1
|
Jia Y, Yang Y, Cai X, Zhang H. Recent Developments in Slippery Liquid-Infused Porous Surface Coatings for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:3655-3672. [PMID: 38743527 DOI: 10.1021/acsbiomaterials.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Slippery liquid-infused porous surface (SLIPS), inspired by the Nepenthes pitcher plant, exhibits excellent performances as it has a smooth surface and extremely low contact angle hysteresis. Biomimetic SLIPS attracts considerable attention from the researchers for different applications in self-cleaning, anti-icing, anticorrosion, antibacteria, antithrombotic, and other fields. Hence, SLIPS has shown promise for applications across both the biomedical and industrial fields. However, the manufacturing of SLIPS with strong bonding ability to different substrates and powerful liquid locking performance remains highly challenging. In this review, a comprehensive overview of research on SLIPS for medical applications is conducted, and the design parameters and common fabrication methods of such surfaces are summarized. The discussion extends to the mechanisms of interaction between microbes, cells, proteins, and the liquid layer, highlighting the typical antifouling applications of SLIPS. Furthermore, it identifies the potential of utilizing the controllable factors provided by SLIPS to develop innovative materials and devices aimed at enhancing human health.
Collapse
Affiliation(s)
- Yiran Jia
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yinuo Yang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xu Cai
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
| | - Hongyu Zhang
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
2
|
Zhang S, Wang Y, Meng K, Zheng X, Li Y, Chen H. Enhanced Anticoagulation of Hierarchy Liquid Infused Surfaces in Blood Flow. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55447-55455. [PMID: 37975805 DOI: 10.1021/acsami.3c13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Liquid infused surfaces (LIS) hold remarkable potential in anticoagulation. However, liquid loss of LIS in the bloodstream remains a challenge toward its clinical application. Here, micronano hierarchy structures are obtained on the titanium alloy substrate by regulating the microspheres' distribution. When the gap between the microspheres is smaller than the diameter of the red blood cell (RBC), the LIS is more stable under the blood wash and presents a better anticoagulation performance. The proper interval is found to prevent the RBCs from entering the gap and remove the liquid on the surface. The retained thickness of the liquid film is measured by the atomic force microscopy (AFM) technique. The LIS is applied on the front guide vane of an artificial heart pump and exhibits significant improvement on anticoagulation in the blood circulation in vitro for 25 h. The techniques and findings can be used to optimize the anticoagulation performance of LIS-related biomedical implant devices.
Collapse
Affiliation(s)
- Shuguang Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuhe Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Kuilin Meng
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaobing Zheng
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjian Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Haosheng Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Raj M K, Priyadarshani J, Karan P, Bandyopadhyay S, Bhattacharya S, Chakraborty S. Bio-inspired microfluidics: A review. BIOMICROFLUIDICS 2023; 17:051503. [PMID: 37781135 PMCID: PMC10539033 DOI: 10.1063/5.0161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of "on-chip" technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.
Collapse
Affiliation(s)
- Kiran Raj M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jyotsana Priyadarshani
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Celestijnenlaan 300, 3001 Louvain, Belgium
| | - Pratyaksh Karan
- Géosciences Rennes Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya Bhattacharya
- Achira Labs Private Limited, 66b, 13th Cross Rd., Dollar Layout, 3–Phase, JP Nagar, Bangalore, Karnataka 560078, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
4
|
Xu T, Ji H, Xu L, Cheng S, Liu X, Li Y, Zhong R, Zhao W, Kizhakkedathu JN, Zhao C. Self-anticoagulant sponge for whole blood auto-transfusion and its mechanism of coagulation factor inactivation. Nat Commun 2023; 14:4875. [PMID: 37573353 PMCID: PMC10423252 DOI: 10.1038/s41467-023-40646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Clinical use of intraoperative auto-transfusion requires the removal of platelets and plasma proteins due to pump-based suction and water-soluble anticoagulant administration, which causes dilutional coagulopathy. Herein, we develop a carboxylated and sulfonated heparin-mimetic polymer-modified sponge with spontaneous blood adsorption and instantaneous anticoagulation. We find that intrinsic coagulation factors, especially XI, are inactivated by adsorption to the sponge surface, while inactivation of thrombin in the sponge-treated plasma effectively inhibits the common coagulation pathway. We show whole blood auto-transfusion in trauma-induced hemorrhage, benefiting from the multiple inhibitory effects of the sponge on coagulation enzymes and calcium depletion. We demonstrate that the transfusion of collected blood favors faster recovery of hemostasis compared to traditional heparinized blood in a rabbit model. Our work not only develops a safe and convenient approach for whole blood auto-transfusion, but also provides the mechanism of action of self-anticoagulant heparin-mimetic polymer-modified surfaces.
Collapse
Affiliation(s)
- Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Department of Pathology and Lab Medicine & Centre for Blood Research & Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, V6T 1Z3, BC, Canada.
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, 610052, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Lab Medicine & Centre for Blood Research & Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, V6T 1Z3, BC, Canada
- School of Biomedical Engineering, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, V6T 1Z3, BC, Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
5
|
Junge F, Lee PW, Kumar Singh A, Wasternack J, Pachnicz MP, Haag R, Schalley CA. Interfaces with Fluorinated Amphiphiles: Superstructures and Microfluidics. Angew Chem Int Ed Engl 2023; 62:e202213866. [PMID: 36412551 DOI: 10.1002/anie.202213866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
This Minireview discusses recent developments in research on the interfacial phenomena of fluorinated amphiphiles, with a focus on applications that exploit the unique and manifold interfacial properties associated with these amphiphiles. Most notably, fluorinated amphiphiles form stable aggregates with often distinctly different morphologies compared to their nonfluorinated counterparts. Consequently, fluorinated surfactants have found wide use in high-performance applications such as microfluidic-assisted screening. Additionally, their fluorine-specific behaviour at solid/liquid interfaces, such as the formation of superhydrophobic coatings after deposition on surfaces, will be discussed. As fluorinated surfactants and perfluorinated materials in general pose potential environmental threats, recent developments in their remediation based on their adsorption onto fluorinated surfaces will be evaluated.
Collapse
Affiliation(s)
- Florian Junge
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Pin-Wei Lee
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Abhishek Kumar Singh
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Janos Wasternack
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Michał P Pachnicz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| |
Collapse
|
6
|
Wang X, Bai H, Li Z, Cao M. Fluid manipulation via multifunctional lubricant infused slippery surfaces: principle, design and applications. SOFT MATTER 2023; 19:588-608. [PMID: 36633123 DOI: 10.1039/d2sm01547a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water-repellent interfaces with high performance have emerged as an indispensable platform for developing advanced materials and devices. Inspired by the pitcher plant, slippery liquid-infused porous surfaces (SLIPSs) with reliable hydrophobicity have proven to possess great potential for various applications in droplet and bubble manipulation, droplet energy harvesting, condensation, fog collection, anti-icing, and anti-biofouling due to their excellent properties such as persistent surface hydrophobicity, molecular smoothness, and fluidity. This review aims to introduce the development history of interaction between SLIPSs and fluids as well as the design principles, preparation methods, and various applications of some of the more typical SLIPSs. The fluid manipulation strategies of the slippery surfaces have been proposed including the wettability pattern, oriented micro-structure, and geometric gradient. At last, the application prospects of SLIPSs in various fields and the challenges in the design and fabrication of slippery surfaces are analyzed. We envision that this review can provide an overview of the fluid manipulating processes on slippery surfaces for researchers in both academic and industrial fields.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhe Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, P. R. China.
| |
Collapse
|
7
|
Qi Z, Qin Y, Wang J, Zhao M, Yu Z, Xu Q, Nie H, Yan Q, Ge Y. The aqueous supramolecular chemistry of crown ethers. Front Chem 2023; 11:1119240. [PMID: 36742036 PMCID: PMC9895837 DOI: 10.3389/fchem.2023.1119240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
This mini-review summarizes the seminal exploration of aqueous supramolecular chemistry of crown ether macrocycles. In history, most research of crown ethers were focusing on their supramolecular chemistry in organic phase or in gas phase. In sharp contrast, the recent research evidently reveal that crown ethers are very suitable for studying abroad range of the properties and applications of water interactions, from: high water-solubility, control of Hofmeister series, "structural water", and supramolecular adhesives. Key studies revealing more details about the properties of water and aqueous solutions are highlighted.
