nanoplatform promise its great therapeutic potential for further catalytic bacterial disinfection.
Collapse
Affiliation(s)
- Xiaocan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Danfeng Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Shuang Dai
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yanting Cai
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Tianyan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
- Key Laboratory of PathobiologyMinistry of EducationJilin UniversityChangchun130021China
| | - Zhen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
2
|
Yi J, Pei C, Zhang T, Qin Q, Gu X, Li Y, Ruan D, Wan J, Qiao L. Nanoscale Multipatterning Zn,Co-ZIF@FeOOH for Eradication of Multidrug-Resistant Bacteria and Antibacterial Treatment of Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58217-58225. [PMID: 39435754 DOI: 10.1021/acsami.4c10935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The rising incidence of infections caused by multidrug-resistant bacteria highlights the urgent need for innovative bacterial eradication strategies. Metal ions, such as Zn2+ and Co2+, have bactericidal effects by disrupting bacterial cell membranes and interfering with essential cellular processes. This has led to increased attention toward metal-organic frameworks (MOFs) as potential nonantibiotic bactericidal agents. However, the uniform and enhanced localized release of bactericidal metal ions remains a challenge. Herein, we introduce a nanoscale multipatterned Zn,Co-ZIF@FeOOH, featuring a multipod-like morphology with spiky corners, and dual-bactericidal metal ions. Compared to pure Zn,Co-ZIF, the multipod-like morphology of Zn,Co-ZIF@FeOOH exhibits enhanced adhesion toward bacterial surfaces via topological and multiple interactions of electrostatic interaction, significantly increasing the local release of Zn2+ and Co2+. Additionally, the spiky corners of the spindle-shaped FeOOH nanorods physically penetrate bacterial membranes, causing damage and further enhancing adhesion to bacteria. Nine Gram-negative and one Gram-positive bacteria were selected for in vitro test. Notably, the nanoscale multipatterned Zn,Co-ZIF@FeOOH exhibited high bactericidal efficacy against various multidrug-resistant bacteria, including extended-spectrum β-lactamase-producing (ESBL+) bacteria and carbapenem-resistant bacteria, performing well in both acidic and neutral environments. The wound healing activity of Zn,Co-ZIF@FeOOH was further demonstrated using female Balb/c mouse models infected with bacteria, where the materials show robust antibacterial efficacy and commendable biocompatibility. This study showcases the assembly of metal oxide/MOF composites for nanoscale multipatterning, aims at synergistic bacterial eradication and offers insights into developing nanomaterial-based strategies against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jia Yi
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Congcong Pei
- School of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Tangming Zhang
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Shanghai 200433, China
| | - Xiaoxia Gu
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Yekan Li
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Danping Ruan
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Liang Qiao
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| |
Collapse
|
3
|
Chen Y, Wei S, Li R, Xie W, Yang H. Bioclay Enzyme with Bimetal Synergistic Sterilization and Infectious Wound Regeneration. NANO LETTERS 2024; 24:8046-8054. [PMID: 38912748 DOI: 10.1021/acs.nanolett.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Bacteria invasion is the main factor hindering the wound-healing process. However, current antibacterial therapies inevitably face complex challenges, such as the abuse of antibiotics or severe inflammation during treatment. Here, a drug-free bioclay enzyme (Bio-Clayzyme) consisting of Fe2+-tannic acid (TA) network-coated kaolinite nanoclay and glucose oxidase (GOx) was reported to destroy harmful bacteria via bimetal antibacterial therapy. At the wound site, Bio-Clayzyme was found to enhance the generation of toxic hydroxyl radicals for sterilization via cascade catalysis of GOx and Fe2+-mediated peroxidase mimetic activity. Specifically, the acidic characteristics of the infection microenvironment accelerated the release of Al3+ from kaolinite, which further led to bacterial membrane damage and amplified the antibacterial toxicity of Fe2+. Besides, Bio-Clayzyme also performed hemostasis and anti-inflammatory functions inherited from Kaol and TA. By the combination of hemostasis and anti-inflammatory and bimetal synergistic sterilization, Bio-Clayzyme achieves efficient healing of infected wounds, providing a revolutionary approach for infectious wound regeneration.
