1
|
Yuan W, Huang M, Chen W, Chen S, Cai J, Chen L, Lin H, He K, Chen H, Jiang W, Ou Y, Chen J. Reduced graphene oxide loaded with tetrahedral framework nucleic acids for combating orthodontically induced root resorption. J Nanobiotechnology 2024; 22:700. [PMID: 39533318 PMCID: PMC11559230 DOI: 10.1186/s12951-024-02988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Root resorption occurs outside the root or within the root canal. Regardless of its region, root resorption is irreversible and in severe cases, may even cause tooth loss. Clinically, the external surface root resorption is usually a side effect of orthodontic tooth movement. However, it is frustrating to note that there are almost no effective treatment strategies for orthodontically induced root resorption (OIRR) due to the complexity and ambiguity of etiology. In the current study, we successfully fabricated a delivery complex, reduced graphene oxide nanosheet loading with tetrahedral framework nucleic acids (tFNAs-rGO) through self-assembly. No significant cytotoxicity or organ-toxicity of the tFNAs-rGO complex was observed in cell counting kit-8 assay (CCK-8) and hematoxylin-eosin (HE) staining. Histological staining such as tartrate-resistant acid phosphatase (TRAP) staining and Micro-CT three-dimensional reconstruction were employed to explore the dynamic changes of root and peri-root tissues in OIRR mice. In vitro, we developed an induction microenvironment to testify the effects of the tFNAs-rGO delivery complex on periodontal ligament cells (PDLCs) and macrophages by quantitative RT-PCR, western blot, and immunofluorescence staining. The data showed the reduced the region of root resorption and downregulated osteoclastic activity in OIRR by the tFNAs-rGO complex treatment. Furthermore, our study demonstrated that the tFNAs-rGO delivery complex enhanced osteogenic differentiation of PDLCs and facilitated M2-phenotype polarization of macrophages to ameliorate OIRR. Collectively, the insight into the nanoscale dual-functional tFNAs-rGO delivery complex regulating the cell populations of PDLCs and macrophages in the root resorption remodeling proposes a promising therapeutic strategy for orthodontically induced root resorption.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Postdoctoral Workstation & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital Fujian Medical University, Fuzhou, 350000, China
| | - Wenqian Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Sihang Chen
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingwen Cai
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Linxin Chen
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Hanyu Lin
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kaixun He
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Huachen Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Wenting Jiang
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yanjing Ou
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jiang Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Fan Q, Sun B, Chao J. Advancements in Engineering Tetrahedral Framework Nucleic Acids for Biomedical Innovations. SMALL METHODS 2024:e2401360. [PMID: 39487613 DOI: 10.1002/smtd.202401360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Tetrahedral framework nucleic acids (tFNAs) are renowned for their controllable self-assembly, exceptional programmability, and excellent biocompatibility, which have led to their widespread application in the biomedical field. Beyond these features, tFNAs demonstrate unique chemical and biological properties including high cellular uptake efficiency, structural bio-stability, and tissue permeability, which are derived from their distinctive 3D structure. To date, an extensive range of tFNA-based nanostructures are intelligently designed and developed for various biomedical applications such as drug delivery, gene therapy, biosensing, and tissue engineering, among other emerging fields. In addition to their role in drug delivery systems, tFNAs also possess intrinsic properties that render them highly effective as therapeutic agents in the treatment of complex diseases, including arthritis, neurodegenerative disorders, and cardiovascular diseases. This dual functionality significantly enhances the utility of tFNAs in biomedical research, presenting valuable opportunities for the development of next-generation medical technologies across diverse therapeutic and diagnostic platforms. Consequently, this review comprehensively introduces the latest advancements of tFNAs in the biomedical field, with a focus on their benefits and applications as drug delivery nanoplatforms, and their inherent capabilities as therapeutic agents. Furthermore, the current limitations, challenges, and future perspectives of tFNAs are explored.
