1
|
Wang W, Ibarlucea B, Huang C, Dong R, Al Aiti M, Huang S, Cuniberti G. Multi-metallic MOF based composites for environmental applications: synergizing metal centers and interactions. NANOSCALE HORIZONS 2024; 9:1432-1474. [PMID: 38984482 DOI: 10.1039/d4nh00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The escalating threat of environmental issues to both nature and humanity over the past two decades underscores the urgency of addressing environmental pollutants. Metal-organic frameworks (MOFs) have emerged as highly promising materials for tackling these challenges. Since their rise in popularity, extensive research has been conducted on MOFs, spanning from design and synthesis to a wide array of applications, such as environmental remediation, gas storage and separation, catalysis, sensors, biomedical and drug delivery systems, energy storage and conversion, and optoelectronic devices, etc. MOFs possess a multitude of advantageous properties such as large specific surface area, tunable porosity, diverse pore structures, multi-channel design, and molecular sieve capabilities, etc., making them particularly attractive for environmental applications. MOF-based composites inherit the excellent properties of MOFs and also exhibit unique physicochemical properties and structures. The tailoring of central coordinated metal ions in MOFs is critical for their adaptability in environmental applications. Although many reviews on monometallic, bimetallic, and polymetallic MOFs have been published, few reviews focusing on MOF-based composites with monometallic, bimetallic, and multi-metallic centers in the context of environmental pollutant treatment have been reported. This review addresses this gap by providing an in-depth overview of the recent progress in MOF-based composites, emphasizing their applications in hazardous gas sensing, electromagnetic wave absorption (EMWA), and pollutant degradation in both aqueous and atmospheric environments and highlighting the importance of the number and type of metal centers present. Additionally, the various categories of MOFs are summarized. MOF-based composites demonstrate significant promise in addressing environmental challenges, and this review provides a clear and valuable perspective on their potential in environmental applications.
Collapse
Affiliation(s)
- Wei Wang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20009, Spain
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Muhannad Al Aiti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- Dresden Center for Nanoanalysis, Technische Universität Dresden, 01062 Dresden, Germany
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
2
|
Shano LB, Karthikeyan S, Kennedy LJ, Chinnathambi S, Pandian GN. MOFs for next-generation cancer therapeutics through a biophysical approach-a review. Front Bioeng Biotechnol 2024; 12:1397804. [PMID: 38938982 PMCID: PMC11208718 DOI: 10.3389/fbioe.2024.1397804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Leon Bernet Shano
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Lourdusamy John Kennedy
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Zheng Z, Wang B, Li Z, Hao H, Wei C, Luo W, Jiao L, Zhang S, Zhou B, Ma X. Enhanced Charge Transfer via S-Scheme Heterojunction Interface Engineering of Supramolecular SubPc-Br/UiO-66 Arrays for Efficient Photocatalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306820. [PMID: 37802970 DOI: 10.1002/smll.202306820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Constructing heterojunction of supramolecular arrays self-assembled on metal-organic frameworks (MOFs) with elaborate charge transfer mechanisms is a promising strategy for the photocatalytic oxidation of organic pollutants. Herein, H12 SubPcB-Br (SubPc-Br) and UiO-66 are used to obtain the step-scheme (S-scheme) heterojunction SubPc-Br/UiO-66 for the first time, which is then applied in the photocatalytic oxidation of minocycline. Atomic-level B-O-Zr charge-transfer channels and van der Waals force connections synergistically accelerated the charge transfer at the interface of the SubPc-Br/UiO-66 heterojunction, while the establishment of the B-O-Zr bonds also led to the directional transfer of charge from SubPc-Br to UiO-66. The synergy is the key to improving the photocatalytic activity and stability of SubPc-Br/UiO-66, which is also verified by various characterization methods and theoretical calculations. The minocycline degradation efficiency of supramolecular SubPc-Br/UiO-66 arrays reach 90.9% within 30 min under visible light irradiation. The molecular dynamics simulations indicate that B-O-Zr bonds and van der Waals force contribute significantly to the stability of the SubPc-Br/UiO-66 heterojunction. This work reveals an approach for the rational design of semiconducting MOF-based heterojunctions with improved properties.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Bing Wang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhuo Li
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - ChaoYang Wei
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - WenYu Luo
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - LinYu Jiao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Sheng Zhang
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bo Zhou
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, 710069, China
| | - XiaoXun Ma
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| |
Collapse
|
4
|
Jo YM, Jo YK, Lee JH, Jang HW, Hwang IS, Yoo DJ. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206842. [PMID: 35947765 DOI: 10.1002/adma.202206842] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The sensing performances of gas sensors must be improved and diversified to enhance quality of life by ensuring health, safety, and convenience. Metal-organic frameworks (MOFs), which exhibit an extremely high surface area, abundant porosity, and unique surface chemistry, provide a promising framework for facilitating gas-sensor innovations. Enhanced understanding of conduction mechanisms of MOFs has facilitated their use as gas-sensing materials, and various types of MOFs have been developed by examining the compositional and morphological dependences and implementing catalyst incorporation and light activation. Owing to their inherent separation and absorption properties and catalytic activity, MOFs are applied as molecular sieves, absorptive filtering layers, and heterogeneous catalysts. In addition, oxide- or carbon-based sensing materials with complex structures or catalytic composites can be derived by the appropriate post-treatment of MOFs. This review discusses the effective techniques to design optimal MOFs, in terms of computational screening and synthesis methods. Moreover, the mechanisms through which the distinctive functionalities of MOFs as sensing materials, heterostructures, and derivatives can be incorporated in gas-sensor applications are presented.