Collapse
Affiliation(s)
- Ying Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Shiqi Wei
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Rui Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Weimin Xie
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Yuwen L, Lu P, Zhang Q, Yang K, Yin Z, Liang B, Wang L. H 2O 2/acid self-supplying double-layer electrospun nanofibers based on ZnO 2 and Fe 3O 4 nanoparticles for efficient catalytic therapy of wound infection. J Mater Chem B 2024; 12:6164-6174. [PMID: 38828762 DOI: 10.1039/d4tb00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Catalytic therapy based on nanozymes is promising for the treatment of bacterial infections. However, its therapeutic efficacy is usually restricted by the limited amount of hydrogen peroxide and the weak acidic environment in infected tissues. To solve these issues, we prepared polyvinyl alcohol (PVA)-polyacrylic acid (PAA)-iron oxide (Fe3O4)/polyvinyl alcohol (PVA)-zinc peroxide (ZnO2) double-layer electrospun nanofibers (PPF/PZ NFs). In this design, PVA serves as the carrier for ZnO2 nanoparticles (NPs), Fe3O4 NPs, and PAA. The double-layer structure of nanofibers can spatially separate the PAA and ZnO2 to avoid their reaction with each other during preparation and storage, while in the wet wound bed, PVA can dissolve and PAA can provide H+ ions to promote the generation of hydrogen peroxide and subsequent conversion to hydroxyl radicals for bacteria killing. In vitro experimental results demonstrated that PPF/PZ NFs can reduce the methicillin-resistant Staphylococcus aureus by 3.1 log (99.92%). Moreover, PPF/PZ NFs can efficiently treat the bacterial infection in a mouse wound model and promote wound healing with negligible toxicity to animals, indicating their potential use as "plug-and-play" antibacterial wound dressings. This work provides a novel strategy for the construction of double-layer electrospun nanofibers as catalytic wound dressings with hydrogen peroxide/acid self-supplying properties for the efficient treatment of bacterial infections.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Pei Lu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Qi Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Kaili Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Zhaowei Yin
- Department of Orthopaedic, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bin Liang
- Department of Orthopaedic, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
5
|
Li W, Liu Z, Tan X, Yang N, Liang Y, Feng D, Li H, Yuan R, Zhang Q, Liu L, Ge L. All-in-One Self-Powered Microneedle Device for Accelerating Infected Diabetic Wound Repair. Adv Healthc Mater 2024; 13:e2304365. [PMID: 38316147 DOI: 10.1002/adhm.202304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Diabetic wound healing remains a significant clinical challenge due to the complex microenvironment and attenuated endogenous electric field. Herein, a novel all-in-one self-powered microneedle device (termed TZ@mMN-TENG) is developed by combining the multifunctional microneedle carried tannin@ZnO microparticles (TZ@mMN) with the self-powered triboelectric nanogenerator (TENG). In addition to the delivery of tannin and Zn2+, TZ@mMN also effectively conducts electrical stimulation (ES) to infected diabetic wounds. As a self-powered device, the TENG can convert biomechanical motion into exogenous ES to accelerate the infected diabetic wound healing. In vitro experiment demonstrated that TZ@mMN shows excellent conductive, high antioxidant ability, and effective antibacterial properties against both Staphylococcus aureus and Escherichia coli (>99% antibacterial rates). Besides, the TZ@mMN-TENG can effectively promote cell proliferation and migration. In the diabetic rat full-thickness skin wound model infected with Staphylococcus aureus, the TZ@mMN-TENG can eliminate bacteria, accelerate epidermal growth (regenerative epidermis: ≈303.3 ± 19.1 µm), enhance collagen deposition, inhibit inflammation (lower TNF-α and IL-6 expression), and promote angiogenesis (higher CD31 and VEGF expression) to accelerate infected wound repair. Overall, the TZ@mMN-TENG provides a promising strategy for clinical application in diabetic wound repair.
Collapse
Affiliation(s)
- Weikun Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xin Tan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ning Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yanling Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Diyi Feng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Han Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Renqiang Yuan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
6
|
Jia X, Dou Z, Zhang Y, Li F, Xing B, Hu Z, Li X, Liu Z, Yang W, Liu Z. Smart Responsive and Controlled-Release Hydrogels for Chronic Wound Treatment. Pharmaceutics 2023; 15:2735. [PMID: 38140076 PMCID: PMC10747460 DOI: 10.3390/pharmaceutics15122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic wounds are a major health challenge that require new treatment strategies. Hydrogels are promising drug delivery systems for chronic wound healing because of their biocompatibility, hydration, and flexibility. However, conventional hydrogels cannot adapt to the dynamic and complex wound environment, which involves low pH, high levels of reactive oxygen species, and specific enzyme expression. Therefore, smart responsive hydrogels that can sense and respond to these stimuli are needed. Crucially, smart responsive hydrogels can modulate drug release and eliminate pathological factors by changing their properties or structures in response to internal or external stimuli, such as pH, enzymes, light, and electricity. These stimuli can also be used to trigger antibacterial responses, angiogenesis, and cell proliferation to enhance wound healing. In this review, we introduce the synthesis and principles of smart responsive hydrogels, describe their design and applications for chronic wound healing, and discuss their future development directions. We hope that this review will inspire the development of smart responsive hydrogels for chronic wound healing.
