1
|
Shuai Y, Yang T, Zheng M, Zheng L, Wang J, Mao C, Yang M. Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414543. [PMID: 39871679 DOI: 10.1002/adma.202414543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Assembling natural proteins into large, strong, bone-mimetic scaffolds for repairing bone defects in large-animal load-bearing sites remain elusive. Here this challenge is tackled by assembling pure silk fibroin (SF) into 3D scaffolds with cortical-bone-like lamellae, superior strength, and biodegradability through freeze-casting. The unique lamellae promote the attachment, migration, and proliferation of tissue-regenerative cells (e.g., mesenchymal stem cells [MSCs] and human umbilical vein endothelial cells) around them, and are capable of developing in vitro into cortical-bone organoids with a high number of MSC-derived osteoblasts. High-SF-content lamellar scaffolds, regardless of MSC inoculation, regenerated more bone than non-lamellar or low-SF-content lamellar scaffolds. They accelerated neovascularization by transforming macrophages from M1 to M2 phenotype, promoting bone regeneration to repair large segmental bone defects (LSBD) in minipigs within three months, even without growth factor supplements. The bone regeneration can be further enhanced by controlling the orientation of the lamella to be parallel to the long axis of bone during implantation. This work demonstrates the power of oriented lamellar bone-like protein scaffolds in repairing LSBD in large animal models.
Collapse
Affiliation(s)
- Yajun Shuai
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Tao Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Meidan Zheng
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Bai L, Li J, Li G, Zhou D, Su J, Liu C. Skeletal interoception and prospective application in biomaterials for bone regeneration. Bone Res 2025; 13:1. [PMID: 39743568 DOI: 10.1038/s41413-024-00378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 01/04/2025] Open
Abstract
Accumulating research has shed light on the significance of skeletal interoception, in maintaining physiological and metabolic homeostasis related to bone health. This review provides a comprehensive analysis of how skeletal interoception influences bone homeostasis, delving into the complex interplay between the nervous system and skeletal system. One key focus of the review is the role of various factors such as prostaglandin E2 (PGE2) in skeletal health via skeletal interoception. It explores how nerves innervating the bone tissue communicate with the central nervous system to regulate bone remodeling, a process critical for maintaining bone strength and integrity. Additionally, the review highlights the advancements in biomaterials designed to utilize skeletal interoception for enhancing bone regeneration and treatment of bone disorders. These biomaterials, tailored to interact with the body's interoceptive pathways, are positioned at the forefront of innovative treatments for conditions like osteoporosis and fractures. They represent a convergence of bioengineering, neuroscience, and orthopedics, aiming to create more efficient and targeted therapies for bone-related disorders. In conclusion, the review underscores the importance of skeletal interoception in physiological regulation and its potential in developing more effective therapies for bone regeneration. It emphasizes the need for further research to fully understand the mechanisms of skeletal interoception and to harness its therapeutic potential fully.
Collapse
Affiliation(s)
- Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jilong Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Dongyang Zhou
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Changsheng Liu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
4
|
Somasundaram S, D F, Genasan K, Kamarul T, Raghavendran HRB. Implications of Biomaterials and Adipose-Derived Stem Cells in the Management of Calvarial Bone Defects. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024. [DOI: 10.1007/s40883-024-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 01/03/2025]
|
5
|
Luo Y, Gao Y. Potential Role of Hydrogels in Stem Cell Culture and Hepatocyte Differentiation. NANO BIOMEDICINE AND ENGINEERING 2024; 16:188-202. [DOI: 10.26599/nbe.2024.9290055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
6
|
Luo Y, Yang Z, Zhao X, Li D, Li Q, Wei Y, Wan L, Tian M, Kang P. Immune regulation enhances osteogenesis and angiogenesis using an injectable thiolated hyaluronic acid hydrogel with lithium-doped nano-hydroxyapatite (Li-nHA) delivery for osteonecrosis. Mater Today Bio 2024; 25:100976. [PMID: 38322659 PMCID: PMC10846409 DOI: 10.1016/j.mtbio.2024.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Osteonecrosis is a devastating orthopedic disease in clinic that generally occurs in the femoral head associating with corticosteroid use up to 49 % in patients. In particular, glucocorticoids induced osteonecrosis of the femoral head is closely related to the local immune response that characterized by abnormal macrophage activation and inflammatory cell infiltration at the necrotic site, forming a pro-inflammatory microenvironment dominated by M1 macrophages, and thus leads to failure of bone repair and regeneration. Here, we report a bone regeneration strategy that constructs an immune regulatory biomaterial platform using an injectable thiolated hyaluronic acid hydrogel with lithium-doped nano-hydroxyapatite (Li-nHA@Gel) delivery for osteonecrosis treatment. Li-nHA@Gel achieved a sustain and longterm release of Li ions, which might enhance M2 macrophage polarization through the activation of the JAK1/STAT6/STAT3 signaling pathway, and the following induced pro-repair immune microenvironment mediated the enhancement of the osteogenic and angiogenic differentiation. Moreover, both in vitro and in vivo studies indicated that Li-nHA@Gel enhanced M2 macrophage polarization, osteogenesis, and angiogenesis, and thus promoted the bone and blood vessel formation. Taken together, this novel bone immunomodulatory biomaterial platform that promotes bone regeneration by enhancing M2 macrophage polarization, osteogenesis, and angiogenesis could be a promising strategy for osteonecrosis treatment.
