1
|
Wang C, Yang Y, Zhang J, Zhang H, Wang Q, Ma S, Zhao P, Li Z, Liu Y. Microneedles at the Forefront of Next Generation Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412140. [PMID: 39887601 DOI: 10.1002/advs.202412140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Theranostics, combining therapeutic and diagnostic functions, marks a revolutionary advancement in modern medicine, with microneedle technology at its forefront. This review explores the substantial developments and multifaceted applications of microneedles, which have evolved from basic transdermal drug delivery devices to sophisticated diagnostic and therapeutic platforms. Microneedles enhance access to biomarkers via interstitial fluid, enabling real-time monitoring of physiological conditions, such as glucose and hormone levels, thus facilitating continuous health tracking. The evolution of microneedle design from solid to dissolvable forms broadens their utility from mere drug delivery to complex sensing and therapeutic applications, including insulin delivery for diabetes management, vaccination, and gene therapy. This paper delves into the integration of microneedles with wearable technologies, highlighting their role in closed-loop systems that combine real-time monitoring with dynamic, precise therapeutic delivery. By addressing gaps in the literature regarding their integrated diagnostic and treatment capabilities, this review underscores the pivotal role of microneedles in personalizing medicine. It concludes with a visionary perspective on the future trajectory of microneedle technology, emphasizing its potential to revolutionize therapeutic strategies through enhanced efficacy, safety, and patient compliance.
Collapse
Affiliation(s)
- Chan Wang
- Department of Biomedical Engineering (BME), National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Yuan Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaqi Zhang
- Department of Biomedical Engineering (BME), National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Hanrui Zhang
- Department of Biomedical Engineering (BME), National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Qian Wang
- Department of Biomedical Engineering (BME), National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Shengmei Ma
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing, 100050, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxin Liu
- Department of Biomedical Engineering (BME), National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
2
|
Hsu YP, Li NS, Pang HH, Pan YC, Tsai HP, Chen HC, Chen YT, Weng CH, Kuo SW, Yang HW. Lab-on-the-Needles: A Microneedle Patch-Based Mobile Unit for Highly Sensitive Ex Vivo and In Vivo Detection of Protein Biomarkers. ACS NANO 2025; 19:3249-3264. [PMID: 39763125 PMCID: PMC11781025 DOI: 10.1021/acsnano.4c11238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025]
Abstract
Detection of biomarkers associated with physiological conditions provides critical insights into healthcare and disease management. However, challenges in sampling and analysis complicate the detection and quantification of protein biomarkers within the epidermal layer of the skin and in viscous liquid biopsy samples. Here, we present the "Lab-on-the-Needles" concept, utilizing a microneedle patch-based sensing box (MNP-based SenBox) for mobile healthcare applications. This system facilitates the rapid capture of protein biomarkers directly from the in situ epidermal layer of skin or liquid biopsies, followed by on-needle analysis for immediate assessment. The integration of horseradish peroxidase-incorporated zeolitic imidazolate framework-8 (HRP@ZIF-8) as a sensitive and stable signal probe, the detection limit for anti-SARS-CoV-2 NP IgA antibodies and various SARS-CoV-2 S1P mutant strains improves by at least 1,000-fold compared to FDA-approved commercial saliva lateral flow immune rapid tests. Additionally, the MNP-based SenBox demonstrated minimally invasive monitoring and rapid quantification of inflammatory cytokine levels (TNF-α and IL-1β) in rats within 30 min using a portable ColorReader. This study highlights the potential of the MNP-based SenBox for the minimally invasive collection and analysis of protein biomarkers directly from in situ epidermal layers of skin or liquid biopsies that might facilitate mobile healthcare diagnostics and longitudinal monitoring.