Collapse
Affiliation(s)
- Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE), Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China,*Correspondence: Zhenhui Qi, ; Qiangqiang Xu, ; Yan Ge,
| | - Yao Qin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE), Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jijun Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE), Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Maojin Zhao
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE), Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Zhuo Yu
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE), Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Qiangqiang Xu
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE), Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China,*Correspondence: Zhenhui Qi, ; Qiangqiang Xu, ; Yan Ge,
| | - Hongqi Nie
- Science and Technology on Combustion, Internal Flow and Thermostructure Laboratory, Northwestern Polytechnical University, Xi’an, China
| | - Qilong Yan
- Science and Technology on Combustion, Internal Flow and Thermostructure Laboratory, Northwestern Polytechnical University, Xi’an, China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE), Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China,*Correspondence: Zhenhui Qi, ; Qiangqiang Xu, ; Yan Ge,
| |
Collapse
|
8
|
Wang J, Li P, Wang N, Wang J, Xing D. Antibacterial features of material surface: strong enough to serve as antibiotics? J Mater Chem B 2023; 11:280-302. [PMID: 36533438 DOI: 10.1039/d2tb02139k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria are small but need big efforts to control. The use of antibiotics not only produces superbugs that are increasingly difficult to inactivate, but also raises environmental concerns with the growing consumption. It is now believed that the antibacterial task can count on some physiochemical features of material surfaces, which can be anti-adhesive or bactericidal without releasing toxicants. It is necessary to evaluate to what extent can we rely on the surface design since the actual application scenarios will need the antibacterial performance to be sharp, robust, environmentally friendly, and long-lasting. Herein, we review the recent laboratory advances that have been classified based on the specific surface features, including hydrophobicity, charge potential, micromorphology, stiffness and viscosity, and photoactivity, and the antibacterial mechanisms of each feature are included to provide a basic rationale for future design. The significance of anti-biofilms is also introduced, given the big role of biofilms in bacteria-caused damage. A perspective on the potential wide application of antibacterial surface features as a substitute or supplement to antibiotics is then discussed. Surface design is no doubt a solution worthy to explore, and future success will be a result of further progress in multiple directions, including mechanism study and material preparation.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China. .,CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Ning Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Jing Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Pulugu P, Arya N, Kumar P, Srivastava A. Polystyrene-Based Slippery Surfaces Enable the Generation and Easy Retrieval of Tumor Spheroids. ACS APPLIED BIO MATERIALS 2022; 5:5582-5594. [PMID: 36445173 DOI: 10.1021/acsabm.2c00620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicellular tumor spheroids are the most well-characterized organotypic models for cancer research. Generally, scaffold-based and scaffold-free techniques are widely used for culturing spheroids. In scaffold-free techniques, the hanging drop (HD) method is a more versatile technique, but the retrieval of three-dimensional (3D) cell spheroids in the hanging drop method is usually labor-intensive. We developed oil-coated polystyrene nanofiber-based reusable slippery surfaces for the generation and easy retrieval of 3D spheroids. The developed slippery surfaces facilitated the rolling and gliding of the cell medium drops as well as holding the hydrophilic drops for more than 72 h by the virtue of surface tension as in the hanging drop method. In this study, polystyrene nanofibers were developed by the facile technique of electrospinning and the morphological evaluation was performed by scanning electron microscopy (SEM) and cryo-FESEM. We modeled the retrieval process of 3D spheroids with the ingredients of 3D spheroid generation, such as water, cell culture media, collagen, and hyaluronic acid solution, demonstrating the faster and easy retrieval of 3D spheroids within a few seconds. We created MCF-7 spheroids as a proof of concept with a developed slippery surface. 3D spheroids were characterized for their size, homogeneity, reactive oxygen species, proliferative marker (Ki-67), and hypoxic inducing factor 1ά (HIF-1ά). These 3D tumor spheroids were further tested for evaluating the cellular toxicity of the doxorubicin drug. Hence, the proposed slippery surfaces demonstrated the potential alternative of culturing 3D tumor spheroids with an easy retrieval process with intact 3D spheroids.
Collapse
Affiliation(s)
- Priyanka Pulugu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Neha Arya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Prasoon Kumar
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Akshay Srivastava
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
10
|
Alahi MEE, Liu Y, Khademi S, Nag A, Wang H, Wu T, Mukhopadhyay SC. Slippery Epidural ECoG Electrode for High-Performance Neural Recording and Interface. BIOSENSORS 2022; 12:1044. [PMID: 36421162 PMCID: PMC9688081 DOI: 10.3390/bios12111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Chronic implantation of an epidural Electrocorticography (ECoG) electrode produces thickening of the dura mater and proliferation of the fibrosis around the interface sites, which is a significant concern for chronic neural ECoG recording applications used to monitor various neurodegenerative diseases. This study describes a new approach to developing a slippery liquid-infused porous surface (SLIPS) on the flexible ECoG electrode for a chronic neural interface with the advantage of increased cell adhesion. In the demonstration, the electrode was fabricated on the polyimide (PI) substrate, and platinum (Pt)-gray was used for creating the porous nanocone structure for infusing the silicone oil. The combination of nanocone and the infused slippery oil layer created the SLIPS coating, which has a low impedance (4.68 kΩ) level favourable for neural recording applications. The electrochemical impedance spectroscopy and equivalent circuit modelling also showed the effect of the coating on the recording site. The cytotoxicity study demonstrated that the coating does not have any cytotoxic potentiality; hence, it is biocompatible for human implantation. The in vivo (acute recording) neural recording on the rat model also confirmed that the noise level could be reduced significantly (nearly 50%) and is helpful for chronic ECoG recording for more extended neural signal recording applications.
Collapse
Affiliation(s)
- Md Eshrat E. Alahi
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yonghong Liu
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Sara Khademi
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz P.O. Box 51335/1996, Iran
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany
| | - Hao Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianzhun Wu
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | | |
Collapse
|
11
|
Shome A, Das A, Borbora A, Dhar M, Manna U. Role of chemistry in bio-inspired liquid wettability. Chem Soc Rev 2022; 51:5452-5497. [PMID: 35726911 DOI: 10.1039/d2cs00255h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemistry and topography are the two distinct available tools for customizing different bio-inspired liquid wettability including superhydrophobicity, superamphiphobicity, underwater superoleophobicity, underwater superoleophilicity, and liquid infused slippery property. In nature, various living species possessing super and special liquid wettability inherently comprises of distinctly patterned surface topography decorated with low/high surface energy. Inspired from the topographically diverse natural species, the variation in surface topography has been the dominant approach for constructing bio-inspired antiwetting interfaces. However, recently, the modulation of chemistry has emerged as a facile route for the controlled tailoring of a wide range of bio-inspired liquid wettability. This review article aims to summarize the various reports published over the years that has elaborated the distinctive importance of both chemistry and topography in imparting and modulating various bio-inspired wettability. Moreover, this article outlines some obvious advantages of chemical modulation approach over topographical variation. For example, the strategic use of the chemical approach has allowed the facile, simultaneous, and independent tailoring of both liquid wettability and other relevant physical properties. We have also discussed the design of different antiwetting patterned and stimuli-responsive interfaces following the strategic and precise alteration of chemistry for various prospective applications.