Collapse
Affiliation(s)
- Qin Fan
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Bicheng Sun
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Jie Chao
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing, 210000, China
| |
Collapse
|
3
|
Ban JQ, Ao LH, He X, Zhao H, Li J. Advances in macrophage-myofibroblast transformation in fibrotic diseases. Front Immunol 2024; 15:1461919. [PMID: 39445007 PMCID: PMC11496091 DOI: 10.3389/fimmu.2024.1461919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) has emerged as a discovery in the field of fibrotic disease research. MMT is the process by which macrophages differentiate into myofibroblasts, leading to organ fibrosis following organ damage and playing an important role in fibrosis formation and progression. Recently, many new advances have been made in studying the mechanisms of MMT occurrence in fibrotic diseases. This article reviews some critical recent findings on MMT, including the origin of MMT in myofibroblasts, the specific mechanisms by which MMT develops, and the mechanisms and effects of MMT in the kidneys, lungs, heart, retina, and other fibrosis. By summarizing the latest research related to MMT, this paper provides a theoretical basis for elucidating the mechanisms of fibrosis in various organs and developing effective therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and
Disease Control, Ministry of Education, Guizhou Medical University,
Guiyang, China
| |
Collapse
|
4
|
Chen J, Wang D, Wu G, Xiong F, Liu W, Wang Q, Kuai Y, Huang W, Qi Y, Wang B, Chen Y. STUB1-mediated K63-linked ubiquitination of UHRF1 promotes the progression of cholangiocarcinoma by maintaining DNA hypermethylation of PLA2G2A. J Exp Clin Cancer Res 2024; 43:260. [PMID: 39267107 PMCID: PMC11395162 DOI: 10.1186/s13046-024-03186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant tumor characterized by a lack of effective targeted therapeutic strategies. The protein UHRF1 plays a pivotal role in the preservation of DNA methylation and works synergistically with DNMT1. Posttranscriptional modifications (PTMs), such as ubiquitination, play indispensable roles in facilitating this process. Nevertheless, the specific PTMs that regulate UHRF1 in CCA remain unidentified. METHODS We confirmed the interaction between STUB1 and UHRF1 through mass spectrometry analysis. Furthermore, we investigated the underlying mechanisms of the STUB1-UHRF1/DNMT1 axis via co-IP experiments, denaturing IP ubiquitination experiments, nuclear‒cytoplasmic separation and immunofluorescence experiments. The downstream PLA2G2A gene, regulated by the STUB1-UHRF1/DNMT1 axis, was identified via RNA-seq. The negative regulatory mechanism of PLA2G2A was explored via bisulfite sequencing PCR (BSP) experiments to assess changes in promoter methylation. The roles of PLA2G2A and STUB1 in the proliferation, invasion, and migration of CCA cells were assessed using the CCK-8 assay, colony formation assay, Transwell assay, wound healing assay and xenograft mouse model. We evaluated the effects of STUB1/UHRF1 on cholangiocarcinoma by utilizing a primary CCA mouse model. RESULTS This study revealed that STUB1 interacts with UHRF1, resulting in an increase in the K63-linked ubiquitination of UHRF1. Consequently, this facilitates the nuclear translocation of UHRF1 and enhances its binding affinity with DNMT1. The STUB1-UHRF1/DNMT1 axis led to increased DNA methylation of the PLA2G2A promoter, subsequently repressing its expression. Increased STUB1 expression in CCA was inversely correlated with tumor progression and overall survival. Conversely, PLA2G2A functions as a tumor suppressor in CCA by inhibiting cell proliferation, invasion and migration. CONCLUSIONS These findings suggest that the STUB1-mediated ubiquitination of UHRF1 plays a pivotal role in tumor progression by epigenetically silencing PLA2G2A, underscoring the potential of STUB1 as both a prognostic biomarker and therapeutic target for CCA.
Collapse
Affiliation(s)
- Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Fei Xiong
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Yiyang Kuai
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Wenhua Huang
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| |
Collapse
|
5
|
Tu YC, Wang YM, Yao LJ. Macrophage-Targeting DNA Nanomaterials: A Future Direction of Biological Therapy. Int J Nanomedicine 2024; 19:3641-3655. [PMID: 38681094 PMCID: PMC11055528 DOI: 10.2147/ijn.s459288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
DNA can be used for precise construction of complex and flexible micro-nanostructures, including DNA origami, frame nucleic acids, and DNA hydrogels. DNA nanomaterials have good biocompatibility and can enter macrophages via scavenger receptor-mediated endocytosis. DNA nanomaterials can be uniquely and flexibly designed to ensure efficient uptake by macrophages, which represents a novel strategy to regulate macrophage function. With the development of nanotechnology, major advances have been made in the design and manufacturing of DNA nanomaterials for clinical therapy. In diseases accompanied by macrophage disturbances including tumor, infectious diseases, arthritis, fibrosis, acute lung injury, and atherosclerosis, DNA nanomaterials received considerable attention as potential treatments. However, we lack sufficient information to guarantee precise targeting of macrophages by DNA nanomaterials, which precludes their therapeutic applications. In this review, we summarize recent studies of macrophage-targeting DNA nanomaterials and discuss the limitations and challenges of this approach with regard to its potential use as a biological therapy.