Collapse
Affiliation(s)
- Ying-Pei Hsu
- Department
of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Nan-Si Li
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Hao-Han Pang
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Yu-Chi Pan
- Graduate
Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Pei Tsai
- Division
of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsiao-Chien Chen
- Center for
Reliability Science and Technologies, Chang
Gung University, Taoyuan 33302, Taiwan
- Kidney
Research
Center, Department of Nephrology, Chang
Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Ying-Tzu Chen
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Chen-Hsun Weng
- Medical Device
Innovation Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan
| | - Shiao-Wei Kuo
- Department
of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Wei Yang
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Medical Device
Innovation Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan
| |
Collapse
|
3
|
Song R, Cho S, Khan S, Park I, Gao W. Lighting the Path to Precision Healthcare: Advances and Applications of Wearable Photonic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419161. [PMID: 39865847 DOI: 10.1002/adma.202419161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Recent advancements in wearable photonic sensors have marked a transformative era in healthcare, enabling non-invasive, real-time, portable, and personalized medical monitoring. These sensors leverage the unique properties of light toward high-performance sensing in form factors optimized for real-world use. Their ability to offer solutions to a broad spectrum of medical challenges - from routine health monitoring to managing chronic conditions, inspires a rapidly growing translational market. This review explores the design and development of wearable photonic sensors toward various healthcare applications. The photonic sensing strategies that power these technologies are first presented, alongside a discussion of the factors that define optimal use-cases for each approach. The means by which these mechanisms are integrated into wearable formats are then discussed, with considerations toward material selection for comfort and functionality, component fabrication, and power management. Recent developments in the space are detailed, accounting for both physical and chemical stimuli detection through various non-invasive biofluids. Finally, a comprehensive situational overview identifies critical challenges toward translation, alongside promising solutions. Associated future outlooks detail emerging trends and mechanisms that stand to enable the integration of these technologies into mainstream healthcare practice, toward advancing personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Ruihao Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Seokjoo Cho
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shadman Khan
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
4
|
Qin Y, Cui F, Lu Y, Yang P, Gou W, Tang Z, Lu S, Zhou HS, Luo G, Lyu X, Zhang Q. Toward precision medicine: End-to-end design and construction of integrated microneedle-based theranostic systems. J Control Release 2025; 377:354-375. [PMID: 39577466 DOI: 10.1016/j.jconrel.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
With the growing demand for precision medicine and advancements in microneedle technology, microneedle-based drug delivery systems have evolved into integrated theranostic platforms. However, the development of these systems is currently limited by the absence of clear conclusions and standardized construction strategies. The end-to-end concept offers an innovative approach to theranostic systems by creating a seamless process that integrates target sampling, sensing, analysis, and on-demand drug delivery. This approach optimizes each step based on data from the others, effectively eliminating the traditional separation between drug delivery and disease monitoring. Furthermore, by incorporating artificial intelligence and machine learning, these systems can enhance reliability and efficiency in disease management, paving the way for more personalized and effective healthcare solutions. Based on the concept of end-to-end and recent advancements in theranostic systems, nanomaterials, electronic components, micro-composites, and data science, we propose a modular strategy for constructing integrated microneedle-based theranostic systems by detailing the methods and functions of each critical component, including monitoring, decision-making, and on-demand drug delivery units, though the total number of units might vary depending on the specific application. Notably, decision-making units are emerging trends for fully automatic and seamless systems and featured for integrated microneedle-based theranostic systems, which serve as a bridge of real-time monitoring, on-demand drug delivery, advanced electronic engineering, and data science for personalized disease management and remote medical application. Additionally, we discuss the challenges and prospects of integrated microneedle-based theranostic systems for precision medicine and clinical application.