Collapse
Affiliation(s)
- Arpita Shome
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India. .,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.,Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India
| |
Collapse
|
12
|
Valdez S, Robertson M, Qiang Z. Fluorescence Resonance Energy Transfer Measurements in Polymer Science: A Review. Macromol Rapid Commun 2022; 43:e2200421. [PMID: 35689335 DOI: 10.1002/marc.202200421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/06/2022] [Indexed: 12/27/2022]
Abstract
Fluorescence resonance energy transfer (FRET) is a non-invasive characterization method for studying molecular structures and dynamics, providing high spatial resolution at nanometer scale. Over the past decades, FRET-based measurements are developed and widely implemented in synthetic polymer systems for understanding and detecting a variety of nanoscale phenomena, enabling significant advances in polymer science. In this review, the basic principles of fluorescence and FRET are briefly discussed. Several representative research areas are highlighted, where FRET spectroscopy and imaging can be employed to reveal polymer morphology and kinetics. These examples include understanding polymer micelle formation and stability, detecting guest molecule release from polymer host, characterizing supramolecular assembly, imaging composite interfaces, and determining polymer chain conformations and their diffusion kinetics. Finally, a perspective on the opportunities of FRET-based measurements is provided for further allowing their greater contributions in this exciting area.
Collapse
Affiliation(s)
- Sara Valdez
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
13
|
Rather AM, Xu Y, Chang Y, Dupont RL, Borbora A, Kara UI, Fang JC, Mamtani R, Zhang M, Yao Y, Adera S, Bao X, Manna U, Wang X. Stimuli-Responsive Liquid-Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110085. [PMID: 35089623 DOI: 10.1002/adma.202110085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Biomimetic artificial surfaces that enable the manipulation of gas bubble mobility have been explored in a wide range of applications in nanomaterial synthesis, surface defouling, biomedical diagnostics, and therapeutics. Although many superhydrophobic surfaces and isotropic-lubricant-infused porous surfaces have been developed to manipulate gas bubbles, the simultaneous control over the adhesion and transport of gas bubbles underwater remains a challenge. Thermotropic liquid crystals (LCs), a class of structured fluids, provide an opportunity to tune the behavior of gas bubbles through LC mesophase transitions using a variety of external stimuli. Using this central idea, the design and synthesis of LC-infused porous surfaces (LCIPS) is reported and the effects of the LC mesophase on the transport and adhesion of gas bubbles on LCIPS immersed in water elucidated. LCIPS are demonstrated to be a promising class of surfaces with an unprecedented level of responsiveness and functionality, which enables the design of cyanobacteria-inspired object movement, smart catalysts, and bubble gating devices to sense and sort volatile organic compounds and control oxygen levels in biomimetic cell cultures.
Collapse
Affiliation(s)
- Adil Majeed Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Lewis Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Ufuoma Israel Kara
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Rajdeep Mamtani
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
14
|
O'Donnell A, Salimi S, Hart L, Babra T, Greenland B, Hayes W. Applications of supramolecular polymer networks. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Lee J, Lee MH, Choi CH. Design of Robust Lubricant-Infused Surfaces for Anti-Corrosion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2411-2423. [PMID: 34978419 DOI: 10.1021/acsami.1c22587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A lubricant-infused surface such as an oil-impregnated porous surface has great potentials for various applications due to its omniphobicity. However, the drainage and depletion of the lubricant liquid oil remain practical concerns for real applications. Here, we investigate the effect of a specially designed bottle-shaped nanopore of anodic aluminum oxide, which has a smaller pore diameter in the upper region than the lower one, on the oil retentivity and anti-corrosion efficacy. The effects of the viscosity and volatility of the lubricant oil were further investigated for synergy. Results show that the bottle-shaped pore helps to stably immobilize the lubricant oil in the nanostructure and significantly enhances the robustness and anti-corrosion efficacy, compared to the conventional cylindrical pores with straight walls as well as the hybrid one featured with additional pillar structures. Moreover, the enlarged oil capacity in the bottle-shaped pore allows the oil to cover the underlying metallic surface effectively at cracks, enhancing the damage tolerance with a unique self-healing capability. The oil with a higher viscosity further enhances the benefits so that the bottle-shaped pore impregnated with a higher-viscosity oil shows greater anti-corrosion efficacy. It suggests that the combination of the geometric features of nanopores and the fluid properties of lubricant liquid can lead to a maximized longevity and anti-corrosion efficacy of the liquid-infused surfaces for real applications.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, New Jersey 07030, United States
- Department of Metallurgical Engineering, Pukyong National University, Busan 48547, Republic of Korea
| | - Myeong-Hoon Lee
- Department of Marine Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, New Jersey 07030, United States
| |
Collapse
|
16
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
17
|
Lee PW, Kaynak T, Al-Sabbagh D, Emmerling F, Schalley CA. Effect of Perfluorinated Side-Chain Length on the Morphology, Hydrophobicity, and Stability of Xerogel Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14390-14397. [PMID: 34851632 DOI: 10.1021/acs.langmuir.1c02341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Superhydrophobic surfaces can be quickly formed with supramolecular materials. Incorporating low-molecular-weight gelators (LMWGs) with perfluorinated chains generates xerogel coatings with low surface energies and high roughness. Here, we examine and compare the properties of the xerogel coatings formed with eight different LMWGs. These LMWGs all have a trans-1,2-diamidocyclohexane core and two perfluorinated ponytails, whose lengths vary from three to ten carbon atoms (CF3 to CF10). Investigation of the xerogels aims to provide in-depth information on the chain length effect. LMWGs with a higher degree of fluorination (CF7 to CF10) form superhydrophobic xerogel coatings with very low surface energies. Scanning electron microscopy images of the coatings show that the aggregates of CF5 and CF7 are fibrous, while the others are crystal-like. Aggregates of CF10 are particularly small and further assemble into a porous structure on the micrometer scale. To test their stabilities, the xerogel coatings were flushed multiple times with a standardized water flush test. The removal of material from the surface in these flushes was monitored by a combination of the water contact angle, contact angle hysteresis, and coating thickness measurements. A new method based on image processing techniques was developed to reliably determine the change of the coating thickness. The CF7, CF9, and CF10 surfaces show consistent hydrophobicity and coating durability after repetitive flushing tests. The length of the perfluorinated side chains thus has a significant effect on the morphology of the deposited xerogel coatings, their roughness, and, in consequence, their hydrophobicity and mechanical durability.
Collapse
Affiliation(s)
- Pin-Wei Lee
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Tuğrul Kaynak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Dominik Al-Sabbagh
- Abteilung Materialchemie, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Abteilung Materialchemie, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| |
Collapse
|
18
|
|
19
|
Lv P, Shen X, Cui Z, Li B, Xu Q, Yu Z, Lu W, Shao H, Ge Y, Qi Z. Mechanically strong and stiff supramolecular polymers enabled by fiber reinforced
long‐chain
alkane matrix. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ping Lv
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| | - Xin Shen
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| | - Zhiliyu Cui
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| | - Bo Li
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| | - Qiangqiang Xu
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| | - Zhuo Yu
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| | - Weijie Lu
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| | - Haonan Shao
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| | - Yan Ge
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| | - Zhenhui Qi
- Sino‐German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE) School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi Province China
| |
Collapse
|
20
|
Tailoring silicon for dew water harvesting panels. iScience 2021; 24:102814. [PMID: 34355147 PMCID: PMC8319802 DOI: 10.1016/j.isci.2021.102814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Dew water, mostly ignored until now, can provide clean freshwater resources, just by extracting the atmospheric vapor available in surrounding air. Inspired by silicon-based solar panels, the vapor can be harvested by a concept of water condensing panels. Efficient water harvesting requires not only a considerable yield but also a timely water removal from the surface since the very beginning of condensation to avoid the huge evaporation losses. This translates into strict surface properties, which are difficult to simultaneously realize. Herein, we study various functionalized silicon surfaces, including the so-called Black Silicon, which supports two droplet motion modes-out-of-plane jumping and in-plane sweeping, due to its unique surface morphology, synergistically leading to a pioneering combination of above two required characteristics. According to silicon material's scalability, the proposed silicon-based water panels would benefit from existing infrastructures toward dual functions of energy harvesting in daytime and water harvesting in nighttime.
