1
|
Choi Y, Song Y, Kim YT, Lee SJ, Lee KG, Im SG. Multifunctional Printable Micropattern Array for Digital Nucleic Acid Assay for Microbial Pathogen Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3098-3108. [PMID: 33423455 DOI: 10.1021/acsami.0c16862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The digital nucleic acid assay is a precise, sensitive, and reproducible method for determining the presence of individual target molecules separated in designated partitions; thus, this technique can be used for the nucleic acid detection. Here, we propose a multifunctional micropattern array capable of isolating individual target molecules into partitions and simultaneous on-site cell lysis to achieve a direct DNA extraction and digitized quantification thereof. The multifunctional micropattern array is fabricated by the deposition of a copolymer film, poly(2-dimethylaminomethyl styrene-co-hydroxyethyl methacrylate) (pDH), directly on a microfluidic chip surface via the photoinitiated chemical vapor deposition process, followed by hydrophobic microcontact printing (μCP) to define each partition for the nucleic acid isolation. The pDH layer is a positively charged surface, which is desirable for the bacterial lysis and DNA capture, while showing exceptional water stability for more than 24 h. The hydrophobic μCP-treated pDH surface is stable under aqueous conditions at a high temperature (70 °C) for 1 h and enables the rapid and reliable formation of thousands of sessile microdroplets for the compartmentalization of an aqueous sample solution without involving bulky and costly microfluidic devices. By assembling the multifunctional micropattern array into the microfluidic chip, the isothermal amplification in each partition can detect DNA templates over a concentration range of 0.01-2 ng/μL. The untreated bacterial cells can also be directly compartmentalized via the microdroplet formation, followed by the on-site cell lysis and DNA capture on the compartmentalized pDH surface. For Escherichia coli O157:H7, Salmonella enteritidis, and Staphylococcus aureus cells, cell numbers ranging from 1.4 × 104 to 1.4 × 107 can be distinguished by using the multifunctional micropattern array, regardless of the cell type. The multifunctional micropattern array developed in this study provides a novel multifunctional compartmentalization method for rapid, simple, and accurate digital nucleic acid assays.
Collapse
Affiliation(s)
- Yunho Choi
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Younseong Song
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, Gyeonggi-do 15073, Republic of Korea
| | - Seok Jae Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Teshima T, Onoe H, Tottori S, Aonuma H, Mizutani T, Kamiya K, Ishihara H, Kanuka H, Takeuchi S. High-Resolution Vertical Observation of Intracellular Structure Using Magnetically Responsive Microplates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3366-3373. [PMID: 27185344 DOI: 10.1002/smll.201600339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/09/2016] [Indexed: 06/05/2023]
Abstract
A vertical confocal observation system capable of high-resolution observation of intracellular structure is demonstrated. The system consists of magnet-active microplates to rotate, incline, and translate single adherent cells in the applied magnetic field. Appended to conventional confocal microscopes, this system enables high-resolution cross-sectional imaging with single-molecule sensitivity in single scanning.