Collapse
Affiliation(s)
- Xintao Jia
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zixuan Dou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Fanqin Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zheming Hu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhongyan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Wenzhuo Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Li W, Yang N, Tan X, Liu Z, Huang Y, Yuan R, Liu L, Ge L. Layer-by-layer microneedle patch with antibacterial and antioxidant dual activities for accelerating bacterial-infected wound healing. Colloids Surf B Biointerfaces 2023; 231:113569. [PMID: 37826964 DOI: 10.1016/j.colsurfb.2023.113569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Bacterial-infected wound healing has always been a huge challenge to humans. Owing to the appearance of antibiotic resistance, there is an emergency need to design antibiotic-free wound dressings to treat such wounds. Herein, a novel antibiotic-free microneedle patch was designed, which its backing layer with antioxidant effect was coated with sodium carboxymethyl cellulose, 2-O-α-D-glucopyranosyl-L-ascorbic acid (GLAA), and 2-hydroxypropyltrimethyl ammonium chloride chitosan through electrostatic interaction based on layer-by-layer self-assembly technique, and its tips consisted of gelatin and tannic acid (TA) via hydrogen bonding interaction (CGH/GTA MN patch). The obtained CGH/GTA MN patch could effectively puncture the skin, and exhibit properties of pH-responsive TA and GLAA release. In vitro experiments showed that the obtained CGH/GTA MN patch has excellent antioxidative (scavenging DPPH efficacy is above 80 %, and scavenging ABTS efficiency reaches about 100 %), antibacterial (antibacterial rates of nearly 100 % for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), biodegradable, and biocompatible properties. In the S. aureus-infected rat wounds, the CGH/GTA MN patch could efficiently accelerate infected-wound healing by eliminating S. aureus infection, inhibiting inflammation, promoting angiogenesis, and accelerating epidermal regeneration. Thus, this study will provide a promising strategy to heal bacterial-infected wounds.
Collapse
Affiliation(s)
- Weikun Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ning Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xin Tan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yueru Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009 PR China
| | - Renqiang Yuan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023 PR China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009 PR China.
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
8
|
Han M, Huang J, Niu Z, Guo Y, Wei Z, Ding Y, Li C, Wang P, Wen G, Li X. Amorphous hollow manganese silicate nanosphere oxidase mimic for ultrasensitive and high-reliable colorimetric detection of biothiols. Mikrochim Acta 2023; 190:450. [PMID: 37875688 DOI: 10.1007/s00604-023-06034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Metal-based nanozymes with exceptional physicochemical property and intrinsic enzymatic properties have been widely used in industrial, medical, and diagnostic fields. However, low substrate affinity results in unsatisfying catalytic kinetic and instability in complicated conditions, which significantly decreases their sensitivity and reliability. Herein, an amorphous hollow manganese silicate nanosphere (defined as AHMS) has been successfully synthesized via a facile one-step hydrothermal method and utilized in the archetype for colorimetric detection of biothiols with high sensitivity and high reliability. The experimental data demonstrates that ultrafast affinity of the substrate contributes to enhanced sensitivity with outstanding catalytic kinetic features (Km = 27.1 μM) and low limit of detection (LODGSH = 20 nM). The designed sensor demonstrates a reliable applicability for analysis of biological liquids (fetal calf serum and Staphylococcus aureus) and design of visual logic gates. Therefore, AHMS provides a promising strategy for ultrasensitive and high-reliable biosensing.
Collapse
Affiliation(s)
- Mengxuan Han
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jianyu Huang
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Zhihui Niu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Yang Guo
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Zicheng Wei
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Yingying Ding
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Chengfeng Li
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Peng Wang
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Guangwu Wen
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Xiaowei Li
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
9
|
Jia C, Wu FG. Antibacterial Chemodynamic Therapy: Materials and Strategies. BME FRONTIERS 2023; 4:0021. [PMID: 37849674 PMCID: PMC10351393 DOI: 10.34133/bmef.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 10/19/2023] Open
Abstract
The wide and frequent use of antibiotics in the treatment of bacterial infection can cause the occurrence of multidrug-resistant bacteria, which becomes a serious health threat. Therefore, it is necessary to develop antibiotic-independent treatment modalities. Chemodynamic therapy (CDT) is defined as the approach employing Fenton and/or Fenton-like reactions for generating hydroxyl radical (•OH) that can kill target cells. Recently, CDT has been successfully employed for antibacterial applications. Apart from the common Fe-mediated CDT strategy, antibacterial CDT strategies mediated by other metal elements such as copper, manganese, cobalt, molybdenum, platinum, tungsten, nickel, silver, ruthenium, and zinc have also been proposed. Furthermore, different types of materials like nanomaterials and hydrogels can be adopted for constructing CDT-involved antibacterial platforms. Besides, CDT can introduce some toxic metal elements and then achieve synergistic antibacterial effects together with reactive oxygen species. Finally, CDT can be combined with other therapies such as starvation therapy, phototherapy, and sonodynamic therapy for achieving improved antibacterial performance. This review first summarizes the advancements in antibacterial CDT and then discusses the present limitations and future research directions in this field, hoping to promote the development of more effective materials and strategies for achieving potentiated CDT.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|