Collapse
|
21
|
Ghiassinejad S, Mortensen K, Rostamitabar M, Malineni J, Fustin CA, van Ruymbeke E. Dynamics and Structure of Metallo-supramolecular Polymers Based on Short Telechelic Precursors. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sina Ghiassinejad
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Matin Rostamitabar
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jagadeesh Malineni
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Charles-André Fustin
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Evelyne van Ruymbeke
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
22
|
Liu L, Shi H, Yu H, Yan S, Luan S. The recent advances in surface antibacterial strategies for biomedical catheters. Biomater Sci 2021; 8:4095-4108. [PMID: 32555809 DOI: 10.1039/d0bm00659a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As one of the most common hospital-acquired infections, catheter-related infections (CRIs) which are caused by microbial colonization lead to increasing morbidity and mortality of patients and life threat for medical staffs. In this case, a variety of efforts have been made to design functional materials to limit bacterial colonization and biofilm formation. In this review, we focus on the recent advances in surface modification strategies of biomedical catheters used to prevent CRIs. The tests for the evaluation of the performances of modified catheters are listed. Future prospects of surface antibacterial strategies for biomedical catheters are also outlined.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai 264210, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
23
|
Zhang W, Wang D, Sun Z, Song J, Deng X. Robust superhydrophobicity: mechanisms and strategies. Chem Soc Rev 2021; 50:4031-4061. [PMID: 33554976 DOI: 10.1039/d0cs00751j] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Superhydrophobic surfaces hold great prospects for extremely diverse applications owing to their water repellence property. The essential feature of superhydrophobicity is micro-/nano-scopic roughness to reserve a large portion of air under a liquid drop. However, the vulnerability of the delicate surface textures significantly impedes the practical applications of superhydrophobic surfaces. Robust superhydrophobicity is a must to meet the rigorous industrial requirements and standards for commercial products. In recent years, major advancements have been made in elucidating the mechanisms of wetting transitions, design strategies and fabrication techniques of superhydrophobicity. This review will first introduce the mechanisms of wetting transitions, including the thermodynamic stability of the Cassie state and its breakdown conditions. Then we highlight the development, current status and future prospects of robust superhydrophobicity, including characterization, design strategies and fabrication techniques. In particular, design strategies, which are classified into passive resistance and active regeneration for the first time, are proposed and discussed extensively.
Collapse
Affiliation(s)
- Wenluan Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| | | | | | | | | |
Collapse
|
24
|
Baumli P, D'Acunzi M, Hegner KI, Naga A, Wong WSY, Butt HJ, Vollmer D. The challenge of lubricant-replenishment on lubricant-impregnated surfaces. Adv Colloid Interface Sci 2021; 287:102329. [PMID: 33302056 DOI: 10.1016/j.cis.2020.102329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
Lubricant-impregnated surfaces are two-component surface coatings. One component, a fluid called the lubricant, is stabilized at a surface by the second component, the scaffold. The scaffold can either be a rough solid or a polymeric network. Drops immiscible with the lubricant, hardly pin on these surfaces. Lubricant-impregnated surfaces have been proposed as candidates for various applications, such as self-cleaning, anti-fouling, and anti-icing. The proposed applications rely on the presence of enough lubricant within the scaffold. Therefore, the quality and functionality of a surface coating are, to a large degree, given by the extent to which it prevents lubricant-depletion. This review summarizes the current findings on lubricant-depletion, lubricant-replenishment, and the resulting understanding of both processes. A multitude of different mechanisms can cause the depletion of lubricant. Lubricant can be taken along by single drops or be sheared off by liquid flowing across. Nano-interstices and scaffolds showing good chemical compatibility with the lubricant can greatly delay lubricant depletion. Often, depletion of lubricant cannot be avoided under dynamic conditions, which warrants lubricant-replenishment strategies. The strategies to replenish lubricant are presented and range from spraying or stimuli-responsive release to built-in reservoirs.
Collapse
Affiliation(s)
- Philipp Baumli
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maria D'Acunzi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina I Hegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Abhinav Naga
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - William S Y Wong
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Doris Vollmer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
25
|
Kim S, Oh JH, Park CH. Development of Energy-Efficient Superhydrophobic Polypropylene Fabric by Oxygen Plasma Etching and Thermal Aging. Polymers (Basel) 2020; 12:E2756. [PMID: 33238417 PMCID: PMC7700148 DOI: 10.3390/polym12112756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
This study developed a human-friendly energy-efficient superhydrophobic polypropylene (PP) fabric by oxygen plasma etching and short-term thermal aging without additional chemicals. The effect of the microroughness on the superhydrophobicity was examined by adjusting the weave density. After the PP fabric was treated with oxygen plasma etching for 15 min and thermal aging at 120 °C for 1 h (E15H120 1 h), the static contact and shedding angles were 162.7° ± 2.4° and 5.2° ± 0.7° and the energy consumption was 136.4 ± 7.0 Wh. Oxygen plasma etching for 15 min and thermal aging at 120 °C for 24 h (E15H120 24 h) resulted in a static contact and shedding angle of 180.0° ± 0.0° and 1.8° ± 0.2° and energy consumption of 3628.5 ± 82.6 Wh. E15H120 1 h showed a lower shedding angle but had a higher sliding angle of 90°. E15H120 24 h exhibited shedding and sliding angles of less than 10°. Regardless of the thermal aging time, superhydrophobicity was higher in high-density fabrics than in low-density fabrics. The superhydrophobic PP fabric had a similar water vapor transmission rate and air permeability with the untreated PP fabric, and it showed a self-heading property after washing followed by tumble drying and hot pressing.
Collapse
Affiliation(s)
- Shinyoung Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (S.K.); (J.-H.O.)
| | - Ji-Hyun Oh
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (S.K.); (J.-H.O.)
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chung Hee Park
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (S.K.); (J.-H.O.)
| |
Collapse
|
26
|
Xie M, Wang Y, Zhao W. Design novel three-dimensional network nanostructure for lubricant infused on titanium alloys towards long-term anti-fouling. Colloids Surf B Biointerfaces 2020; 197:111375. [PMID: 33011501 DOI: 10.1016/j.colsurfb.2020.111375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 01/06/2023]
Abstract
Titanium alloys, recognized as a marine material with great potential, are currently facing serious biofouling problems, which greatly limits its application range. To improve the antifouling performance of titanium alloys, three unique surface of three-dimensional network, grass-like and linear nanostructures were obtained on titanium alloys via hydrothermal treatment in this work. Further, slippery liquid-infused porous surfaces (SLIPSs) were fabricated on titanium alloys via infusing PFPE lubricant into these nanostructures. Water contact angles and sliding angles of SLIPSs were measured to evaluate the effect of nanostructures on the stability of PFPE lubricant layer. Anti-fouling capability of SLIPSs were investigated by quantifying the cells of chlorella and phaeodactylum tricornutum (P. tricornutum)adhered to titanium alloys. The results shows that all the SLIPSs exhibited remarkable inhibition capacity for the settlement of chlorella and P. tricornutum. Among them, the SLIPS with three-dimensional network nanostructure displayed the longest-term anti-fouling performance, and its reduction rate of P. tricornutum and chlorella reaching 77.2 % and 84.5 % after being cultivated for 21 days, respectively, indicating that there existed a positive correlation between the stability of lubricant layer in the artificial seawater and the antifouling effect.