Collapse
Affiliation(s)
- Tetsuhiko Teshima
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroaki Onoe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Soichiro Tottori
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroka Aonuma
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takeomi Mizutani
- Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Koki Kamiya
- Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Hirotaka Ishihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
3
|
Gao Y, Lim J, Yeo DCL, Liao S, Lans M, Wang Y, Teoh SH, Goh BT, Xu C. A Selective and Purification-Free Strategy for Labeling Adherent Cells with Inorganic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6336-6343. [PMID: 26928268 DOI: 10.1021/acsami.5b12409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cellular labeling with inorganic nanoparticles such as magnetic iron oxide nanoparticles, quantum dots, and fluorescent silica nanoparticles is an important method for the noninvasive visualization of cells using various imaging modalities. Currently, this is mainly achieved through the incubation of cultured cells with the nanoparticles that eventually reach the intracellular compartment through specific or nonspecific internalization. This classic method is advantageous in terms of simplicity and convenience, but it suffers from issues such as difficulties in fully removing free nanoparticles (suspended in solution) and the lack of selectivity on cell types. This article reports an innovative strategy for the specific labeling of adherent cells without the concern of freely suspended nanoparticles. This method relies on a nanocomposite film that is prepared by homogeneously dispersing nanoparticles within a biodegradable polymeric film. When adherent cells are seeded on the film, they adhere, spread, and filtrate into the film through the micropores formed during the film fabrication. The pre-embedded nanoparticles are thus internalized by the cells during this infiltration process. As an example, fluorescent silica nanoparticles were homogeneously distributed within a polycaprolactone film by utilizing cryomilling and heat pressing. Upon incubation within physiological buffer, no silica nanoparticles were released from the nanocomposite film even after 20 d of incubation. However, when adherent cells (e.g., human mesenchymal stem cells) were grown on the film, they became fluorescent after 3 d, which suggests internalization of silica nanoparticles by cells. In comparison, the suspension cells (e.g., monocytes) in the medium remained nonfluorescent no matter whether there was the presence of adherent cells or not. This strategy eventually allowed the selective and concomitant labeling of mesenchymal stem cells during their harvest from bone marrow aspiration.
Collapse
Affiliation(s)
- Yu Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Jing Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457
| | - David Chen Loong Yeo
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457
| | - Shanshan Liao
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457
| | - Malin Lans
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457
| | - Yaqi Wang
- Hybrid Silica Technologies , Cambridge, Massachusetts 02139, United States
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457
| | - Bee Tin Goh
- National Dental Centre of Singapore , Second Hospital Avenue, Singapore 168938
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
4
|
Koch B, Sanchez S, Schmidt CK, Swiersy A, Jackson SP, Schmidt OG. Confinement and deformation of single cells and their nuclei inside size-adapted microtubes. Adv Healthc Mater 2014; 3:1753-8. [PMID: 24764273 PMCID: PMC4227890 DOI: 10.1002/adhm.201300678] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/11/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Britta Koch
- Institute for Integrative Nanosciences IFW Dresden, Helmholtzstraße 20 Dresden D‐01069 Germany
| | - Samuel Sanchez
- Institute for Integrative Nanosciences IFW Dresden, Helmholtzstraße 20 Dresden D‐01069 Germany
| | - Christine K. Schmidt
- The Gurdon Institute and Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1QN UK
| | - Anka Swiersy
- Institute for Integrative Nanosciences IFW Dresden, Helmholtzstraße 20 Dresden D‐01069 Germany
- Klinik und Poliklinik für Viszeral‐Thorax‐ und Gefäßchirurgie Universitätsklinikum Carl Gustav Carus Fetscherstraße 74 Dresden D‐01307 Germany
| | - Stephen P. Jackson
- The Gurdon Institute and Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1QN UK
- The Wellcome Trust Sanger Institute, Hinxton Cambridge CB10 1SA UK
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences IFW Dresden, Helmholtzstraße 20 Dresden D‐01069 Germany
- Material Systems for Nanoelectronics Chemnitz University of Technology Reichenhainer Str. 70 Chemnitz D‐09107 Germany
| |
Collapse
|
5
|
Huda S, Pilans D, Makurath M, Hermans T, Kandere-Grzybowska K, Grzybowski BA. Microfabricated Systems and Assays for Studying the Cytoskeletal Organization, Micromechanics, and Motility Patterns of Cancerous Cells. ADVANCED MATERIALS INTERFACES 2014; 1:1400158. [PMID: 26900544 PMCID: PMC4757490 DOI: 10.1002/admi.201400158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell motions are driven by coordinated actions of the intracellular cytoskeleton - actin, microtubules (MTs) and substrate/focal adhesions (FAs). This coordination is altered in metastatic cancer cells resulting in deregulated and increased cellular motility. Microfabrication tools, including photolithography, micromolding, microcontact printing, wet stamping and microfluidic devices have emerged as a powerful set of experimental tools with which to probe and define the differences in cytoskeleton organization/dynamics and cell motility patterns in non-metastatic and metastatic cancer cells. In this review, we discuss four categories of microfabricated systems: (i) micropatterned substrates for studying of cell motility sub-processes (for example, MT targeting of FAs or cell polarization); (ii) systems for studying cell mechanical properties, (iii) systems for probing overall cell motility patterns within challenging geometric confines relevant to metastasis (for example, linear and ratchet geometries), and (iv) microfluidic devices that incorporate co-cultures of multiple cells types and chemical gradients to mimic in vivo intravasation/extravasation steps of metastasis. Together, these systems allow for creating controlled microenvironments that not only mimic complex soft tissues, but are also compatible with live cell high-resolution imaging and quantitative analysis of single cell behavior.