Collapse
Affiliation(s)
- Yiming Qin
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of Dermatology and Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feiyun Cui
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Peng Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weiming Gou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zixuan Tang
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Shan Lu
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - H Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Xiaoyan Lyu
- Department of Dermatology and Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
5
|
Mu S, Tian Z, Ren W, Liu C. Laser-Induced Thermophoretic SERS Enhancement on Paper for Facile Pesticide and Nanoplastic Sensing. Anal Chem 2024; 96:19840-19846. [PMID: 39572373 DOI: 10.1021/acs.analchem.4c05728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for contamination detection. Fabricating efficient nanostructures with hotspots for signal enhancement and concentrating diluted target analyte molecules to the hotspots are critical for ultrasensitive SERS detection, which generally requires advanced instruments and intricate manipulations. Herein, we report a simple, low-cost, and high-efficiency paper device that can simultaneously concentrate the analytes and generate SERS hotspots rapidly with the assistance of laser-induced thermophoresis. After dropping the target- and plasmonic nanoparticle-containing solution on a paper substrate, the evaporative gradient created by the laser-induced thermophoresis can promote the delivery of the analytes and plasmonic nanoparticles simultaneously to the tiny area of the laser spot, forming compact SERS hotspots to significantly amplify the analyte's Raman scattering signals. This convenient thermophoretic strategy can be accomplished rapidly within ∼4 min and exhibits more than 104-times higher sensitivity than that without the assistance of laser-based thermophoresis. This elegant paper device is successfully applied to the detection of contaminants such as pesticides and nanoplastics in fruit and water samples, holding the potential to provide a simple, fast, and cost-effective approach for on-site detection of environmental contaminants.
Collapse
Affiliation(s)
- Shuang Mu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Institute of New Concept Sensors and Molecular Materials, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Zhaowei Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Institute of New Concept Sensors and Molecular Materials, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Institute of New Concept Sensors and Molecular Materials, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Institute of New Concept Sensors and Molecular Materials, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
6
|
Cialla-May D, Bonifacio A, Bocklitz T, Markin A, Markina N, Fornasaro S, Dwivedi A, Dib T, Farnesi E, Liu C, Ghosh A, Popp J. Biomedical SERS - the current state and future trends. Chem Soc Rev 2024; 53:8957-8979. [PMID: 39109571 DOI: 10.1039/d4cs00090k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Surface enhanced Raman spectroscopy (SERS) is meeting the requirements in biomedical science being a highly sensitive and specific analytical tool. By employing portable Raman systems in combination with customized sample pre-treatment, point-of-care-testing (POCT) becomes feasible. Powerful SERS-active sensing surfaces with high stability and modification layers if required are available for testing and application in complex biological matrices such as body fluids, cells or tissues. This review summarizes the current state in sample collection and pretreatment in SERS detection protocols, SERS detection schemes, i.e. direct and indirect SERS as well as targeted and non-targeted SERS, and SERS-active sensing surfaces. Moreover, the recent developments and advances of SERS in biomedical application scenarios, such as infectious diseases, cancer diagnostics and therapeutic drug monitoring is given, which enables the readers to identify the sample collection and preparation protocols, SERS substrates and detection strategies that are best-suited for their specific applications in biomedicine.
Collapse
Affiliation(s)
- Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Alois Bonifacio
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio 6, 34127 Trieste (TS), Italy
| | - Thomas Bocklitz
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
- Faculty of Mathematics, Physics and Computer Science, University of Bayreuth (UBT), Nürnberger Straße 38, 95440 Bayreuth, Germany
| | - Alexey Markin
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| | - Natalia Markina
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste (TS), Italy
| | - Aradhana Dwivedi
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Tony Dib
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Chen Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Arna Ghosh
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
7
|
Zhou J, Wang H, Chen Y, Lin D, Zhang L, Xing Z, Zhang Q, Xia J. A self-calibrating flexible SERS substrate incorporating PB@Au assemblies for reliable and reproducible detection. Analyst 2024; 149:4060-4071. [PMID: 38979998 DOI: 10.1039/d4an00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The precise quantitative analysis using surface-enhanced Raman spectroscopy (SERS) in an uncontrollable environment still faces a significant obstacle due to the poor reproducibility of Raman signals. Herein, we propose a facile method to fabricate a self-calibrating substrate based on a flexible polyvinyl alcohol (PVA) film comprising assemblies of Prussian blue (PB) and Au NPs (PB@Au) for reliable detection. PB cores were coated with an Au shell through simple electrostatic interaction, forming core-shell nanostructure PB@Au assemblies within the PVA film. The outer Au layer provided identical trends in enhancement for both the PB core and neighboring targets while PB cores served as an internal standard (IS) to correct signal fluctuations. The prevention of competitive adsorption on the metal surface between targets and ISs was achieved. The proposed PVA/PB@Au film exhibited enhanced stability of Raman signals after IS correction, resulting in improved spot-to-spot and batch-to-batch reproducibility with significantly reduced standard deviation (RSD) values from 11.42% and 25.02% to 4.43% and 9.39%, respectively. Simultaneously, a higher accuracy in the quantitative analysis of 4-mercaptobenzoic acid (4-MBA) and malachite green (MG) was achieved with fitting coefficient (R2) values improving from 0.9675 and 0.9418 to 0.9974 and 0.9832, respectively. Moreover, the PVA/PB@Au film was successfully applied to detect residual MG in real fish samples. This work opens up an avenue to improve the reproducibility of Raman signals for flexible SERS substrates in the detection of residues under various complex conditions.