Collapse
Affiliation(s)
- Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yong Kun Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Sung Hwang
- Sentech Gmi Co. Ltd, Seoul, 07548, Republic of Korea
| | - Do Joon Yoo
- SentechKorea Co. Ltd, Paju, 10863, Republic of Korea
| |
Collapse
|
5
|
Song Y, Zhou J, Zhu Z, Li X, Zhang Y, Shen X, O'Reilly P, Li X, Liang X, Jiang L, Wang S. Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle. Nat Commun 2023; 14:5779. [PMID: 37723155 PMCID: PMC10507067 DOI: 10.1038/s41467-023-41053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/22/2023] [Indexed: 09/20/2023] Open
Abstract
Dispersion of colloidal particles in water or oil is extensively desired for industrial and environmental applications. However, it often strongly depends on indispensable assistance of chemical surfactants or introduction of nanoprotrusions onto the particle surface. Here we demonstrate the omnidispersity of hydrophilic-hydrophobic heterostructure particles (HL-HBPs), synthesized by a surface heterogeneous nanostructuring strategy. Photo-induced force microscopy (PiFM) and adhesion force images both indicate the heterogeneous distribution of hydrophilic domains and hydrophobic domains on the particle surface. These alternating domains allow HL-HBPs to be dispersed in various solvents with different polarity and boiling point. The HL-HBPs can efficiently adsorb organic dyes from water and release them into organic solvents within several seconds. The surface heterogeneous nanostructuring strategy provides an unconventional approach to achieve omnidispersion of colloidal particles beyond surface modification, and the omnidispersible HL-HBPs demonstrate superior capability for dye recycle merely by solvent exchange. These omnidispersible HL-HBPs show great potentials in industrial process and environmental protection.
Collapse
Affiliation(s)
- Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, P. R. China
| | - Zhongpeng Zhu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, P. R. China
| | - Xiaoxia Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yue Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinyi Shen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | | | - Xiuling Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, P. R. China.
| |
Collapse
|
6
|
Ghodsinia SSE, Eshghi H, Mohammadinezhad A. Synthesis of double-shelled periodic mesoporous organosilica nanospheres/MIL-88A-Fe composite and its elevated performance for Pb 2+ removal in water. Sci Rep 2023; 13:8092. [PMID: 37208417 DOI: 10.1038/s41598-023-35149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/13/2023] [Indexed: 05/21/2023] Open
Abstract
Herein, we report the synthesis of double-shelled periodic mesoporous organosilica nanospheres/MIL-88A-Fe (DSS/MIL-88A-Fe) composite through a hydrothermal method. To survey the structural and compositional features of the synthesized composite, a variety of spectroscopic and microscopic techniques, including FT-IR, XRD, BET, TEM, FE-SEM, EDX, and EDX-mapping, have been employed. A noteworthy point in this synthesis procedure is the integration of MOF with PMO to increase the adsorbent performance, such as higher specific surface area and more active sites. This combination leads to achieving a structure with an average size of 280 nm and 1.1 μm long attributed to DSS and MOF, respectively, microporous structure and relatively large specific surface area (312.87 m2/g). The as-prepared composite could be used as an effective adsorbent with a high adsorption capacity (250 mg/g) and quick adsorption time (30 min) for the removal of Pb2+ from water. Importantly, DSS/MIL-88A-Fe composite revealed acceptable recycling and stability, since the performance in Pb2+ removal from water remained above 70% even after 4 consecutive cycles.
