1
|
Ma W, Li X. Spinal cord injury repair based on drug and cell delivery: From remodeling microenvironment to relay connection formation. Mater Today Bio 2025; 31:101556. [PMID: 40026622 PMCID: PMC11871491 DOI: 10.1016/j.mtbio.2025.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Spinal cord injury (SCI) presents a formidable challenge in clinical settings, resulting in sensory and motor function loss and imposing significant personal and societal burdens. However, owning to the adverse microenvironment and limited regenerative capacity, achieving complete functional recovery after SCI remains elusive. Additionally, traditional interventions including surgery and medication have a series of limitations that restrict the effectiveness of treatment. Recently, tissue engineering (TE) has emerged as a promising approach for promoting neural regeneration and functional recovery in SCI, which can effectively delivery drugs into injury site and delivery cells and improve the survival and differential. Here, we outline the main pathophysiology events of SCI and the adverse microenvironment post injury, further discuss the materials and common assembly strategies used for scaffolds in SCI treatment, expound on the latest advancements in treatment methods based on materials and scaffolds for drug and cell delivery in detail, and propose future directions for SCI repair with TE and highlight potential clinical applications.
Collapse
Affiliation(s)
- Wanrong Ma
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
| |
Collapse
|
2
|
Rodriguez Ayala A, Christ G, Griffin D. Cell-scale porosity minimizes foreign body reaction and promotes innervated myofiber formation after volumetric muscle loss. NPJ Regen Med 2025; 10:12. [PMID: 40025057 PMCID: PMC11873130 DOI: 10.1038/s41536-025-00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 03/04/2025] Open
Abstract
Volumetric muscle loss (VML) from severe traumatic injuries results in irreversible loss of contractile tissue and permanent functional deficits. These injuries resist endogenous healing and clinical treatment due to excessive inflammation, leading to fibrosis, muscle fiber denervation, and impaired regeneration. Using a rodent tibialis anterior VML model, this study demonstrates microporous annealed particle (MAP) hydrogel scaffolds as a biomaterial platform for improved muscle regeneration. Unlike bulk (nanoporous) hydrogel scaffolds, MAP scaffolds enhance integration by preventing a foreign body reaction, slowing implant degradation, and promoting regenerative macrophage polarization. Cell migration and angiogenesis occur throughout the implant before MAP scaffold degradation, with muscle fibers and neuromuscular junctions forming within the scaffolds. These structures continue developing as the implant degrades, suggesting MAP hydrogel scaffolds offer a promising therapeutic approach for VML injuries.
Collapse
Affiliation(s)
- Areli Rodriguez Ayala
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - George Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Tigner TJ, Dampf G, Tucker A, Huang YC, Jagrit V, Clevenger AJ, Mohapatra A, Raghavan SA, Dulin JN, Alge DL. Clickable Granular Hydrogel Scaffolds for Delivery of Neural Progenitor Cells to Sites of Spinal Cord Injury. Adv Healthc Mater 2024; 13:e2303912. [PMID: 38470994 PMCID: PMC11390979 DOI: 10.1002/adhm.202303912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Spinal cord injury (SCI) is a serious condition with limited treatment options. Neural progenitor cell (NPC) transplantation is a promising treatment option, and the identification of novel biomaterial scaffolds that support NPC engraftment and therapeutic activity is a top research priority. The objective of this study is to evaluate in situ assembled poly (ethylene glycol) (PEG)-based granular hydrogels for NPC delivery in a murine model of SCI. Microgel precursors are synthesized by using thiol-norbornene click chemistry to react four-armed PEG-amide-norbornene with enzymatically degradable and cell adhesive peptides. Unreacted norbornene groups are utilized for in situ assembly into scaffolds using a PEG-di-tetrazine linker. The granular hydrogel scaffolds exhibit good biocompatibility and do not adversely affect the inflammatory response after SCI. Moreover, when used to deliver NPCs, the granular hydrogel scaffolds supported NPC engraftment, do not adversely affect the immune response to the NPC grafts, and successfully support graft differentiation toward neuronal or astrocytic lineages as well as axonal extension into the host tissue. Collectively, these data establish PEG-based granular hydrogel scaffolds as a suitable biomaterial platform for NPC delivery and justify further testing, particularly in the context of more severe SCI.
Collapse
Affiliation(s)
- Thomas J Tigner
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Yu-Chi Huang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Vipin Jagrit
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Arpita Mohapatra
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843-3474, USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
4
|
Recalde Phillips S, Perez-Ponce KD, Ruben E, Baig T, Poux E, Gregory CA, Alge DL. Impact of Annealing Chemistry on the Properties and Performance of Microporous Annealed Particle Hydrogels. Biomacromolecules 2024; 25:5798-5808. [PMID: 39190621 PMCID: PMC11388458 DOI: 10.1021/acs.biomac.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Microporous annealed particle (MAP) hydrogels are a promising class of in situ-forming scaffolds for tissue repair and regeneration. While an expansive toolkit of annealing chemistries has been described, the effects of different annealing chemistries on MAP hydrogel properties and performance have not been studied. In this study, we address this gap through a controlled head-to-head comparison of poly(ethylene glycol) (PEG)-based MAP hydrogels that were annealed using tetrazine-norbornene and thiol-norbornene click chemistry. Characterization of material properties revealed that tetrazine click annealing significantly increases MAP hydrogel shear storage modulus and results in slower in vitro degradation kinetics when microgels with a higher cross-link density are used. However, these effects are muted when the MAP hydrogels are fabricated from microgels with a lower cross-link density. In contrast, in vivo testing in murine critical-sized calvarial defects revealed that these differences in physicochemical properties do not translate to differences in bone volume or calvarial defect healing when growth-factor-loaded MAP hydrogel scaffolds are implanted into mouse calvarial defects. Nonetheless, the impact of tetrazine click annealing could be important in other applications and should be investigated further.
Collapse
Affiliation(s)
- Sarea
Y. Recalde Phillips
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiara D. Perez-Ponce
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Elizabeth Ruben
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Talia Baig
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Emily Poux
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Carl A. Gregory
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Medical Physiology, School of Medicine, Texas A&M University, Bryan, Texas 77807, United States
| | - Daniel L. Alge
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|