Collapse
Affiliation(s)
- Yue Luo
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 1 the South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Zhouyuan Yang
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xin Zhao
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Donghai Li
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianhao Li
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yang Wei
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Luyao Wan
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Pengde Kang
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
7
|
Li J, Li L, Wu T, Shi K, Bei Z, Wang M, Chu B, Xu K, Pan M, Li Y, Hu X, Zhang L, Qu Y, Qian Z. An Injectable Thermosensitive Hydrogel Containing Resveratrol and Dexamethasone-Loaded Carbonated Hydroxyapatite Microspheres for the Regeneration of Osteoporotic Bone Defects. SMALL METHODS 2024; 8:e2300843. [PMID: 37800985 DOI: 10.1002/smtd.202300843] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Bone defects in osteoporosis usually present excessive reactive oxygen species (ROS), abnormal inflammation levels, irregular shapes and impaired bone regeneration ability; therefore, osteoporotic bone defects are difficult to repair. In this study, an injectable thermosensitive hydrogel poly (D, L-lactide)-poly (ethylene glycol)- poly (D, L-lactide) (PLEL) system containing resveratrol (Res) and dexamethasone (DEX) is designed to create a microenvironment conducive to osteogenesis in osteoporotic bone defects. This PLEL hydrogel is injected and filled irregular defect areas and achieving a rapid sol-gel transition in situ. Res has a strong anti-inflammatory effects that can effectively remove excess free radicals at the damaged site, guide macrophage polarization to the M2 phenotype, and regulate immune responses. Additionally, DEX can promote osteogenic differentiation. In vitro experiments showed that the hydrogel effectively promoted osteogenic differentiation of mesenchymal stem cells, removed excess intracellular ROS, and regulated macrophage polarization to reduce inflammatory responses. In vivo experiments showed that the hydrogel promoted osteoporotic bone defect regeneration and modulated immune responses. Overall, this study confirmed that the hydrogel can treat osteoporotic bone defects by synergistically modulating bone damage microenvironment, alleviating inflammatory responses, and promoting osteogenesis; thus, it represents a promising drug delivery strategy to repair osteoporotic bone defects.
Collapse
Affiliation(s)
- Jianan Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingkui Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keqi Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yicong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xulin Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linghong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS MATERIALS AU 2023; 3:394-417. [PMID: 38089090 PMCID: PMC10510521 DOI: 10.1021/acsmaterialsau.3c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 03/22/2024]
Abstract
Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.
Collapse
Affiliation(s)
- Sara Abtahi
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Xiaohu Chen
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Sima Shahabi
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Noushin Nasiri
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
9
|
Wang J, Wang X, Liang Z, Lan W, Wei Y, Hu Y, Wang L, Lei Q, Huang D. Injectable antibacterial Ag-HA/ GelMA hydrogel for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1219460. [PMID: 37388768 PMCID: PMC10300446 DOI: 10.3389/fbioe.2023.1219460] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Background: Fracture or bone defect caused by accidental trauma or disease is a growing medical problem that threats to human health.Currently, most orthopedic implant materials must be removed via follow-up surgery, which requires a lengthy recovery period and may result in bacterial infection. Building bone tissue engineering scaffolds with hydrogel as a an efficient therapeutic strategy has outstanding bionic efficiency.By combining some bionic inorganic particles and hydrogels to imitate the organic-inorganic characteristics of natural bone extracellular matrix, developing injectable multifunctional hydrogels with bone tissue repair effects and also displaying excellent antibacterial activity possesses attractive advantages in the field of minimally invasive therapy in clinical. Methods: In the present work, a multifunctional injectable hydrogel formed by photocrosslinking was developed by introducing hydroxyapatite (HA) microspheres to Gelatin Methacryloyl (GelMA) hydrogel. Results: The composite hydrogels exhibited good adhesion and bending resistance properties due to the existence of HA. In addition, when the concentration of GelMA is 10% and the concentration of HA microspheres is 3%, HA/GelMA hydrogel system displayed increased microstructure stability, lower swelling rate, increased viscosity, and improved mechanical properties. Furthermore, the Ag-HA/GelMA demonstrated good antibacterial activity against Staphylococcus aureus and Escherichia coli, which could signifificantly lower the risk of bacterial infection following implantation. According to cell experiment, the Ag-HA/GelMA hydrogel is capable of cytocompatibility and has low toxicity to MC3T3 cell. Conclusion: Therefore, the new photothermal injectable antibacterial hydrogel materials proposed in this study will provide a promising clinical bone repair strategy and is expected to as a minimally invasive treatment biomaterial in bone repair fields.
Collapse
Affiliation(s)
- Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Xuefeng Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Weiwei Lan
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Longfei Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Qi Lei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| |
Collapse
|