Collapse
Affiliation(s)
- Mingyu Xie
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yanjun Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Wenjie Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
27
|
Sadullah MS, Panter JR, Kusumaatmaja H. Factors controlling the pinning force of liquid droplets on liquid infused surfaces. SOFT MATTER 2020; 16:8114-8121. [PMID: 32734997 DOI: 10.1039/d0sm00766h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid infused surfaces with partially wetting lubricants have recently been exploited for numerous intriguing applications, such as for droplet manipulation, droplet collection and spontaneous motion. When partially wetting lubricants are used, the pinning force is a key factor that can strongly affect droplet mobility. Here, we derive an analytical prediction for contact angle hysteresis in the limit where the meniscus size is much smaller than the droplet, and numerically study how it is controlled by the solid fraction, the lubricant wetting angles, and the various fluid surface tensions. We further relate the contact angle hysteresis and the pinning force experienced by a droplet on a liquid infused surface, and our predictions for the critical sliding angles are consistent with existing experimental observations. Finally, we discuss why a droplet on a liquid infused surface with partially wetting lubricants typically experiences stronger pinning compared to a droplet on a classical superhydrophobic surface.
Collapse
Affiliation(s)
| | - Jack R Panter
- Department of Physics, Durham University, Durham, DH1 3LE, UK.
| | | |
Collapse
|
28
|
Bandyopadhyay S, Khare S, Bhandaru N, Mukherjee R, Chakraborty S. High Temperature Durability of Oleoplaned Slippery Copper Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4135-4143. [PMID: 32216354 DOI: 10.1021/acs.langmuir.9b03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Slippery surfaces, inspired by the functionality of trapping interfaces of specialized leaves of pitcher plants, have been widely used in self-cleaning, anti-icing, antifrost, and self-healing surfaces. They can be fabricated on metallic surfaces as well, presenting a more durable and low-maintenance anticorrosive surface on metals. However, the lack of studies on the durability of these slippery surfaces at high temperature prohibits their practical deployment in real industrial applications where thermal effects are critical and high temperature conditions are inevitable. We present here a unique fabrication technique of a copper-based oleoplaned slippery surface that has been tested for high temperature durability under repeated thermal cycles. Their slipperiness at high temperatures has also been tested in the absence of the Leidenfrost effect. Our findings suggest that these new substrates can be used for fabricating low maintenance surfaces for high temperature applications or even where the surface undergoes repeated thermal cycles like heat exchanger pipes, utensils, engine casings, and outdoor metallic structures.
Collapse
Affiliation(s)
- Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Shreshth Khare
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nandini Bhandaru
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, 500 078 Telangana, India
| | - Rabibrata Mukherjee
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Chakraborty
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
29
|
Chen K, Zhou J, Che X, Zhao R, Gao Q. One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings. J Colloid Interface Sci 2020; 566:401-410. [PMID: 32018180 DOI: 10.1016/j.jcis.2020.01.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022]
Abstract
Exploiting water-based fabric coatings outfitted with multiple protections (e.g., waterproofness, ultraviolet (UV) resistance and thermal insulation) are urgently demanded. Nevertheless, achieving the multifunction and durability poses the major challenge. In the present study, novel multifunctional cellulose/silica hybrid microcapsules were developed by one-step emulsion-solvent diffusion; these microcapsules were well dispersed into waterborne silicone resins to form waterborne multiple protective fabric coatings. Since the encapsulated phase change materials were in the core of capsules, and the hydrophobic coupling reagent and UV absorber were grafted onto the silicas in the shell of capsules, these fabric coatings exhibited high superhydrophobicity, UV protection and thermal insulation. Moreover, because hydrophobic coupling reagent and UV absorber in the shell-cellulose of capsules exhibited easy mobility, the fabric coatings displayed self-repairability of superhydrophobicity and UV protection even after being damaged chemically or mechanically. The fabric coating presented in this study could have a range of applications, covering special protective fabric, high-altitude garments as well as self-cleaning materials.
Collapse
Affiliation(s)
- Kunlin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Jianlin Zhou
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, Wuxi 214122, China
| | - Xiaogang Che
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, Wuxi 214122, China
| | - Ruoyi Zhao
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, Wuxi 214122, China
| | - Qiang Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
30
|
Zheng Z, van der Werf A, Deliaval M, Selander N. Synthesis of Fluorinated Amide Derivatives via a Radical N-Perfluoroalkylation-Defluorination Pathway. Org Lett 2020; 22:2791-2796. [PMID: 32208612 PMCID: PMC7311088 DOI: 10.1021/acs.orglett.0c00768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
A one-pot approach
to fluorinated hydroxamic acid, amide, and thioamide
derivatives is reported. The reaction proceeds via an N-perfluoroalkylation
of nitrosoarenes with perfluoroalkanesulfinates, resulting in labile
N-perfluoroalkylated hydroxylamines. By the addition of suitable additives,
a controllable oxy/thiodefluorination of the fluorinated hydroxylamine
intermediates was achieved. The method highlights N-perfluoroalkylated
amines as versatile intermediates for further synthesis.
Collapse
Affiliation(s)
- Zhiyao Zheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Angela van der Werf
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marie Deliaval
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Nicklas Selander
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Maji K, Das A, Hirtz M, Manna U. How Does Chemistry Influence Liquid Wettability on Liquid-Infused Porous Surface? ACS APPLIED MATERIALS & INTERFACES 2020; 12:14531-14541. [PMID: 32103660 DOI: 10.1021/acsami.9b22469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Design of Nepenthes pitcher-inspired slippery liquid-infused porous surface (SLIPS) appeared as an important avenue for various potential and practically relevant applications. In general, hydrophobic base layers were infused with selected liquid lubricants for developing chemically inert SLIPS. Here, in this current study, an inherently hydrophilic (soaked beaded water droplet with ∼20° within a couple of minutes), porous and thick (above 200 μm) polymeric coating, loaded with readily chemically reactive acrylate moieties yielded a chemically reactive SLIPS, where residual acrylate groups in the synthesized hydrophilic and porous interface rendered stability to the infused lubricants. The chemically reactive SLIPS is capable of reacting with the solution of primary amine-containing nucleophiles in organic solvent through 1,4-conjugate addition reaction, both in the presence (referred as "in situ" modification) and absence (denoted as pre-modification) of lubricated phase in the porous polymeric coating. Such amine reactive SLIPS was further extended to (1) examining the impact of different chemical modifications on the performance of SLIPS and (2) developing a spatially selective and "in situ" postmodification with primary amine-containing nucleophiles through 1,4-conjugate addition reaction. Moreover, the chemically reactive SLIPS was capable of sustaining various physical abrasions and prolonged (minimum 10 days) exposure to complex and harsh aqueous phases, where infused lubricants protect the residual acrylate groups from harsh aqueous exposures. Such, principle will be certainly useful for spatially selective covalent immobilization of water-insoluble functional molecules/polymers directly from organic solvents, which would be of potential interest for various applied and fundamental contexts.
