1
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Gutiérrez-Fernández J, Cerezo-Collado L, Garcés V, Alarcón-Guijo P, Delgado-López JM, Dominguez-Vera JM. Probiotic-Loaded Bacterial Cellulose as an Alternative to Combat Carbapenem-Resistant Bacterial Infections. Antibiotics (Basel) 2024; 13:1003. [PMID: 39596698 PMCID: PMC11591192 DOI: 10.3390/antibiotics13111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Carbapenems are one of the mainstays of treatment for antibiotic-resistant bacteria (ARB). This has made the rise of carbapenem-resistant bacteria a threat to global health. In fact, the World Health Organization (WHO) has identified carbapenem-resistant bacteria as critical pathogens, and the development of novel antibacterials capable of combating infections caused by these bacteria is a priority. Objective: With the aim of finding new alternatives to fight against ARB and especially against carbapenem-resistant bacteria, we have developed a series of living materials formed by incorporating the probiotics Lactobacillus plantarum (Lp), Lactobacillus fermentum (Lf), and a mixture of both (L. plantarum+L. fermentum) into bacterial cellulose (BC). Results: These probiotic-loaded bacterial celluloses inhibited the proliferation of three ARB, including two carbapenem-resistant enterobacteria (CRE), identified as Klebsiella pneumoniae and Enterobacter cloacae, and a carbapenem-resistant Pseudomonas aeruginosa. Interestingly, while the probiotics L. plantarum, L. fermentum, and the mixture of both were found to be inactive against these ARB, they became active once incorporated into BC. Conclusions: The increase in activity is due to the known effect that cells increase their activity once incorporated into a suitable matrix, forming a living material. For the same reasons, the probiotics in the living materials BC-L. plantarum, BC-L. fermentum, and BC-L. plantarum+L. fermentum showed increased stability, allowing them to be stored with bacterial activity for long periods of time (two months).
Collapse
Affiliation(s)
| | - Laura Cerezo-Collado
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Víctor Garcés
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Pablo Alarcón-Guijo
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - José M. Delgado-López
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Jose M. Dominguez-Vera
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| |
Collapse
|
3
|
Lee MMS, Yu EY, Chau JHC, Lam JWY, Kwok RTK, Tang BZ. Expanding Our Horizons: AIE Materials in Bacterial Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407707. [PMID: 39246197 DOI: 10.1002/adma.202407707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Bacteria share a longstanding and complex relationship with humans, playing a role in protecting gut health and sustaining the ecosystem to cause infectious diseases and antibiotic resistance. Luminogenic materials that share aggregation-induced emission (AIE) characteristics have emerged as a versatile toolbox for bacterial studies through fluorescence visualization. Numerous research efforts highlight the superiority of AIE materials in this field. Recent advances in AIE materials in bacterial studies are categorized into four areas: understanding bacterial interactions, antibacterial strategies, diverse applications, and synergistic applications with bacteria. Initial research focuses on visualizing the unseen bacteria and progresses into developing strategies involving electrostatic interactions, amphiphilic AIE luminogens (AIEgens), and various AIE materials to enhance bacterial affinity. Recent progress in antibacterial strategies includes using photodynamic and photothermal therapies, bacterial toxicity studies, and combined therapies. Diverse applications from environmental disinfection to disease treatment, utilizing AIE materials in antibacterial coatings, bacterial sensors, wound healing materials, etc., are also provided. Finally, synergistic applications combining AIE materials with bacteria to achieve enhanced outcomes are explored. This review summarizes the developmental trend of AIE materials in bacterial studies and is expected to provide future research directions in advancing bacterial methodologies.
