1
|
Jiang H, Bao Q, Yang T, Yang M, Mao C. Precision Treatment of Colon Cancer Using Doxorubicin-Loaded Metal-Organic-Framework-Coated Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49003-49012. [PMID: 39226043 PMCID: PMC11420861 DOI: 10.1021/acsami.4c08602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Due to the limited efficacy and evident side effects of traditional chemotherapy drugs attributed to their lack of specificity and selectivity, novel strategies are essential for improving cancer treatment outcomes. Here, we successfully engineered Fe3O4 magnetic nanoparticles coated with zeolitic imidazolate framework-8 (ZIF-8). The resulting nanocomposite (Fe3O4@ZIF-8) demonstrates efficient adsorption of a substantial amount of doxorubicin (DOX) due to the porous nature of ZIF-8. The drug-loaded nanoparticles, Fe3O4@ZIF-8/DOX, exhibit significant accumulation at the tumor site in SW620 colon-cancer-bearing mice when guided by an external magnetic field. Within the acidic microenvironment of the tumor, the ZIF-8 framework collapses, releasing DOX and effectively inducing tumor cell death, thereby inhibiting cancer progression while not causing undesired side effects, as confirmed by a variety of in vitro and in vivo characterizations. In comparison to free DOX, Fe3O4@ZIF-8/DOX nanoparticles show superior efficacy in colon cancer treatment. Our findings suggest that Fe3O4@ZIF-8 holds promise as a carrier for small-molecule drug adsorption and its ferromagnetic properties provide drug targeting capabilities, thereby enhancing therapeutic effects on tumors at the same drug dosage. With excellent biocompatibility, Fe3O4@ZIF-8 demonstrates potential as a drug carrier in targeted cancer chemotherapy. Our work suggests that a combination of magnetic targeting and acid-responsiveness holds great promise for advancing targeted cancer therapy in precision nanomedicine.
Collapse
Affiliation(s)
- Honglin Jiang
- School
of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Bao
- School
of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Tao Yang
- School
of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingying Yang
- Key
Laboratory of Silkworm and Bee Resource Utilization and Innovation
of Zhejiang Province, Institute of Applied Bioresource Research, College
of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanbin Mao
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Zhao H, Xiong T, Chu Y, Hao W, Zhao T, Sun X, Zhuang Y, Chen B, Zhao Y, Wang J, Chen Y, Dai J. Biomimetic Dual-Network Collagen Fibers with Porous and Mechanical Cues Reconstruct Neural Stem Cell Niche via AKT/YAP Mechanotransduction after Spinal Cord Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311456. [PMID: 38497893 DOI: 10.1002/smll.202311456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.0 wt%) have been identified as a neurogenetic exciter after SCI. Remarkably, porous topographies and curving wall-like protrusions are generated on the surface of PCFS by simple and non-toxic CO2 bubble-water replacement. As expected, PCFS with porous and matched mechanical properties can considerably activate the cadherin receptor of NSCs and induce a series of serine-threonine kinase/yes-associated protein mechanotransduction signal pathways, encouraging cellular orientation, neuron differentiation, and adhesion. In SCI rats, implanted PCFS with matched mechanical properties further integrated into the injured spinal cords, inhibited the inflammatory progression and decreased glial and fibrous scar formation. Wall-like protrusions of PCFS drive multiple neuron subtypes formation and even functional neural circuits, suggesting a viable therapeutic strategy for nerve regeneration and functional recovery after SCI.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tiandi Xiong
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yun Chu
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Wangping Hao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tongtong Zhao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyue Sun
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|