Collapse
Affiliation(s)
- Sara S E Ghodsinia
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Arezou Mohammadinezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| |
Collapse
|
7
|
Enhanced CO2/N2 separation performance in HP-Cu-BTCs by modifying the open-metal sites and porosity using added templates. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Yin Q, Sun X, Dong K, Lu X, Yang F, He X, Zhong S, Diao Y, Wang Y. Dual-Emitting Ratiometric Luminescent Thermometers Based on Lanthanide Metal–Organic Complexes with Brønsted Acidic Ionic Liquids. Inorg Chem 2022; 61:18998-19009. [DOI: 10.1021/acs.inorgchem.2c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Qianqian Yin
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Xinyue Sun
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing100049, P.R. China
| | - Kun Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Fan Yang
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Xiaojiao He
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Shengnan Zhong
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Yibo Wang
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| |
Collapse
|
9
|
Bikash Baruah J. Coordination polymers in adsorptive remediation of environmental contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Construction of a dual-cage-based MOF with uncoordinated nitrogen sites for CO2 adsorption and fixation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Gupta RK, Riaz M, Ashafaq M, Gao ZY, Varma RS, Li DC, Cui P, Tung CH, Sun D. Adenine-incorporated metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Chen H, Zheng K, Chen C, Zhu Y, Ma P, Wang J, Niu J. Luminescent Dimeric Oxalate-Bridged Eu 3+/Tb 3+-Implanted Arsenotungstates: Tunable Emission, Energy Transfer, and Detection of Ba 2+ Ion in Aqueous Solution. Inorg Chem 2022; 61:3387-3395. [PMID: 35167745 DOI: 10.1021/acs.inorgchem.1c03073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Two cases of lanthanide (Ln)-implanted arsenotungstates, K17Na2H5[{(As2W19O67(H2O))Ln(H2O)2}2(C2O4)]·87H2O (Ln = Eu (1), Ln = Tb (2)) and their codoped derivatives EuxTb1-x-POM (x = 0.01 (3), x = 0.04 (4), x = 0.1 (5), x = 0.2 (6)) were prepared and further characterized by powder X-ray diffraction, infrared spectra, and thermogravimetric analyses. An X-ray structural analysis of 1 and 2 indicates that they both present a dimeric oxalate-bridged Ln3+-implanted lanthanide arsenotungstate polyanion structure. Under the O → W LMCT excitation at 265 nm of arsenotungstate polyanions, the emissions of Ln3+ ions in 1 and 2 are sensitized and the lifetimes are prolonged. Codoped compounds 3-6 demonstrate a color-tunable emission from green to red by adjusting the Eu3+/Tb3+ ratio. Emission spectra and time-resolved emission spectroscopic studies were performed for 3 to further authenticate the energy transfer processes from excited arsenotungstates to the Eu3+ and Tb3+ metal ions and also between the Eu3+ and Tb3+ centers. More interestingly, 1 is an effective fluorescent probe for the recognition and detection of Ba2+ ions in aqueous solution. The optical properties of the Ln-implanted arsenotungstate compounds not only expressly reveal distinctive energy transfer processes in those compounds but also broaden the application of POM-based materials in the fluorescence sensing field.
Collapse
Affiliation(s)
- Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Chunli Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yanhong Zhu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
13
|
Mondal U, Bej S, Hazra A, Mandal S, Pal TK, Banerjee P. Amine-substituent induced highly selective and rapid "turn-on" detection of carcinogenic 1,4-dioxane from purely aqueous and vapour phase with novel post-synthetically modified d 10-MOFs. Dalton Trans 2022; 51:2083-2093. [PMID: 35048912 DOI: 10.1039/d1dt03976h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein, an amine decorated Cd(II) metal-organic framework (MOF) with a uninodal 6-c topology was synthesized as a suitable platform for facile post-synthetic modification (PSM). The as-synthesized parent d10-MOF (1) with free -NH2 centers, when functionalized with two different carbonyl substituents (1-naphthaldehyde and benzophenone) of varying conjugation, produces two novel luminescent MOFs (LMOFs) viz.PSM-1 and PSM-2. The judicious incorporation of carbonyl substituents into the skeleton of 1 was rationalized via ESI-MS, 1H-NMR, FT-IR and PXRD analyses. Interestingly, both PSM-1 and PSM-2 show 'turn-on' luminescent behaviour in the presence of 1,4-dioxane with the limit of detection (LOD) as 1.079 ppm and 2.487 ppm, respectively, with prompt response time (∼55 s & ∼58 s, respectively). The inhibition of PET is comprehended to be the prime reason for luminescence enhancement upon interaction with the targeted analyte which was further validated from DFT calculations. In continuation, the PSM-MOFs were equally responsive towards 1,4-dioxane in several complex environmental matrices and cosmetic products. Additionally, vapor phase detection of 1,4-dioxane using PSM-MOFs has also been demonstrated as an additional advantage ensuring propagation of future research endeavour.
Collapse
Affiliation(s)
- Udayan Mondal
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Sourav Bej
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Abhijit Hazra
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Sukdeb Mandal
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Tapan K Pal
- Department of Chemistry, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar-382007, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| |
Collapse
|
14
|
Qin B, Zhang X, Dang J, Yue D, Zhang B, Li W, Gahungu G, Wang Z, Zhang J. A 2-fold interpenetrated zinc–organic framework with Lewis basic triazole sites: luminescence sensing of Fe 3+ and Cr 2O 72−, and warm white-light emission by encapsulated Ln 3+ ions. CrystEngComm 2022. [DOI: 10.1039/d2ce00816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2-fold interpenetrated Zn-MOF with Lewis basic triazole sites shows selective luminescence sensing of Fe3+ and Cr2O72− and tunable white-light emission by encapsulated Ln3+ ions.