Collapse
Affiliation(s)
- Sabil Huda
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Didzis Pilans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Monika Makurath
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Thomas Hermans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Bartosz A Grzybowski
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| |
Collapse
|
6
|
Yang G, Liu H, Liu X, Zhang P, Huang C, Xu T, Jiang L, Wang S. Underwater-transparent nanodendritic coatings for directly monitoring cancer cells. Adv Healthc Mater 2014; 3:332-7. [PMID: 23950103 DOI: 10.1002/adhm.201300233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Indexed: 02/01/2023]
Abstract
Underwater-transparent nanodendritic coatings are easily fabricated by a three-step template process. After modification with anti-EpCAM, the coatings exhibit the capability for efficiently capturing rare number of cancer cells from whole blood. On the other hand, the unique underwater transparency enables the coatings to directly monitor captured cancer cells by optical imaging.
Collapse
Affiliation(s)
- Gao Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Hongliang Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Xueli Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Pengchao Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Chao Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Tailin Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Shutao Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
7
|
Hermans TM, Pilans D, Huda S, Fuller P, Kandere-Grzybowska K, Grzybowski BA. Motility efficiency and spatiotemporal synchronization in non-metastatic vs. metastatic breast cancer cells. Integr Biol (Camb) 2013; 5:1464-73. [PMID: 24136177 PMCID: PMC4122865 DOI: 10.1039/c3ib40144h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metastatic breast cancer cells move not only more rapidly and persistently than their non-metastatic variants but in doing so use the mechanical work of the cytoskeleton more efficiently. The efficiency of the cell motions is defined for entire cells (rather than parts of the cell membrane) and is related to the work expended in forming membrane protrusions and retractions. This work, in turn, is estimated by integrating the protruded and retracted areas along the entire cell perimeter and is standardized with respect to the net translocation of the cell. A combination of cross-correlation, Granger causality, and morphodynamic profiling analyses is then used to relate the efficiency to the cell membrane dynamics. In metastatic cells, the protrusions and retractions are highly "synchronized" both in space and in time and these cells move efficiently. In contrast, protrusions and retractions formed by non-metastatic cells are not "synchronized" corresponding to low motility efficiencies. Our work provides a link between the kinematics of cell motions and their energetics. It also suggests that spatiotemporal synchronization might be one of the hallmarks of invasiveness of cancerous cells.
Collapse
Affiliation(s)
- Thomas M Hermans
- Department of Chemical and Biological Engineering & Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Soh S, Banaszak M, Kandere-Grzybowska K, Grzybowski BA. Why Cells are Microscopic: A Transport-Time Perspective. J Phys Chem Lett 2013; 4:861-865. [PMID: 26291347 DOI: 10.1021/jz3019379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Physical-chemical reasoning is used to demonstrate that the sizes of both prokaryotic and eukaryotic cells are such that they minimize the times needed for the macromolecules to migrate throughout the cells and interact/react with one another. This conclusion does not depend on a particular form of the crowded-medium diffusion model, as thus points toward a potential optimization principle of cellular organisms. In eukaryotes, size optimality renders the diffusive transport as efficient as active transport - in this way, the cells can conserve energetic resources that would otherwise be expended in active transport.
Collapse
Affiliation(s)
| | - Michal Banaszak
- §Faculty of Physics, Adam Mickiewicz University, Ul. Umultowska 85 61-614 Poznan, Poland
| | | | | |
Collapse
|