Collapse
Affiliation(s)
- Michelle M S Lee
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Eric Y Yu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Joe H C Chau
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| |
Collapse
|
4
|
Chen M, Dong R, Song J, Qi J, Zhang J, Zhao Z, Zhang W, Li Y, Tang BZ. Fast and Stable Antibacterial Coating of Photosensitive Aggregation-Induced Emission Luminogens for Disinfection on Medical Devices. Adv Healthc Mater 2024; 13:e2303967. [PMID: 38334004 DOI: 10.1002/adhm.202303967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Aggregation-induced emission luminogens (AIEgens) are promising photosensitizers that have exhibited excellent antibacterial ability with abundant reactive oxygen species (ROS) generation. TTCPy-PF6 and TTCPy-Br are deposited on the surface of diverse solid substrates through plasma-assistant electrostatic self-assembly. The AIEgens-covered coating can effectively eliminate different pathogenic Gram-positive (G+) bacteria and even their multidrug-resistant (MDR) mutants with negligible side effects such as cytotoxicity, hemolysis, and inflammation. Moreover, the AIEgen-coated surface can maintain high stability for long-time antibacterial usage, which is dependent on the ROS-mediated disruption of the attached bacteria. The AIEgen-based coatings with broad surface applicability have many advantages in high antibacterial ability, great biocompatibility, and low possibility of antibiotic pollution. The robust antibacterial ability and excellent biological safety of the AIEgen-based coatings would be helpful for the disinfection of medical devices.
Collapse
Affiliation(s)
- Mian Chen
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ruihua Dong
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering and Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, 518055, China
| | - Jiangjiang Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering and Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, 518055, China
| | - Zheng Zhao
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Wentian Zhang
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
5
|
Liu X, Cai Z, Pei M, Zeng H, Yang L, Cao W, Zhou X, Chen F. Bacterial Cellulose-Based Bandages with Integrated Antibacteria and Electrical Stimulation for Advanced Wound Management. Adv Healthc Mater 2024; 13:e2302893. [PMID: 38060694 DOI: 10.1002/adhm.202302893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/17/2023] [Indexed: 12/17/2023]
Abstract
Bandages for daily wounds are the most common medical supplies, but there are still ingrained defects in their appearance, comfort, functions, as well as environmental pollution. Here, novel bandages based on bacterial cellulose (BC) membrane for wound monitoring and advanced wound management are developed. The BC membrane is combined with silver nanowires (AgNWs) by using vacuum filtration method to achieve transparent, ultrathin (≈7 µm), breathable (389.98-547.79 g m-2 d-1 ), and sandwich-structured BC/AgNWs bandages with superior mechanical properties (108.45-202.35 MPa), antibacterial activities against Escherichia coli and Staphylococcus aureus, biocompatibility, and conductivity (9.8 × 103 -2.0 × 105 S m-1 ). Significantly, the BC/AgNWs bandage is used in the electrical stimulation (direct current, 600 microamperes for 1 h every other day) treatment of full-thickness skin defect in rats, which obviously promotes wound healing by increasing the secretion of vascular endothelial growth factor (VEGF). The BC bandage is used for monitoring wounds and achieve a high accuracy of 94.7% in classifying wound healing stages of hemostasis, inflammation, proliferation, and remodeling, by using a convolutional neural network. The outcomes of this study not only provide two BC-based bandages as multifunctional wound management, but also demonstrate a new strategy for the development of the next generation of smart bandage.