Collapse
Affiliation(s)
- Jie Zhou
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Yaxian Chen
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Dongxue Lin
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Ling Zhang
- College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Zhiqiang Xing
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Qian Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Jiarui Xia
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China
| |
Collapse
|
8
|
Pei S, Babity S, Sara Cordeiro A, Brambilla D. Integrating microneedles and sensing strategies for diagnostic and monitoring applications: The state of the art. Adv Drug Deliv Rev 2024; 210:115341. [PMID: 38797317 DOI: 10.1016/j.addr.2024.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Microneedles (MNs) offer minimally-invasive access to interstitial fluid (ISF) - a potent alternative to blood in terms of monitoring physiological analytes. This property is particularly advantageous for the painless detection and monitoring of drugs and biomolecules. However, the complexity of the skin environment, coupled with the inherent nature of the analytes being detected and the inherent physical properties of MNs, pose challenges when conducting physiological monitoring using this fluid. In this review, we discuss different sensing mechanisms and highlight advancements in monitoring different targets, with a particular focus on drug monitoring. We further list the current challenges facing the field and conclude by discussing aspects of MN design which serve to enhance their performance when monitoring different classes of analytes.
Collapse
Affiliation(s)
- Shihao Pei
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Samuel Babity
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom.
| | - Davide Brambilla
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
9
|
Omidian H, Dey Chowdhury S. Swellable Microneedles in Drug Delivery and Diagnostics. Pharmaceuticals (Basel) 2024; 17:791. [PMID: 38931458 PMCID: PMC11206711 DOI: 10.3390/ph17060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
This manuscript explores the transformative potential of swellable microneedles (MNs) in drug delivery and diagnostics, addressing critical needs in medical treatment and monitoring. Innovations in hydrogel-integrated MN arrays facilitate controlled drug release, thereby expanding treatment options for chronic diseases and conditions that require precise dosage control. The review covers challenges, such as scalability, patient compliance, and manufacturing processes, as well as achievements in advanced manufacturing, biocompatibility, and versatile applications. Nonetheless, limitations in physiological responsiveness and long-term stability remain, necessitating further research in material innovation and integration with digital technologies. Future directions focus on expanding biomedical applications, material advancements, and regulatory considerations for widespread clinical adoption.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
10
|
Pereira R, Vinayakumar KB, Sillankorva S. Polymeric Microneedles for Health Care Monitoring: An Emerging Trend. ACS Sens 2024; 9:2294-2309. [PMID: 38654679 PMCID: PMC11129353 DOI: 10.1021/acssensors.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Bioanalyte collection by blood draw is a painful process, prone to needle phobia and injuries. Microneedles can be engineered to penetrate the epidermal skin barrier and collect analytes from the interstitial fluid, arising as a safe, painless, and effective alternative to hypodermic needles. Although there are plenty of reviews on the various types of microneedles and their use as drug delivery systems, there is a lack of systematization on the application of polymeric microneedles for diagnosis. In this review, we focus on the current state of the art of this field, while providing information on safety, preclinical and clinical trials, and market distribution, to outline what we believe will be the future of health monitoring.