Collapse
Affiliation(s)
- Bowen Qin
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Xiaoying Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jiangyan Dang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Dan Yue
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Bing Zhang
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Weidong Li
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Godefroid Gahungu
- Department of Chemistry, University of Burundi, BP 2700, Bujumbura, Burundi
| | - Zhenling Wang
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Jingping Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
15
|
Li Y, Tian X, Jiang W, Wu P, Li HS, Wang M, Lin C, Wang J. Amino and triazole-containing metal-organic frameworks for highly efficient CO 2 fixation. Chem Commun (Camb) 2021; 57:10803-10806. [PMID: 34590631 DOI: 10.1039/d1cc04371d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel porous metal-organic framework (MOF) functionalized with amino and triazole moieties has been synthesized. Attributed to the high affinity to CO2 and unsaturated zinc centers, the MOF exhibits high catalytic activity for the CO2 to epoxide cycloaddition reaction, with a turnover number value of up to 10 000 per cycle, and can be reused at least for 20 cycles.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Xueqin Tian
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Weiwei Jiang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Han-Shu Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Man Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Chen Lin
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
16
|
Tang J, Zhang T, Zhang Q, Duan Z, Li C, Hou D, Xv Q, Meng C, Zhang Y, Zhu Y. In-situ growth UiO-66 on Bi2O3 to fabrication p-p heterojunction with enhanced visible-light degradation of tetracycline. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Akintola O, Buchholz A, Görls H, Plass W. Modulator Induced Formation of a Neutral Framework Based on Trinuclear Cobalt(II) Clusters and Nitrilotribenzoic Acid: Synthesis, Magnetism, and Sorption Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| |
Collapse
|
18
|
Highly Efficient Hydrogenation of Furfural to Furfuryl Alcohol Catalyzed by Pt Supported on Bi-Metallic MIL-100 (Fe, Mn/Co) MOFs Derivates Prepared by Hydrothermal Polyol Reduction Method. Catal Letters 2021. [DOI: 10.1007/s10562-021-03656-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Kumar G, Masram DT. Sustainable Synthesis of MOF-5@GO Nanocomposites for Efficient Removal of Rhodamine B from Water. ACS OMEGA 2021; 6:9587-9599. [PMID: 33869939 PMCID: PMC8047673 DOI: 10.1021/acsomega.1c00143] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Herein, a metal-organic framework (MOF-5) is synthesized by a solvothermal process and graphene oxide (GO) is prepared from the improved Hummer's method. The synthesis of MOF-5@GO nanocomposites is one-pot process via a grinding method and employed for the removal of Rhodamine B (RhB) dye. The removal efficiency of RhB is found to be 60.64% (151.62 mg·g-1) at 500 ppm. About 98.88% of RhB is removed within 5 min of contact time and increased up to 99.68% up to 10 min. The removal rate of MOF-5@GO nanocomposites is much better than that of pristine MOF-5. Equilibrium adsorption capacity is determined by a series of different experimental conditions such as pH, time, and concentration of dye solution. Although the results also showed that dye removal on MOF-5@GO nanocomposites is well described by the Langmuir isotherm (R 2 = 0.9703), the adsorption kinetics data reveals pseudo-second-order (R 2 = 0.9908). The synthesized nanocomposite is efficient for removal of dye, cost-effective, and reusable. Additionally, stability and self-degradation studies of pure RhB are reported in aqueous solution for up to 120 days at different pH values (pH 1-12).
Collapse
Affiliation(s)
- Gyanendra Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
20
|
Luo J, Liu BS, Zhang XR, Liu RT. A new fluorescent sensor constructed by Eu3+ post-functionalized metal-organic framework for sensing Ag+ with high selectivity and sensitivity in aqueous solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
|
22
|
Chahine AY, Turner DR, Batten SR. Crystal engineering of coordination polymers using flexible tetracarboxylate linkers with embedded cyclohexyldiamine cores. CrystEngComm 2021. [DOI: 10.1039/d0ce01620a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flexible amine-functionalised tetracarboxylate ligands with different length arms generate a large variety of coordination polymers which notably lack topological consistency.
Collapse
|
23
|
Wang M, Huang F, Wang C, Hu Y, Wu P, Hu A, Ji J, Wang J. Synthesis of a bimetallic metal–organic framework catalyst via selective detection and adsorption of Fe 3+ for enhanced bio-based catalysis. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00795e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A MOF with good chemical resistance exhibits a sensitive fluorescence response and absorbance for Fe3+; Tb-HODA⊃Fe3+ enhances the catalytic efficiency for the dehydration of fructose/glucose into 5-hydroxymethylfurfural.