Collapse
Affiliation(s)
- Kousik Maji
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Uttam Manna
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
32
|
Ávila-Cossío ME, Rivero IA, García-González V, Alatorre-Meda M, Rodríguez-Velázquez E, Calva-Yáñez JC, Espinoza KA, Pulido-Capiz Á. Preparation of Polymeric Films of PVDMA-PEI Functionalized with Fatty Acids for Studying the Adherence and Proliferation of Langerhans β-Cells. ACS OMEGA 2020; 5:5249-5257. [PMID: 32201814 PMCID: PMC7081399 DOI: 10.1021/acsomega.9b04313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
This study reports the synthesis of thin polymeric films by the layer-by-layer deposition and covalent cross-linking of polyvinyl dimethylazlactone and polyethylene imine, which were functionalized with lauric (12-C), myristic (14-C), and palmitic (16-C) saturated fatty acids, whose high levels in the bloodstream are correlated with insulin resistance and the potential development of type 2 diabetes mellitus. Aiming to assess the effect of the fatty acids on the adhesion and proliferation of Langerhans β-cells, all prepared films (35 and 35.5 bilayers with and without functionalization with the fatty acids) were characterized in terms of their physical, chemical, and biological properties by a battery of experimental techniques including 1H and 13C NMR, mass spectrometry, attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, cell staining, and confocal laser scanning microscopy among others. In general, the developed films were found to be nanometric, transparent, resistant against manipulation, chemically reactive, and highly cytocompatible. On the other hand, in what the effect of the fatty acids is concerned, palmitic acid was found to impair the proliferation of the cultured β-cells, contrary to its homologues which did not alter this biological process. In our opinion, the multidisciplinary study presented here might be of interest for the research community working on the development of cytocompatible 2D model substrates for the safe and reproducible characterization of cell responses.
Collapse
Affiliation(s)
- Martha E Ávila-Cossío
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Ignacio A Rivero
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21100 Mexicali, Baja California, Mexico
| | - Manuel Alatorre-Meda
- Cátedras CONACyT-Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, Campus Tijuana, Calzada Universidad 14418, 22390 Tijuana, Baja California, Mexico
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Julio C Calva-Yáñez
- Cátedras CONACyT-Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Karla A Espinoza
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Ángel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21100 Mexicali, Baja California, Mexico
| |
Collapse
|
33
|
Liu J, Ye L, Sun Y, Hu M, Chen F, Wegner S, Mailänder V, Steffen W, Kappl M, Butt HJ. Elastic Superhydrophobic and Photocatalytic Active Films Used as Blood Repellent Dressing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908008. [PMID: 32009264 DOI: 10.1002/adma.201908008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Durable and biocompatible superhydrophobic surfaces are of significant potential use in biomedical applications. Here, a nonfluorinated, elastic, superhydrophobic film that can be used for medical wound dressings to enhance their hemostasis function is introduced. The film is formed by titanium dioxide nanoparticles, which are chemically crosslinked in a poly(dimethylsiloxane) (PDMS) matrix. The PDMS crosslinks result in large strain elasticity of the film, so that it conforms to deformations of the substrate. The photocatalytic activity of the titanium dioxide provides surfaces with both self-cleaning and antibacterial properties. Facile coating of conventional wound dressings is demonstrated with this composite film and then resulting improvement for hemostasis. High gas permeability and water repellency of the film will provide additional benefit for medical applications.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lijun Ye
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuling Sun
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Minghan Hu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fei Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Seraphine Wegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Werner Steffen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
34
|
Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 2020; 49:3688-3715. [DOI: 10.1039/d0cs00036a] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review the rational choice, the analysis, the depletion and the properties imparted by the liquid layer in liquid-infused surfaces – a new class of low-adhesion surface.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- The University of Sydney Nano Institute
- The University of Sydney
- Australia
- Central Clinical School
- Faculty of Medicine and Health
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| |
Collapse
|
35
|
Liu M, Wang Z, Liu P, Wang Z, Yao H, Yao X. Supramolecular silicone coating capable of strong substrate bonding, readily damage healing, and easy oil sliding. SCIENCE ADVANCES 2019; 5:eaaw5643. [PMID: 31700998 PMCID: PMC6824860 DOI: 10.1126/sciadv.aaw5643] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/16/2019] [Indexed: 05/02/2023]
Abstract
Polymer coatings with a combined competence of strong bonding to diverse substrates, broad liquid repellency, and readily damage healing are in substantial demand in a range of applications. In this work, we develop damage-healable, oil-repellent supramolecular silicone (DOSS) coatings to harvest abovementioned properties by molecular engineering siloxane oligomers that can self-assemble onto coated substrates via multivalent hydrogen bonding. In addition to the readily damage-healing properties provided by reversible association/dissociation of hydrogen bonding motifs, the unique molecular configuration of the siloxane oligomers on coated substrates enables both robust repellency to organic liquids and strong bonding to various substrates including metals, plastics, and even Teflon. We envision that not only DOSS coatings can be applied in a range of energy, environmental, and biomedical applications that require long-term services in harsh environmental conditions but also the design strategy of the oligomers can be adopted in the development of supramolecular materials with desirable multifunctionality.
Collapse
Affiliation(s)
- Meijin Liu
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Zhaoyue Wang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Peng Liu
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Haimin Yao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518075, P. R. China
- Corresponding author.
| |
Collapse
|
36
|
Massuri‐Rodionov K, Shagan A, Leichtmann‐Bardoogo Y, Mizrahi B. Light‐triggered stabilization of microgel aggregates. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Keren Massuri‐Rodionov
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Alona Shagan
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Yael Leichtmann‐Bardoogo
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
37
|
Lee J, Wooh S, Choi CH. Fluorocarbon lubricant impregnated nanoporous oxide for omnicorrosion-resistant stainless steel. J Colloid Interface Sci 2019; 558:301-309. [PMID: 31604158 DOI: 10.1016/j.jcis.2019.09.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/17/2023]
Abstract
Corrosion protection coatings have been required for long-term uses of metallic materials applied in various environments incorporating liquid and/or vapor phase corrosion reactants. In this study, we introduce a fluorocarbon lubricant impregnated nanoporous oxide (FLINO) coating on stainless steel for realizing effective resistances against corrosive media in both liquid and vapor phases. The FLINO layer on stainless steel significantly enhances corrosion resistances with superior durability and self-healing capability. The combination of nanoporous structure and fluorocarbon lubricant layer provides an outstanding atmospheric corrosion resistance, which has been a serious issue to be overcome on corrosion-resistant coatings. Therefore, the FLINO coating exhibiting stable and remarkable corrosion resistance against both liquid and vaporized corrosive media, called omnicorrosion-resistance, gives a new route for the versatile protection of metallic materials in various environments encompassing both underwater and atmospheric applications.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, NJ 07030, USA; Department of Metallurgical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sanghyuk Wooh
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, NJ 07030, USA.
| |
Collapse
|
38
|
Geraldi NR, Guan JH, Dodd LE, Maiello P, Xu BB, Wood D, Newton MI, Wells GG, McHale G. Double-sided slippery liquid-infused porous materials using conformable mesh. Sci Rep 2019; 9:13280. [PMID: 31527694 PMCID: PMC6746700 DOI: 10.1038/s41598-019-49887-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/23/2019] [Indexed: 12/04/2022] Open
Abstract
Often wetting is considered from the perspective of a single surface of a rigid substrate and its topographical properties such as roughness or texture. However, many substrates, such as membranes and meshes, have two useful surfaces. Such flexible substrates also offer the potential to be formed into structures with either a double-sided surface (e.g. by joining the ends of a mesh as a tape) or a single-sided surface (e.g. by ends with a half-twist). When a substrate possesses holes, it is also possible to consider how the spaces in the substrate may be connected or disconnected. This combination of flexibility, holes and connectedness can therefore be used to introduce topological concepts, which are distinct from simple topography. Here, we present a method to create a Slippery Liquid-Infused Porous Surface (SLIPS) coating on flexible conformable doubled-sided meshes and for coating complex geometries. By considering the flexibility and connectedness of a mesh with the surface properties of SLIPS, we show it is possible to create double-sided SLIPS materials with high droplet mobility and droplet control on both faces. We also exemplify the importance of flexibility using a mesh-based SLIPS pipe capable of withstanding laminar and turbulent flows for 180 and 90 minutes, respectively. Finally, we discuss how ideas of topology introduced by the SLIPS mesh might be extended to create completely new types of SLIPS systems, such as Mobius strips and auxetic metamaterials.