Collapse
Affiliation(s)
- Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Qi B, Li Y, Peng Z, Luo Z, Zhang X, Chen J, Li G, Sun Y. Macrophage-Myofibroblast Transition as a Potential Origin for Skeletal Muscle Fibrosis After Injury via Complement System Activation. J Inflamm Res 2024; 17:1083-1094. [PMID: 38384372 PMCID: PMC10880461 DOI: 10.2147/jir.s450599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Background Acute skeletal muscle injury is common in sports. The injured muscle cannot fully recover due to fibrosis resulting from myofibroblasts. Understanding the origin of fibroblasts is, therefore, important for the development of anti-fibrotic therapies. Accumulating evidence shows that a mechanism called macrophage-myofibroblast transition (MMT) can lead to tissue or organ fibrosis, yet it is still unclear whether MMT exists in skeletal muscle and the exact mechanisms. Methods Single-cell transcriptome of mice skeletal muscle after acute injury was analyzed with a specific attention on the process of MMT. Cell-cell interaction network, pseudotime trajectory analysis, Gene Ontology (GO), and Kyoto Genome Encyclopedia (KEGG) were conducted. A series of experiments in vivo and in vitro were launched for verification. Results Single cell transcriptomic analysis indicated that, following acute injury, there were much interactions between macrophages and myofibroblasts. A detailed analysis on macrophages indicated that, CD68+α-SMA+ cells, which represented the status of MMT, mainly appeared at five days post-injury. KEGG/GO analysis underlined the involvement of complement system, within which C3ar1, C1qa, C1qb, and C1qc were up-regulated. Trajectory analysis also confirmed a potential shift from macrophages to myofibroblasts. These findings were verified by histological study in mice skeletal muscle, that there were much MMT cells at five days, declined gradually, and vanished 14 days after trauma, when there was remarkable fibrosis formation within the injured muscle. Moreover, C3a stimulation could directly induce MMT in BMDMs. Conclusion Fibrosis following acute injury is disastrous to skeletal muscle, but the origin of myofibroblasts remains unclear. We proved that, following acute injury, macrophage-myofibroblast transition happened in skeletal muscle, which may contribute to fibrosis formation. This phenomenon mainly occurred at five days post-injury. The complement system can activate MMT. More evidence is needed to directly support the pro-fibrotic role of MMT in skeletal muscle fibrosis after acute injury.
Collapse
Affiliation(s)
- Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Yuqi Li
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guoqi Li
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Yao L, Lu F, Koc S, Zheng Z, Wang B, Zhang S, Skutella T, Lu G. LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF-β1 in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303711. [PMID: 37672887 PMCID: PMC10602550 DOI: 10.1002/advs.202303711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
The gene mutations of LRRK2, which encodes leucine-rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)-induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin-1/transforming growth factor beta1 (THBS1/TGF-β1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF-β1. Knocking down THBS1 can rescue ER stress by interacting with TGF-β1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF-β1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF-β1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Longping Yao
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Fengfei Lu
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Sumeyye Koc
- Department of NeuroscienceInstitute of Health SciencesOndokuz Mayıs UniversitySamsun55139Turkey
| | - Zijian Zheng
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| | - Baoyan Wang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Shizhong Zhang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Thomas Skutella
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Guohui Lu
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| |
Collapse
|
8
|
Li J, Yan R, Shi S, Lin Y. Recent progress and application of the tetrahedral framework nucleic acid materials on drug delivery. Expert Opin Drug Deliv 2023; 20:1511-1530. [PMID: 37898874 DOI: 10.1080/17425247.2023.2276285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION The application of DNA framework nucleic acid materials in the biomedical field has witnessed continual expansion. Among them, tetrahedral framework nucleic acids (tFNAs) have gained significant traction as the foremost biological vectors due to their superior attributes of editability, low immunogenicity, biocompatibility, and biodegradability. tFNAs have demonstrated promising results in numerous in vitro and in vivo applications. AREAS COVERED This review summarizes the latest research on tFNAs in drug delivery, including a discussion of the advantages of tFNAs in regulating biological behaviors, and highlights the updated development and advantageous applications of tFNAs-based nanostructures from static design to dynamically responsive design. EXPERT OPINION tFNAs possess distinct biological regulatory attributes and can be taken up by cells without the requirement of transfection, differentiating them from other biological vectors. tFNAs can be easily physically/chemically modified and seamlessly incorporated with other functional systems. The static design of the tFNAs-based drug delivery system makes it versatile, reproducible, and predictable. Further use of the dynamic response mechanism of DNA to external stimuli makes tFNAs-based drug delivery more effective and specific, improving the uptake and utilization of the payload by the intended target. Dynamic targeting is poised to become the future primary approach for drug delivery.
Collapse
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Plastic Surgery and Cosmetic Dermatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ran Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, China
| |
Collapse
|