Collapse
Affiliation(s)
- Man Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Fangmin Huang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Chan Wang
- Yantai Centre for Promotion of Science and Technology Innovation, Yantai, Shandong, 264003, China
| | - Yuanyuan Hu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Aonan Hu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jingwen Ji
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| |
Collapse
|
24
|
Liu Y, Li B, Li HS, Wu P, Wang J. Metal-organic frameworks containing xanthene dyes for photocatalytic applications. Dalton Trans 2020; 49:17520-17526. [PMID: 33295904 DOI: 10.1039/d0dt03652h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal-organic frameworks (MOFs) have recently emerged as a new type of prospective photocatalytic material due to their characteristics such as tunable structures, pore modification, crystalline nature with eliminated structural defects, unique semiconductor properties, etc. However, most of these systems also suffer from low activity, high cost, and low visible light utilization. Xanthene dyes are eco-friendly organic dyes used in photocatalysis. They possess the advantages of low cost, low toxicity, and high visible light response; so, they can be directly used as building blocks to fabricate MOF materials or as proper cocatalysts to increase the absorbance of irradiation leading to the construction of a reasonable photocatalytic system. Herein, we have summarized the recent developments in the study of MOFs containing xanthene dyes for photocatalytic applications. The paper can be divided into two sections depending on whether the xanthene dyes are coordinated in the MOF structure: (i) MOFs synergized with xanthene dyes for photocatalytic applications and (ii) MOFs with xanthene dyes incorporated within ligand backbones for photocatalytic applications. Moreover, in this paper, the present challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci 2020; 151:105412. [DOI: 10.1016/j.ejps.2020.105412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
|
26
|
Xie X, Huang X, Lin W, Chen Y, Lang X, Wang Y, Gao L, Zhu H, Chen J. Selective Adsorption of Cationic Dyes for Stable Metal-Organic Framework ZJU-48. ACS OMEGA 2020; 5:13595-13600. [PMID: 32566824 PMCID: PMC7301382 DOI: 10.1021/acsomega.0c00385] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/20/2020] [Indexed: 05/06/2023]
Abstract
A cationic metal-organic framework (MOF) ZJU-48 with one-dimensional pores of about 9.1 × 9.1 Å2 has been prepared from zinc ions, adenine, and carboxyl ligands. ZJU-48 displays excellent water stability for about one week, exhibiting its potential application for adsorption and separation of dyes. Cationic and anionic dyes with similar sizes are adopted to study the adsorbing and separating properties of ZJU-48. Cationic dyes are adsorbed better than anionic dyes because of the negatively charged zeta potential of the material surface, implying its selective adsorption to cationic dyes, and it is charge-based adsorption. Meanwhile, the adsorption ability of the MOF to cationic dyes with different sizes is also investigated. We find that the adsorbed amount decreases with increase in the size of organics ,indicating that it is size-based adsorption. Furthermore, the cationic dye methylene blue (MB) is employed and focused on for its suitable charge and fitting size to evaluate the maximum adsorption capacity and desorption progress of ZJU-48. The results show that the maximum loaded amount of MOF toward MB reaches 582.44 mg/g, and about 90% of loaded dyes can be released from frameworks in N,N-dimethylformamide with NaCl over 6 h, exhibiting satisfactory adsorptive property and possibility as a reusable adsorbent.
Collapse
Affiliation(s)
- Xiaochun Xie
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiajuan Huang
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, P. R. China
| | - Wenxin Lin
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, P. R. China
- State
Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
- E-mail: . Phone: +86-13567125182
| | - Yufeng Chen
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiurui Lang
- School
of Polymer Science and Engineering, Qingdao
University of Science and Technology, Qingdao 266042, P. R. China
| | - Yijia Wang
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, P. R. China
| | - Linhui Gao
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hongliang Zhu
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jianjun Chen
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, P. R. China
- E-mail: . Phone: +86-13616506708
| |
Collapse
|
27
|
Yang L, Liu YL, Liu CG, Fu Y, Ye F. A cationic metal-organic framework for dye adsorption and separation based on column-chromatography. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112311] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Luo J, Liu BS, Zhang XR, Liu RT. A novel fluorescent sensor with highly response of Cu2+ based on Eu3+ post-modified metal-organic framework in aqueous media. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Metal-organic framework-based CO2 capture: From precise material design to high-efficiency membranes. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1872-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Zhang ZY, Ji LQ, Kong LY, Xu BC, Qian Y, Liu HK, Su Z. Tetrazolate-Based Cadmium(II) Fluorescent Metal-Organic Frameworks for Iron(III) Sensing and Methylene Blue (MB) Capture. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zi-You Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046 Nanjing China
| | - Li-Qian Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046 Nanjing China
| | - Ling-Yan Kong
- College of Food Science and Engineering; Nanjing University of Finance and Economics; 210023 Nanjing China
| | - Bao-Cai Xu
- Jiangsu Yurun Meat & Food Co., Ltd.; State Key Laboratory of Meat Processing and Quality Control; 211806 Nanjing China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046 Nanjing China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046 Nanjing China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046 Nanjing China
| |
Collapse
|
31
|
Mikhalyova EA, Pavlishchuk VV. Modern Approaches to the Tuning of the Lanthanide(3+) Coordination Compound Luminescent Characteristics: A Review. THEOR EXP CHEM+ 2019. [DOI: 10.1007/s11237-019-09622-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Chang GG, Ma XC, Zhang YX, Wang LY, Tian G, Liu JW, Wu J, Hu ZY, Yang XY, Chen B. Construction of Hierarchical Metal-Organic Frameworks by Competitive Coordination Strategy for Highly Efficient CO 2 Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904969. [PMID: 31736178 DOI: 10.1002/adma.201904969] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Hierarchical porosity and functionalization help to fully make use of metal-organic frameworks (MOFs) for their diverse applications. Herein, a simple strategy is reported to construct hierarchically porous MOFs through a competitive coordination method using tetrafluoroborate (M(BF4 )x , where M is metal site) as both functional sites and etching agents. The resulting MOFs have in situ formed defect-mesopores and functional sites without sacrificing their structure stability. The formation mechanism of the defect-mesopores is elucidated by a combination of experimental and first-principles calculation method, indicating the general feasibility of this new approach. Compared with the original microporous counterparts, the new hierarchical MOFs exhibit superior adsorption for the bulky dye molecules and catalytic performance for the CO2 conversion attributed to their specific hierarchical pore structures.