Collapse
Affiliation(s)
- Nicasio R Geraldi
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Jian H Guan
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Linzi E Dodd
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Pietro Maiello
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Ben B Xu
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - David Wood
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Michael I Newton
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Gary G Wells
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Glen McHale
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
39
|
Tian X, Mendivelso-Perez DL, Banerjee S, Smith EA, Cademartiri L. Self-Limiting Processes in the Flame-Based Fabrication of Superhydrophobic Surfaces from Silicones. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29231-29241. [PMID: 31330098 DOI: 10.1021/acsami.9b08199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Outdoor applications of superhydrophobic coatings require synthetic approaches that allow their simple, fast, scalable, and environmentally benign deployment on large, heterogeneous surfaces and their rapid regeneration in situ. We recently showed that the thermal degradation of silicones by flames fulfills these characteristics by spontaneously structuring silicone surfaces into a hierarchical, textured structure that provides wear-resistant, healable superhydrophobicity. This paper elucidates how flame processing-a simple, rapid, and out-of-equilibrium process-can be so counterintuitively reliable and robust in producing such a complex structure. A comprehensive study of the effect of the processing speed and flame temperature on the chemical and physical properties of the coatings yielded three surprising results. (i) Three thermal degradation mechanisms drive the surface texturing: depolymerization (in the O2-rich conditions of the surface), decomposition (in the O2-poor conditions found a few micrometers from the surface), and pyrolysis at excessive temperatures. (ii) The operational condition is delimited by the onset of the depolymerization at low temperatures and the onset of pyrolysis at high temperatures. (iii) The remarkably wide operational conditions and robustness of this approach result from self-limiting growth and oxidation of the silicone particles that are responsible for the surface texturing and in the extent of their deposition. As a result of this analysis we show that superhydrophobic surfaces can be produced or regenerated with this approach at a speed of 15 cm s-1 (i.e., the length of an airport runway in ∼4.5 h).
Collapse
|
40
|
Jiayu Li, Cao Y, Liu J, Liu H, Jiang Y, Zhang H. Construction and Properties Research for Porous Surface of Amphiphilic Styrene Copolymer. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419040092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Geng H, Cho SK. Antifouling digital microfluidics using lubricant infused porous film. LAB ON A CHIP 2019; 19:2275-2283. [PMID: 31184676 DOI: 10.1039/c9lc00289h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electrowetting-driven digital (droplet-based) microfluidics has a tremendous impact on lab-on-a-chip applications. However, the biofouling problem impedes the real applications of such digital microfluidics. Here we report antifouling digital microfluidics by introducing lubricant infused porous film to electrowetting (more exactly, electrowetting on dielectric or EWOD). Such film minimizes direct contact between droplets and the solid surface but provides liquid-liquid contact between droplets and the lubricant liquid, which thus prevents unspecific adsorption of biomolecules to the solid surface. We demonstrate the compatibility of the lubricant infused film with EWOD to transport bio droplets. This configuration shows robust and high performance even for long cyclic operations without fouling in a wide range of concentrations of protein solutions. In addition, a variety of conductive droplets, including deionized (DI) water, saline, protein solution, DNA solution, sheep blood, milk, ionic liquid and honey, are examined, similarly showing high performance in cyclic transportations. In addition, using the same electrode patterns used in EWOD, transportations of dielectric (non-conductive) droplets including light crude oil, propylene carbonate and alcohol are also achieved. Such capability of droplet handling without fouling will certainly benefit the practical applications of digital microfluidics in droplet handling, sampling, reaction, diagnosis in clinic medicine, biotechnology and chemistry fields.
Collapse
Affiliation(s)
- Hongyao Geng
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
42
|
Ge Y, Shen X, Cao H, Jin L, Shang J, Wang Y, Pan T, Yang Y, Qi Z. Biological Macrocycle: Supramolecular Hydrophobic Guest Transport System Based on Nanodiscs with Photodynamic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7824-7829. [PMID: 31141380 DOI: 10.1021/acs.langmuir.9b00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A biogenic macrocycle-based guest loading system has been developed by the self-assembly of membrane scaffold protein and phospholipids. The resulting 10 nm level transport system can increase the solubility of hydrophobic photodynamic agent hypocrellin B in aqueous medium and exhibited a cellular internalization capacity with substantial photodynamic activity.
Collapse
Affiliation(s)
- Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Xin Shen
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Hongqian Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , China
- Department of Public Health , Shandong University , Jinan , Shandong 250012 , China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
- Institute of Biomedical Materials & Engineering (IBME) , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| |
Collapse
|
43
|
Zheng H, Pan M, Wen J, Yuan J, Zhu L, Yu H. Robust, Transparent, and Superhydrophobic Coating Fabricated with Waterborne Polyurethane and Inorganic Nanoparticle Composites. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00052] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Zheng
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Jie Wen
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Haifeng Yu
- Department of Material Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
44
|
Han K, Heng L, Zhang Y, Liu Y, Jiang L. Slippery Surface Based on Photoelectric Responsive Nanoporous Composites with Optimal Wettability Region for Droplets' Multifunctional Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801231. [PMID: 30643721 PMCID: PMC6325596 DOI: 10.1002/advs.201801231] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/27/2018] [Indexed: 05/18/2023]
Abstract
The development of responsive slippery surfaces is important because of the high demand for such materials in the fields of liquid manipulation on biochips, microfluidics, microreactions, and liquid-harvesting devices. Although great progress has been achieved, the effect of substrate wettability on slippery surfaces stability is overlooked by scientists. In addition, current responsive slippery surfaces generally function utilizing single external stimuli just for imprecisely controlling liquid motion, while advanced intelligences are always expected to be integrated into one smart interface material for widespread multifunctional applications. Therefore, designing slippery surfaces that collaboratively respond to complex external stimuli and possess sophisticated composite function for expanding applications from controlling droplets motion to patterned writing is urgently needed but remains a challenge. Here, a photoelectric cooperative-responsive slippery surface based on ZnO nanoporous composites is demonstrated. First, the effect of composite surface wettability on slippery surface stability is systematically researched and the optimum wettability region for fabricating stable slippery surfaces is determined. Furthermore, controllable droplet motion and patterned writing are realized on the same slippery surfaces under photoelectric cooperative stimuli, and the related response mechanism is also deeply studied. This kind of material has potential applications in biochips, microfluidics, in situ patterning, and water-harvesting systems.
