1
|
Yuan J, Yang H, Huang W, Liu S, Zhang H, Zhang X, Peng X. Design strategies and applications of cyanine dyes in phototherapy. Chem Soc Rev 2025; 54:341-366. [PMID: 39576179 DOI: 10.1039/d3cs00585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cyanine dyes have been widely used in phototherapy in recent years due to their excellent optical properties and diverse modifiable structures. This review provides detailed descriptions of the basic structures of various cyanines and their derivatives as well as their optical properties. It summarizes the strategies for constructing cyanine dyes for phototherapy and discusses their structure-effect relationship. Furthermore, a comprehensive classification and summary of the applications of cyanine dyes in phototherapy are presented. Importantly, this review also addresses both the advances made in this field as well as the challenges that need to be overcome. We hope that these profound insights into phototherapy using cyanine dyes will facilitate the design of future systems for clinical applications based on these compounds.
Collapse
Affiliation(s)
- Jie Yuan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Hanxue Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Wenhui Huang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Shilong Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
- College of Materials Science and Engineering, Shenzhen University, Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
2
|
Li B, Yu X, Lu X, Sun X, Kai Y, Cheng L, Zhou H, Tian Y, Li D. Advancing Two-Photon Photodynamic Therapy Over NIR-II Excitable Conjugated Microporous Polymer with NIR-I Emission. Adv Healthc Mater 2025; 14:e2402274. [PMID: 39460477 DOI: 10.1002/adhm.202402274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/28/2024]
Abstract
The availability of second near-infrared (NIR-II) excitable two-photon photosensitizers with NIR-I emission for efficient photodynamic therapy (PDT) is limited by challenges in molecular design. In this study, a NIR-II light-excitable two-photon conjugated microporous polymer (Tph-Dbd) with emission in the NIR-I region is developed. The large conjugated system and delocalized electronic structures endow Tph-Dbd with a large two-photon absorption cross-section under NIR-II light excitation. Moreover, the efficient electron acceptor and donor units within the π-conjugated backbones result in NIR-I emission for high signal-to-background ratio imaging, as well as separated highest occupied molecular orbital and lowest unoccupied molecular orbital distributions for excellent singlet oxygen generation ability. The excellent NIR-II excitable two-photon absorption activity, NIR-I emission, good biocompatibility, and high photostability allow Tph-Dbd to be used for efficient in vitro fluorescence imaging guided PDT. Moreover, the impressive photothermal effect of Tph-Dbd can overcome the limitations of PDT in the treatment of hypoxic tumors. This study highlights a strategy for designing NIR-II excitable two-photon photosensitizers for advanced PDT.
Collapse
Affiliation(s)
- Bo Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xinlei Yu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xianshun Sun
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yuanzhong Kai
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Longjiu Cheng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Hongping Zhou
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
3
|
Zhao X, Du J, Sun W, Fan J, Peng X. Regulating Charge Transfer in Cyanine Dyes: A Universal Methodology for Enhancing Cancer Phototherapeutic Efficacy. Acc Chem Res 2024; 57:2582-2593. [PMID: 39152945 DOI: 10.1021/acs.accounts.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
ConspectusDue to the advantages of spatiotemporal selectivity and inherent noninvasiveness, cancer phototherapy, which includes both photodynamic therapy (PDT) and photothermal therapy (PTT), has garnered significant attention in recent years as a promising cancer treatment. Despite the commendable progress in this field, persistent challenges remain. In PDT, limitations in dyes manifest as low intersystem crossing (ISC) efficiency and oxygen-dependent photoactivity, resulting in unsatisfactory performance, particularly under hypoxic conditions. Similarly, PTT encounters consistent insufficiencies in the photothermal conversion efficiency (PCE) of dyes. Additionally, the suboptimal phototherapeutic efficacy often exhibits a limited immune response. These factors collectively impose significant constraints on phototherapy in oncological applications, leading to limited tumor inhibition, tumor recurrence, and even metastasis.Unlike strategies that rely on external assistance with complicated systems, manipulating excited-state deactivation pathways in biocompatible dyes offers a universal way to systematically address these challenges. Our group has devoted considerable effort to achieving this goal. In this Account, we present and discuss our journey in optimizing excited-state energy-release pathways through regulating molecular charge transfer based on cyanine dyes, which are renowned for their exceptional photophysical properties and harmonious biocompatibility. The investigation begins with the introduction of amino groups in the meso position of a heptamethine cyanine dye, where the intramolecular charge transfer (ICT) effect causes a significant enlargement of the Stokes shift. Subsequently, ICT induced by introducing functional electron-deficient groups in cyanines is found to decrease the overlap of electron distribution or narrow the energy gaps of molecular frontier orbitals. Such modifications result in a reduction of the energy gaps between singlet and triplet states or an improvement in internal conversion, ultimately promoting phototherapy efficacy in both primary and distant tumors. Furthermore, with the intensification of the charge transfer effect aided by light, photoinduced intramolecular electron transfer occurs in some cyanines, leading to complete charge separation in the excited state. This process enhances the transition to the ground or triplet states, improving tumor phototherapy and inhibiting metastasis by increasing the PCE or the yield of reactive oxygen species, respectively. Shifting focus from intramolecular to intermolecular interactions, we successfully constructed and explored cyanines based on intermolecular charge transfer. These dyes, with excited-state dynamics mimicking natural photosynthesis, generate radicals and facilitate oxygen-independent hypoxic tumor PDT. Finally, we outlined the existing challenges and future directions for optimizing phototherapeutic efficacy by regulating molecular charge transfer. This Account provides molecular-level insights into improving phototherapeutic performance, offering valuable perspectives, and inspiring the development of functional dyes in other application fields.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, 315016 Ningbo, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