Collapse
Affiliation(s)
- Gang-Gang Chang
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Xiao-Chen Ma
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Yue-Xing Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, China
| | - Li-Ying Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ge Tian
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Jia-Wen Liu
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Jian Wu
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Zhi-Yi Hu
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Xiao-Yu Yang
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698, USA
| |
Collapse
|
33
|
Subramanian S, Oppenheim J, Kim D, Nguyen TS, Silo WM, Kim B, Goddard WA, Yavuz CT. Catalytic Non-redox Carbon Dioxide Fixation in Cyclic Carbonates. Chem 2019. [DOI: 10.1016/j.chempr.2019.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
|
35
|
Karmakar A, Samanta P, Dutta S, Ghosh SK. Fluorescent "Turn-on" Sensing Based on Metal-Organic Frameworks (MOFs). Chem Asian J 2019; 14:4506-4519. [PMID: 31573139 DOI: 10.1002/asia.201901168] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Metal-organic frameworks (MOFs) have evolved as an exciting class of materials in the domain of porous materials. The unique features of these materials arise from the combined properties of metal ions/clusters and organic struts which form the building blocks of these fascinating architectures. Among other multifarious applications, MOFs have shown tremendous applications as sensory materials for a wide variety of species. The signal transduction induced mechanism in these confined nanospaces generate optical output in response to a particular analyte which can be detected by wide variety of detection techniques. Fluorometric methods of sensing is one of widely studied method over past few decades. MOF-based fluorometric detection is a key research theme developed over the past few years. In this review, we give a brief overview of the recent developments of MOFs as "turn-on" sensors for a wide range of analytes (viz. cations, anions, volatile organic compounds (VOCs), etc.).
Collapse
Affiliation(s)
- Avishek Karmakar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Centre for Energy Science, IISER, Pune, Pune-, 411008, India
| |
Collapse
|
36
|
Liu Y, Ma J, Wu P, Zheng JJ, Tian X, Jiang M, He Y, Dong H, Wang J. A nanoporous metal-organic framework as a renewable size-selective hydrogen-bonding catalyst in water. Dalton Trans 2019; 48:11855-11861. [PMID: 31305832 DOI: 10.1039/c9dt01763a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel squaramide-containing metal-organic framework (MOF) material has been designed and synthesized. A detailed X-ray crystal structure analysis showed that four squaramides of this MOF adopted two orientations in each dependent nanopore, confirming that two carbonyl and two N-H groups pointed simultaneously to the inside of the one-dimensional nanometer channel. The MOF was applied as an efficient bifunctional hydrogen-bonding catalyst for Michael additions of 1,3-dicarbonyl compounds to nitroalkenes in pure water, boosting the catalytic efficiency by up to approximately five times the value afforded by the homogeneous control and exhibiting a highly size-selective catalytic performance and good renewability. The catalytic mechanism was also discussed in detail. The present study provides a highly promising approach to achieving dual-activation catalytic centers in a single system, which function as microscopic chemical reactors that allow the interaction and fast transport of substrate molecules in their cavities.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Ju Ma
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Jia-Jia Zheng
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Ushinomiya cho, Yoshida, Sakyo-ku, Nishikyo-ku, Kyoto 606-8501, Japan
| | - Xueqin Tian
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Min Jiang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yumei He
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Han Dong
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
37
|
Gupta V, Mohiyuddin S, Sachdev A, Soni P, Gopinath P, Tyagi S. PEG functionalized zirconium dicarboxylate MOFs for docetaxel drug delivery in vitro. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Li H, Li L, Lin RB, Zhou W, Zhang Z, Xiang S, Chen B. Porous metal-organic frameworks for gas storage and separation: Status and challenges. ENERGYCHEM 2019; 1:10.1016/j.enchem.2019.100006. [PMID: 38711814 PMCID: PMC11071076 DOI: 10.1016/j.enchem.2019.100006] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Gases are widely used as energy resources for industry and our daily life. Developing energy cost efficient porous materials for gas storage and separation is of fundamentally and industrially important, and is one of the most important aspects of energy chemistry and materials. Metal-organic frameworks (MOFs), representing a novel class of porous materials, feature unique pore structure, such as exceptional porosity, tunable pore structures, ready functionalization, which not only enables high density energy storage of clean fuel gas in MOF adsorbents, but also facilitates distinct host-guest interactions and/or sieving effects to differentiate different molecules for energy-efficient separation economy. In this review, we summarize and highlight the recent advances in the arena of gas storage and separation using MOFs as adsorbents, including progresses in MOF-based membranes for gas separation, which could afford broader concepts to the current status and challenges in this field.
