1
|
Baranov D, Fieramosca A, Yang RX, Polimeno L, Lerario G, Toso S, Giansante C, Giorgi MD, Tan LZ, Sanvitto D, Manna L. Aging of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer. ACS NANO 2021; 15:650-664. [PMID: 33350811 DOI: 10.1021/acsnano.0c06595] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excitonic coupling, electronic coupling, and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a red-shifted collective emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by studying CsPbBr3 nanocrystal superlattices over time with room-temperature and cryogenic micro-photoluminescence spectroscopy, X-ray diffraction, and electron microscopy. It is shown that a gradual contraction of the superlattices and subsequent coalescence of the nanocrystals occurs over several days of keeping such structures under vacuum. As a result, a narrow, low-energy emission peak is observed at 4 K with a concomitant shortening of the photoluminescence lifetime due to the energy transfer between nanocrystals. When exposed to air, self-assembled CsPbBr3 nanocrystals develop bulk-like CsPbBr3 particles on top of the superlattices. At 4 K, these particles produce a distribution of narrow, low-energy emission peaks with short lifetimes and excitation fluence-dependent, oscillatory decays. Overall, the aging of CsPbBr3 nanocrystal assemblies dramatically alters their emission properties and that should not be overlooked when studying collective optoelectronic phenomena nor confused with superfluorescence effects.
Collapse
Affiliation(s)
- Dmitry Baranov
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| | - Antonio Fieramosca
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Ruo Xi Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Laura Polimeno
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
- Dipartimento di Matematica e Fisica "E. de Giorgi", Università Del Salento, Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Giovanni Lerario
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Stefano Toso
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
- International Doctoral Program in Science, Università Cattolica del Sacro Cuore, Brescia 25121, Italy
| | - Carlo Giansante
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Milena De Giorgi
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniele Sanvitto
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liberato Manna
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
2
|
Mitchell HD, Markillie LM, Chrisler WB, Gaffrey MJ, Hu D, Szymanski CJ, Xie Y, Melby ES, Dohnalkova A, Taylor RC, Grate EK, Cooley SK, McDermott JE, Heredia-Langner A, Orr G. Cells Respond to Distinct Nanoparticle Properties with Multiple Strategies As Revealed by Single-Cell RNA-Seq. ACS NANO 2016; 10:10173-10185. [PMID: 27788331 DOI: 10.1021/acsnano.6b05452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells "overloaded" while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. Here, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantum dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.
Collapse
Affiliation(s)
- Hugh D Mitchell
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Lye Meng Markillie
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - William B Chrisler
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Matthew J Gaffrey
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Dehong Hu
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Craig J Szymanski
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Yumei Xie
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eric S Melby
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Alice Dohnalkova
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ronald C Taylor
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eva K Grate
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Scott K Cooley
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jason E McDermott
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Alejandro Heredia-Langner
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Galya Orr
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
3
|
Getting across the plasma membrane and beyond: intracellular uses of colloidal semiconductor nanocrystals. J Biomed Biotechnol 2010; 2007:68963. [PMID: 18273411 PMCID: PMC2217606 DOI: 10.1155/2007/68963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 10/12/2007] [Indexed: 12/21/2022] Open
Abstract
Semiconductor nanocrystals (NCs) are increasingly being used as photoluminescen markers in biological imaging. Their brightness, large Stokes shift, and high photostability compared to organic fluorophores permit the exploration of biological phenomena at the single-molecule scale with superior temporal resolution and spatial precision. NCs have predominantly been used as extracellular markers for tagging and tracking membrane proteins. Successful internalization and intracellular labelling with NCs have been demonstrated for both fixed immunolabelled and live cells. However, the precise localization and subcellular compartment labelled are less clear. Generally, live cell studies are limited by the requirement of fairly invasive protocols for loading NCs and the relatively large size of NCs compared to the cellular machinery, along with the subsequent sequestration of NCs in endosomal/lysosomal compartments. For long-period observation the potential cytotoxicity of cytoplasmically loaded NCs must be evaluated. This review focuses on the challenges of intracellular uses of NCs.