Collapse
Affiliation(s)
- Xiaohao Liu
- Department of Orthopaedics, Center for Orthopaedic Science and Translational Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Zhuyun Cai
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, P. R. China
| | - Manman Pei
- Department of Orthopaedics, Center for Orthopaedic Science and Translational Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Hua Zeng
- Department of Orthopaedics, Center for Orthopaedic Science and Translational Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Lijuan Yang
- Baidu, Inc., 701 Naxian Road, Shanghai, 201210, P. R. China
| | - Wentao Cao
- Department of Orthopaedics, Center for Orthopaedic Science and Translational Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, P. R. China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, P. R. China
| | - Feng Chen
- Department of Orthopaedics, Center for Orthopaedic Science and Translational Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, P. R. China
| |
Collapse
|
6
|
Yang J, He Y, Li Z, Yang X, Gao Y, Chen M, Zheng Y, Mao S, Shi X. Intelligent wound dressing for simultaneous in situ detection and elimination of pathogenic bacteria. Acta Biomater 2024; 174:177-190. [PMID: 38070843 DOI: 10.1016/j.actbio.2023.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Wound infections hinder the healing process and potentially result in life-threatening complications, which urgently require rapid and timely detection and treatment pathogens during the early stages of infection. Here, an intelligent wound dressing was developed to enable in situ detection and elimination of pathogenic bacteria through a combination of point-of-care testing and antibacterial photodynamic therapy technology. The dressing is an injectable hydrogel composed of carboxymethyl chitosan and oxidized sodium alginate, with addition of 4-methylumphulone beta-D-glucoside (MUG) and up-converted nanoparticles coated with titanium dioxide (UCNPs@TiO2). The presence of bacteria can be visually detected by monitoring the blue fluorescence of 4-methylumbellione, generated through the reaction between MUG and the pathogen-associated enzyme. The UCNPs@TiO2 photosensitizers were synthesized and demonstrated high antibacterial activity through the generation of reactive oxygen species when exposed to near-infrared irradiation. Meanwhile, a smartphone-based portable detection system equipped with a self-developed Android app was constructed for in situ detection of pathogens in mere seconds, detecting as few as 103 colony-forming unit. Additionally, the dressing was tested in a rat infected wound model and showed good antibacterial activity and pro-healing ability. These results suggest that the proposed intelligent wound dressing has potential for use in the diagnosis and management of wound infections. STATEMENT OF SIGNIFICANCE: An intelligent wound dressing has been prepared for simultaneous in situ detection and elimination of pathogenic bacteria. The presence of bacteria can be visually detected by tracking the blue fluorescence of the dressing. Moreover, a smartphone-based detection system was constructed to detect and diagnose pathogenic bacteria before reaching the infection limit. Meanwhile, the dressing was able to effectively eliminate key pathogenic bacteria on demand through antibacterial photodynamic therapy under NIR irradiation. The proposed intelligent wound dressing enables timely detection and treatment of infectious pathogens at an early stage, which is beneficial for wound management.
Collapse
Affiliation(s)
- Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yuxiang He
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Zhendong Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xudong Yang
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yueming Gao
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Sifeng Mao
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan.
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
7
|
Xia FW, Guo BW, Zhao Y, Wang JL, Chen Y, Pan X, Li X, Song JX, Wan Y, Feng S, Wu MY. Type I Photosensitizer Targeting Glycans: Overcoming Biofilm Resistance by Inhibiting the Two-Component System, Quorum Sensing, and Multidrug Efflux. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2309797. [PMID: 37973189 DOI: 10.1002/adma.202309797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Stubborn biofilm infections pose serious threats to human health due to the persistence, recurrence, and dramatically magnified antibiotic resistance. Photodynamic therapy has emerged as a promising approach to combat biofilm. Nevertheless, how to inhibit the bacterial signal transduction system and the efflux pump to conquer biofilm recurrence and resistance remains a challenging and unaddressed issue. Herein, a boric acid-functionalized lipophilic cationic type I photosensitizer, ACR-DMP, is developed, which efficiently generates •OH to overcome the hypoxic microenvironment and photodynamically eradicates methicillin-resistant Staphylococcus aureus (MRSA) and biofilms. Furthermore, it not only alters membrane potential homeostasis and osmotic pressure balance due to its strong binding ability with plasma membrane but also inhibits quorum sensing and the two-component system, reduces virulence factors, and regulates the activity of the drug efflux pump attributed to the glycan-targeting ability, helping to prevent biofilm recurrence and conquer biofilm resistance. In vivo, ACR-DMP successfully obliterates MRSA biofilms attached to implanted medical catheters, alleviates inflammation, and promotes vascularization, thereby combating infections and accelerating wound healing. This work not only provides an efficient strategy to combat stubborn biofilm infections and bacterial multidrug resistance but also offers systematic guidance for the rational design of next-generation advanced antimicrobial materials.
Collapse
Affiliation(s)
- Feng-Wei Xia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Bing-Wei Guo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yu Zhao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jia-Li Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuan Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiu Pan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xin Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jia-Xing Song
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|