Collapse
Affiliation(s)
- Hao Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, United States
| | - Libo Li
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, United States
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Rui-Biao Lin
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, United States
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, United States
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, United States
| |
Collapse
|
39
|
Li Z, Xing X, Meng D, Wang Z, Xue J, Wang R, Chu J, Li M, Yang Y. Hierarchical Structure with Highly Ordered Macroporous-Mesoporous Metal-Organic Frameworks as Dual Function for CO 2 Fixation. iScience 2019; 15:514-523. [PMID: 31132745 PMCID: PMC6538925 DOI: 10.1016/j.isci.2019.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 11/28/2022] Open
Abstract
As a major greenhouse gas, the continuous increase of carbon dioxide (CO2) in the atmosphere has caused serious environmental problems, although CO2 is also an abundant, inexpensive, and nontoxic carbon source. Here, we use metal-organic framework (MOF) with highly ordered hierarchical structure as adsorbent and catalyst for chemical fixation of CO2 at atmospheric pressure, and the CO2 can be converted to the formate in excellent yields. Meanwhile, we have successfully integrated highly ordered macroporous and mesoporous structures into MOFs, and the macro-, meso-, and microporous structures have all been presented in one framework. Based on the unique hierarchical pores, high surface area (592 m2/g), and high CO2 adsorption capacity (49.51 cm3/g), the ordered macroporous-mesoporous MOFs possess high activity for chemical fixation of CO2 (yield of 77%). These results provide a promising route of chemical CO2 fixation through MOF materials.
Collapse
Affiliation(s)
- Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (Beijing), Beijing 102249, China; Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| | - Xiaofei Xing
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (Beijing), Beijing 102249, China
| | - Dong Meng
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Zhengxu Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jingjing Xue
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Rui Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Junmei Chu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (Beijing), Beijing 102249, China
| | - Mingming Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yang Yang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
40
|
Zhang J, Chen L, Dai X, Zhu L, Xiao C, Xu L, Zhang Z, Alekseev EV, Wang Y, Zhang C, Zhang H, Wang Y, Diwu J, Chai Z, Wang S. Distinctive Two-Step Intercalation of Sr2+ into a Coordination Polymer with Record High 90Sr Uptake Capabilities. Chem 2019. [DOI: 10.1016/j.chempr.2019.02.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Lotfian N, Heravi MM, Mirzaei M, Heidari B. Applications of inorganic‐organic hybrid architectures based on polyoxometalates in catalyzed and photocatalyzed chemical transformations. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4808] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nahid Lotfian
- Department of Chemistry, School of SciencesAlzahra University Vanak Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry, School of SciencesAlzahra University Vanak Tehran Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad Iran
| | - Bahareh Heidari
- Department of Chemistry, School of SciencesAlzahra University Vanak Tehran Iran
| |
Collapse
|
42
|
Li PZ, Wang XJ, Zhao Y. Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Luo J, Liu BS, Zhang XR, Liu RT. A Eu3+ post-functionalized metal-organic framework as fluorescent probe for highly selective sensing of Cu2+ in aqueous media. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Pan Y, Su HQ, Zhou EL, Yin HZ, Shao KZ, Su ZM. A stable mixed lanthanide metal–organic framework for highly sensitive thermometry. Dalton Trans 2019; 48:3723-3729. [DOI: 10.1039/c9dt00217k] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A stable mixed Ln-MOF with a novel (4,8)-connected binodal network was constructed, which could be used as a ratiometric and colorimetric temperature sensor with high relative sensitivity (Sm = 9.42% per K at 310 K).
Collapse
Affiliation(s)
- Yue Pan
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Hai-Quan Su
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - En-Long Zhou
- College of Chemistry and Material Science
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Hong-Zong Yin
- College of Chemistry and Material Science
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Kui-Zhan Shao
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
45
|
Li M, Ren G, Wang F, Li Z, Yang W, Gu D, Wang Y, Zhu G, Pan Q. Two metal–organic zeolites for highly sensitive and selective sensing of Tb3+. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01406j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two metal–organic zeolites can sensitize the luminescence of the Tb3+ ion by energy transfer between the host frameworks and the guest Tb3+ ion, thus serving as Tb3+ ion sensors.