4
|
Zeng Q, Yuwen Z, Zhang L, Li Y, Liu H, Zhang K. Molecular Engineering of a Doubly Quenched Fluorescent Probe Enables Ultrasensitive Detection of Biothiols in Highly Diluted Plasma and High-Fidelity Imaging of Dihydroartemisinin-Induced Ferroptosis. Anal Chem 2024. [PMID: 39087711 DOI: 10.1021/acs.analchem.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The occurrence and development of diseases are accompanied by abnormal activity or concentration of biomarkers in cells, tissues, and blood. However, the insufficient sensitivity and accuracy of the available fluorescence probes hinder the precise monitoring of associated indexes in biological systems, which is generally due to the high probe intrinsic fluorescence and false-negative signal caused by the reactive oxygen species (ROS)-induced probe decomposition. To resolve these problems, we have engineered a ROS-stable, meso-carboxylate boron dipyrromethene (BODIPY)-based fluorescent probe, which displays quite a low background fluorescence due to the doubly quenched intrinsic fluorescence by a combined strategy of the photoinduced electron transfer (PET) effect and "ester-to-carboxylate" conversion. The probe achieved a high S/N ratio with ultrasensitivity and good selectivity toward biothiols, endowing its fast detection capability toward the biothiol level in 200×-diluted plasma samples. Using this probe, we achieved remarkable distinguishing of liver injury plasma from normal plasma even at 80× dilution. Moreover, owing to its good stability toward ROS, the probe was successfully employed for high-fidelity imaging of the negative fluctuation of the biothiol level in nonsmall-cell lung cancer (NSCLC) during dihydroartemisinin-induced ferroptosis. This delicate design of suppressing intrinsic fluorescence reveals insights into enhancing the sensitivity and accuracy of fluorescent probes toward the detection and imaging of biomarkers in the occurrence and development of diseases.
Collapse
Affiliation(s)
- Qin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Lemeng Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Yuning Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan 453007, China
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China
| |
Collapse
|
5
|
Fu H, Zhang Y, Wang C, Sun Z, Lv S, Xiao M, Wu K, Shi L, Zhu C. A universal strategy to enhance photothermal conversion efficiency by regulating the molecular aggregation states for safe photothermal therapy of bacterial infections. Biomater Sci 2024; 12:2914-2929. [PMID: 38639605 DOI: 10.1039/d4bm00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Photothermal therapy (PTT) has emerged as a promising approach for treating bacterial infections. However, achieving a high photothermal conversion efficiency (PCE) of photothermal agents (PTAs) remains a challenge. Such a problem is usually compensated by the use of a high-intensity laser, which inevitably causes tissue damage. Here, we present a universal strategy to enhance PCE by regulating the molecular aggregation states of PTAs within thermoresponsive nanogels. We demonstrate the effectiveness of this approach using aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) PTAs, showing significant enhancements in PCE without the need for intricate molecular modifications. Notably, the highest PCEs reach up to 80.9% and 64.4% for AIE-NG and ACQ-NG, respectively, which are nearly 2-fold of their self-aggregate counterparts. Moreover, we elucidate the mechanism underlying PCE enhancement, highlighting the role of strong intermolecular π-π interactions facilitated by nanogel-induced volume contraction. Furthermore, we validate the safety and efficacy of this strategy in in vitro and in vivo models of bacterial infections at safe laser power densities, demonstrating its potential for clinical translation. Our findings offer a straightforward, universal, and versatile method to improve PTT outcomes while minimizing cytotoxicity, paving the way for enhanced treatment of bacterial infections with safe PTT protocols.
Collapse
Affiliation(s)
- Hao Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongxin Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kaiyu Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Guo X, Sheng W, Pan H, Guo L, Zuo H, Wu Z, Ling S, Jiang X, Chen Z, Jiao L, Hao E. Tuning Shortwave-Infrared J-aggregates of Aromatic Ring-Fused Aza-BODIPYs by Peripheral Substituents for Combined Photothermal and Photodynamic Therapies at Ultralow Laser Power. Angew Chem Int Ed Engl 2024; 63:e202319875. [PMID: 38225205 DOI: 10.1002/anie.202319875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Achieving photothermal therapy (PTT) at ultralow laser power density is crucial for minimizing photo-damage and allowing for higher maximum permissible skin exposure. However, this requires photothermal agents to possess not just superior photothermal conversion efficiency (PCE), but also exceptional near-infrared (NIR) absorptivity. J-aggregates, exhibit a significant redshift and narrower absorption peak with a higher extinction coefficient. Nevertheless, achieving predictable J-aggregates through molecular design remains a challenge. In this study, we successfully induced desirable J-aggregation (λabs max : 968 nm, ϵ: 2.96×105 M-1 cm-1 , λem max : 972 nm, ΦFL : 6.2 %) by tuning electrostatic interactions between π-conjugated molecular planes through manipulating molecular surface electrostatic potential of aromatic ring-fused aza-BODIPY dyes. Notably, by controlling the preparation method for encapsulating dyes into F-127 polymer, we were able to selectively generate H-/J-aggregates, respectively. Furthermore, the J-aggregates exhibited two controllable morphologies: nanospheres and nanowires. Importantly, the shortwave-infrared J-aggregated nanoparticles with impressive PCE of 72.9 % effectively destroyed cancer cells and mice-tumors at an ultralow power density of 0.27 W cm-2 (915 nm). This phototherapeutic nano-platform, which generates predictable J-aggregation behavior, and can controllably form J-/H-aggregates and selectable J-aggregate morphology, is a valuable paradigm for developing photothermal agents for tumor-treatment at ultralow laser power density.
Collapse
Affiliation(s)
- Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Wanle Sheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Hongfei Pan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Luying Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Huiquan Zuo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|