Collapse
|
4
|
Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, Gray JW, Alivisatos AP, Chen FF. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. NANO LETTERS 2006; 6:800-8. [PMID: 16608287 PMCID: PMC2730586 DOI: 10.1021/nl0603350] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxicity, appears to be PEG. When PEG-coated silanized Qdots (PEG-silane-Qdots) are used to treat cells, toxicity is not observed, even at dosages above 10-20 nM, a concentration inducing death when cells are treated with polymer or mercaptoacid coated Qdots. Because of the importance of Qdots in current and future biomedical and clinical applications, we believe it is essential to more completely understand and verify this negative global response from cells treated with PEG-silane-Qdots. Consequently, we examined the molecular and cellular response of cells treated with two different dosages of PEG-silane-Qdots. Human fibroblasts were exposed to 8 and 80 nM of these Qdots, and both phenotypic as well as whole genome expression measurements were made. PEG-silane-Qdots did not induce any statistically significant cell cycle changes and minimal apoptosis/necrosis in lung fibroblasts (IMR-90) as measured by high content image analysis, regardless of the treatment dosage. A slight increase in apoptosis/necrosis was observed in treated human skin fibroblasts (HSF-42) at both the low and the high dosages. We performed genome-wide expression array analysis of HSF-42 exposed to doses 8 and 80 nM to link the global cell response to a molecular and genetic phenotype. We used a gene array containing approximately 22,000 total probe sets, containing 18,400 probe sets from known genes. Only approximately 50 genes (approximately 0.2% of all the genes tested) exhibited a statistically significant change in expression level of greater than 2-fold. Genes activated in treated cells included those involved in carbohydrate binding, intracellular vesicle formation, and cellular response to stress. Conversely, PEG-silane-Qdots induce a down-regulation of genes involved in controlling the M-phase progression of mitosis, spindle formation, and cytokinesis. Promoter analysis of these results reveals that expression changes may be attributed to the down-regulation of FOXM and BHLB2 transcription factors. Remarkably, PEG-silane-Qdots, unlike carbon nanotubes, do not activate genes indicative of a strong immune and inflammatory response or heavy-metal-related toxicity. The experimental evidence shows that CdSe/ZnS Qdots, if appropriately protected, induce negligible toxicity to the model cell system studied here, even when exposed to high dosages. This study indicates that PEG-coated silanized Qdots pose minimal impact to cells and are a very promising alternative to uncoated Qdots.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fanqing Frank Chen
- To whom correspondence should be addressed: Life Sciences Division, Lawrence, Berkley National Laboratory, MS 977R0225A, 1 Cyclotron Rd, Berkeley, CA 94720. Phone: (510) 495-2444. FAX: (510) 486-5586. E-mail:
| |
Collapse
|
5
|
Talapin DV, Shevchenko EV, Gaponik N, Radtchenko IL, Kornowski A, Haase M, Rogach AL, Weller H. Reply: Self-Assembly of Monodisperse Nanocrystals Into Faceted Crystal Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2005; 17:1325-1329. [PMID: 34412417 DOI: 10.1002/adma.200500672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 03/21/2005] [Indexed: 06/13/2023]
Affiliation(s)
- D V Talapin
- IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - E V Shevchenko
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - N Gaponik
- Institute of Physical Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - I L Radtchenko
- Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - A Kornowski
- Institute of Physical Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - M Haase
- Institute of Chemistry, University of Osnabrück, D-49076 Osnabrück, Germany
| | - A L Rogach
- Photonics and Optoelectronics Group, Physics Department & CeNS, Ludwig-Maximilians-Universtität München, D-80799 Munich, Germany
| | - H Weller
- Institute of Physical Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|