Collapse
Affiliation(s)
- Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- College of Materials and Chemical Engineering
- Hainan University
- Haikou
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- College of Materials and Chemical Engineering
- Hainan University
- Haikou
| | - Fuxiang Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- College of Materials and Chemical Engineering
- Hainan University
- Haikou
| | - Zhimeng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- College of Materials and Chemical Engineering
- Hainan University
- Haikou
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- College of Materials and Chemical Engineering
- Hainan University
- Haikou
| | - Dongxu Gu
- Key Laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- College of Materials and Chemical Engineering
- Hainan University
- Haikou
| | - Yinghui Wang
- A State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Guangshan Zhu
- College of Chemistry
- Northeast Normal University
- Changchun
- PR China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- College of Materials and Chemical Engineering
- Hainan University
- Haikou
| |
Collapse
|
46
|
Xu YY, Sun O, Qi Y, Xie BY, Gao T. Enhanced luminescence for detection of small molecules based on doped lanthanide compounds with a dinuclear double-stranded helicate structure. NEW J CHEM 2019. [DOI: 10.1039/c9nj04104d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A family of isostructural lanthanide compounds was explored and enhanced luminescence accomplished by doping. A novel and multifunctional fluorescence probe was developed, which was able to detect CH3COOH, Al3+ and Cr2O72−.
Collapse
Affiliation(s)
- Yuan-Yi Xu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science, Heilongjiang University
- Harbin 150080
- P. R. China
| | - Ou Sun
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science, Heilongjiang University
- Harbin 150080
- P. R. China
| | - Yue Qi
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science, Heilongjiang University
- Harbin 150080
- P. R. China
| | - Bo-Yu Xie
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science, Heilongjiang University
- Harbin 150080
- P. R. China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science, Heilongjiang University
- Harbin 150080
- P. R. China
| |
Collapse
|
47
|
Qin BW, Zhang XY, Zhang JP. A stable luminescent zinc–organic framework as a dual-sensor toward Cu2+ and Cr2O72−, and excellent platform-encapsulated Ln3+ for systematic color tuning and white-light emission. NEW J CHEM 2019. [DOI: 10.1039/c9nj02861g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stable three-fold interpenetrated framework (Zn-MOF), showing chemical sensing for Cu2+ and Cr2O72−, tunable luminescence and white-light emission after encapsulating lanthanide cations, was synthesized and characterized.
Collapse
Affiliation(s)
- Bo-Wen Qin
- Advanced Energy Materials Research Center
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Xiao-Ying Zhang
- Advanced Energy Materials Research Center
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Jing-Ping Zhang
- Advanced Energy Materials Research Center
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
48
|
Verma P, Singh UP, Butcher RJ. Luminescent metal organic frameworks for sensing and gas adsorption studies. CrystEngComm 2019. [DOI: 10.1039/c9ce00732f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two three-dimensional metal organic frameworks (LZn and LCd) were synthesized solvothermally for sensing of nitro phenolic explosives and gas adsorption studies. LZn showed selectivity towards N2 gas at 77 K.
Collapse
Affiliation(s)
- Pankaj Verma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Udai P. Singh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Ray J. Butcher
- Department of Chemistry
- Howard University
- Washington, DC 20059
- USA
| |
Collapse
|
49
|
Xiang RQ, Niu YF, Han J, Lau YL, Wu HH, Zhao XL. A neutral Cu-based MOF for effective quercetin extraction and conversion from natural onion juice. RSC Adv 2019; 9:33716-33721. [PMID: 35528871 PMCID: PMC9073668 DOI: 10.1039/c9ra04551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/28/2019] [Indexed: 11/21/2022] Open
Abstract
A new neutral metal–organic framework can efficiently extract natural product quercetin (QT) from fresh QT-rich onion juice and rapidly convert it into Cu–QT with a relatively high conversion rate.
Collapse
Affiliation(s)
- Rui-Qi Xiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Yan-Fei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Jie Han
- School of Science & Technology
- The Open University of Hong Kong
- Kowloon
- P. R. China
| | - Yat-Long Lau
- School of Science & Technology
- The Open University of Hong Kong
- Kowloon
- P. R. China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
50
|
Gao W, Liu F, Pan CW, Zhang XM, Liu JP, Gao QY. A stable anionic metal–organic framework with open coordinated sites: selective separation toward cationic dyes and sensing properties. CrystEngComm 2019. [DOI: 10.1039/c8ce02060d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A multifunctional anionic metal–organic framework was successfully synthesized using a new pyridyl–tricarboxylate ligand. It could be applied as a luminescent sensor for Fe3+ ions and TNP and it showed selective adsorption of cationic dyes.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemical Engineering
- China University of Mining and Technology
- Xuzhou
- China
- College of Chemistry and Materials Science
| | - Feng Liu
- College of Chemistry and Materials Science
- Huaibei Normal University
- China
| | - Chang-Wei Pan
- College of Chemical Engineering
- China University of Mining and Technology
- Xuzhou
- China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science
- Huaibei Normal University
- China
- State Key Laboratory of Coordination Chemistry
- Nanjing University
| | - Jie-Ping Liu
- College of Chemistry and Materials Science
- Huaibei Normal University
- China
| | - Qing-Yu Gao
- College of Chemical Engineering
- China University of Mining and Technology
- Xuzhou
- China
| |
Collapse
|