Collapse
Affiliation(s)
- Raquel
L. Pereira
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - K. B. Vinayakumar
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Sillankorva
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
11
|
Zhang Q, Liu X, He J. Applications and prospects of microneedles in tumor drug delivery. J Mater Chem B 2024; 12:3336-3355. [PMID: 38501172 DOI: 10.1039/d3tb02646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
As drug delivery devices, microneedles are used widely in the local administration of various drugs. Such drug-loaded microneedles are minimally invasive, almost painless, and have high drug delivery efficiency. In recent decades, with advancements in microneedle technology, an increasing number of adaptive, engineered, and intelligent microneedles have been designed to meet increasing clinical needs. This article summarizes the types, preparation materials, and preparation methods of microneedles, as well as the latest research progress in the application of microneedles in tumor drug delivery. This article also discusses the current challenges and improvement strategies in the use of microneedles for tumor drug delivery.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
12
|
Dervisevic M, Jara Fornerod MJ, Harberts J, Zangabad PS, Voelcker NH. Wearable Microneedle Patch for Transdermal Electrochemical Monitoring of Urea in Interstitial Fluid. ACS Sens 2024; 9:932-941. [PMID: 38252743 DOI: 10.1021/acssensors.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microneedle-based wearable electrochemical biosensors are the new frontier in personalized health monitoring and disease diagnostic devices that provide an alternative tool to traditional blood-based invasive techniques. Advancements in micro- and nanofabrication technologies enabled the fabrication of microneedles using different biomaterials and morphological features with the aim of overcoming existing challenges and enhancing sensing performance. In this work, we report a microneedle array featuring conductive recessed microcavities for monitoring urea levels in the interstitial fluid of the skin. Microcavities are small pockets on the tip of each microneedle that can accommodate the sensing layer, provide protection from delamination during skin insertion or removal, and position the sensing layer in a deep layer of the skin to reach the interstitial fluid. The wearable urea patch has shown to be highly sensitive and selective in monitoring urea, with a sensitivity of 2.5 mV mM-1 and a linear range of 3 to 18 mM making it suitable for monitoring urea levels in healthy individuals and patients. Our ex vivo experiments have shown that recessed microcavities can protect the sensing layer from delamination during skin insertion and monitor changing urea levels in interstitial fluid. This biocompatible platform provides alternative solutions to the critical issue of maintaining the performance of the biosensor upon skin insertion and holds great potential for advancing transdermal sensor technology.
Collapse
Affiliation(s)
- Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Maximiliano Jesus Jara Fornerod
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jann Harberts
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Parham Sahandi Zangabad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
13
|
Wang Y, Wu Y, Lei Y. Microneedle-based glucose monitoring: a review from sampling methods to wearable biosensors. Biomater Sci 2023; 11:5727-5757. [PMID: 37431216 DOI: 10.1039/d3bm00409k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Blood glucose (BG) monitoring is critical for diabetes management. In recent years, microneedle (MN)-based technology has attracted emerging attention in glucose sensing and detection. In this review, we summarized MN-based sampling for glucose collection and glucose analysis in detail. First, different principles of MN-based biofluid extraction were elaborated, including external negative pressure, capillary force, swelling force and iontophoresis, which would guide the shape design and material optimization of MNs. Second, MNs coupled with different analysis approaches, including Raman methods, colorimetry, fluorescence, and electrochemical sensing, were emphasized to exhibit the trend towards highly integrated wearable sensors. Finally, the future development prospects of MN-based devices were discussed.
Collapse
Affiliation(s)
- Yan Wang
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
| | - You Wu
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
| | - Yifeng Lei
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|