Collapse
Affiliation(s)
- Keyu Han
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationBeijing Key Laboratory of Bio‐inspired Energy Materials and DevicesSchool of ChemistryBeihang UniversityBeijing100191China
| | - Liping Heng
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationBeijing Key Laboratory of Bio‐inspired Energy Materials and DevicesSchool of ChemistryBeihang UniversityBeijing100191China
| | - Yuqi Zhang
- College of Chemistry and Chemical EngineeringYan'an UniversityYan'anShaanxi716000P. R. China
| | - Yao Liu
- College of Chemistry and Chemical EngineeringYan'an UniversityYan'anShaanxi716000P. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationBeijing Key Laboratory of Bio‐inspired Energy Materials and DevicesSchool of ChemistryBeihang UniversityBeijing100191China
| |
Collapse
|
45
|
Sun Y, Guo Z. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. NANOSCALE HORIZONS 2019; 4:52-76. [PMID: 32254145 DOI: 10.1039/c8nh00223a] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Through 3.7 billion years of evolution and natural selection, plants and animals in nature have ingeniously fulfilled a broad range of fascinating functions to achieve optimized performance in responding and adapting to changes in the process of interacting with complex natural environments. It is clear that the hierarchically organized micro/nanostructures of the surfaces of living organisms decisively manage fascinating and amazing functions, regardless of the chemical components of their building blocks. This conclusion now allows us to elucidate the underlying mechanisms whereby these hierarchical structures have a great impact on the properties of the bulk material. In this review, we mainly focus on advances over the last three years in bioinspired multiscale functional materials with specific wettability. Starting from selected naturally occurring surfaces, manmade bioinspired surfaces with specific wettability are introduced, with an emphasis on the cooperation between structural characteristics and macroscopic properties, including lotus leaf-inspired superhydrophobic surfaces, fish scale-inspired superhydrophilic/underwater superoleophobic surfaces, springtail-inspired superoleophobic surfaces, and Nepenthes (pitcher plant)-inspired slippery liquid-infused porous surfaces (SLIPSs), as well as other multifunctional surfaces that combine specific wettability with mechanical properties, optical properties and the unidirectional transport of liquid droplets. Afterwards, various top-down and bottom-up fabrication techniques are presented, as well as emerging cutting-edge applications. Finally, our personal perspectives and conclusions with regard to the transfer of micro- and nanostructures to engineered materials are provided.
Collapse
Affiliation(s)
- Yihan Sun
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | | |
Collapse
|
46
|
Howell C, Grinthal A, Sunny S, Aizenberg M, Aizenberg J. Designing Liquid-Infused Surfaces for Medical Applications: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802724. [PMID: 30151909 DOI: 10.1002/adma.201802724] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/06/2018] [Indexed: 05/21/2023]
Abstract
The development of new technologies is key to the continued improvement of medicine, relying on comprehensive materials design strategies that can integrate advanced therapeutic and diagnostic functions with a variety of surface properties such as selective adhesion, dynamic responsiveness, and optical/mechanical tunability. Liquid-infused surfaces have recently come to the forefront as a unique approach to surface coatings that can resist adhesion of a wide range of contaminants on medical devices. Furthermore, these surfaces are proving highly versatile in enabling the integration of established medical surface treatments alongside the antifouling capabilities, such as drug release or biomolecule organization. Here, the range of research being conducted on liquid-infused surfaces for medical applications is presented, from an understanding of the basics behind the interactions of physiological fluids, microbes, and mammalian cells with liquid layers to current applications of these materials in point-of-care diagnostics, medical tubing, instruments, implants, and tissue engineering. Throughout this exploration, the design parameters of liquid-infused surfaces and how they can be adapted and tuned to particular applications are discussed, while identifying how the range of controllable factors offered by liquid-infused surfaces can be used to enable completely new and dynamic approaches to materials and devices for human health.
Collapse
Affiliation(s)
- Caitlin Howell
- Department of Chemical and Biomedical Engineering and School of Biomedical Science and Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA
| | - Alison Grinthal
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 021383, USA
| | - Steffi Sunny
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 021383, USA
| | - Michael Aizenberg
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Cir, Boston, MA, 02115, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 021383, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Cir, Boston, MA, 02115, USA
- Kavli Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
47
|
Mukherjee R, Habibi M, Rashed ZT, Berbert O, Shi X, Boreyko JB. Oil-Impregnated Hydrocarbon-Based Polymer Films. Sci Rep 2018; 8:11698. [PMID: 30076322 PMCID: PMC6076315 DOI: 10.1038/s41598-018-29823-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/19/2018] [Indexed: 11/08/2022] Open
Abstract
Porous surfaces impregnated with a liquid lubricant exhibit minimal contact angle hysteresis with immiscible test liquids, rendering them ideal as self-cleaning materials. Rather than roughening a solid substrate, an increasingly popular choice is to use an absorbent polymer as the "porous" material. However, to date the polymer choices have been limited to expensive silicone-based polymers or complex assemblies of polymer multilayers on functionalized surfaces. In this paper, we show that hydrocarbon-based polymer films such as polyethylene can be stably impregnated with chemically compatible vegetable oils, without requiring any surface treatment. These oil-impregnated hydrocarbon-based films exhibit minimal contact angle hysteresis for a wide variety of test products including water, ketchup, and yogurt. Our oil-impregnated films remain slippery even after several weeks of being submerged in ketchup, illustrating their extreme durability. We expect that the simple and cost-effective nature of our slippery hydrocarbon-based films will make them useful for industrial packaging applications.
Collapse
Affiliation(s)
- Ranit Mukherjee
- Macromolecules Innovation Institute, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Mohammad Habibi
- Macromolecules Innovation Institute, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Ziad T Rashed
- Macromolecules Innovation Institute, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | | | - Xiangke Shi
- Bemis North America, Neenah, Wisconsin, 54957, USA
| | - Jonathan B Boreyko
- Macromolecules Innovation Institute, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA.
| |
Collapse
|
48
|
He W, Liu P, Zhang J, Yao X. Emerging Applications of Bioinspired Slippery Surfaces in Biomedical Fields. Chemistry 2018; 24:14864-14877. [DOI: 10.1002/chem.201801368] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Wenqing He
- Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Peng Liu
- Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Jianqiang Zhang
- Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Xi Yao
- Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
- City University of Hong Kong Shenzhen Research Institute; Shenzhen 518075 P.R. China
| |
Collapse
|
49
|
Korlepara DB, Balasubramanian S. Molecular modelling of supramolecular one dimensional polymers. RSC Adv 2018; 8:22659-22669. [PMID: 35539740 PMCID: PMC9081382 DOI: 10.1039/c8ra03402h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 11/29/2022] Open
Abstract
Supramolecular polymers exemplify the need to employ several computational techniques to study processes and phenomena occuring at varied length and time scales. Electronic processes, conformational and configurational excitations of small aggregates of chromophoric molecules, solvent effects under realistic thermodynamic conditions and mesoscale morphologies are some of the challenges which demand hierarchical modelling approaches. This review focusses on one-dimensional supramolecular polymers, the mechanism of self-assembly of monomers in polar and non-polar solvents and properties they exhibit. Directions for future work are as well outlined.
Collapse
Affiliation(s)
- Divya B Korlepara
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - S Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India +91 80 2208 2766 +91-80 2208 2808
| |
Collapse
|
50
|
Wang H, Wen Y, Peng H, Zheng C, Li Y, Wang S, Sun S, Xie X, Zhou X. Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization. Polymers (Basel) 2018; 10:polym10050503. [PMID: 30966537 PMCID: PMC6415420 DOI: 10.3390/polym10050503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 11/24/2022] Open
Abstract
Decreasing the surface energy of polyacrylate-based materials is important especially in embossed holography, but current solutions typically involve high-cost synthesis or encounter compatibility problems. Herein, we utilize the grafting of polytetrafluoroethylene (PTFE) micropowder with poly (methyl methacrylate) (PMMA). The grafting reaction is implemented via in situ electron beam irradiation-induced polymerization in the presence of fluorinated surfactants, generating PMMA grafted PTFE micropowder (PMMA–g–PTFE). The optimal degree of grafting (DG) is 17.8%. With the incorporation of PMMA–g–PTFE, the interfacial interaction between polyacrylate and PTFE is greatly improved, giving rise to uniform polyacrylate/PMMA–g–PTFE composites with a low surface energy. For instance, the loading content of PMMA–g–PTFE in polyacrylate is up to 16 wt %, leading to an increase of more than 20 degrees in the water contact angle compared to the pristine sample. This research paves a way to generate new polyacrylate-based films for embossed holography.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yingfeng Wen
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Haiyan Peng
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chengfu Zheng
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yuesheng Li
- School of Nuclear and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Sheng Wang
- School of Nuclear and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Shaofa Sun
- School of Nuclear and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xingping Zhou
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|