1
|
Melchionna M, Fornasiero P. What Is to Be Expected from Heterogeneous Catalysis in the Pipeline to Circular Economy? CHEMSUSCHEM 2024:e202402064. [PMID: 39600217 DOI: 10.1002/cssc.202402064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Indexed: 11/29/2024]
Abstract
Modern society requires a change in the philosophy of doing science, which faces the enormous challenge of being compatible with the new sustainability principles. Inorganic chemistry holds the keys to accelerate the transition given that most chemical processes or technology devices rely on the use or integration of inorganic materials. In particular, heterogeneous catalysis has a central role in promoting the transition from a linear economy to a circular one. To accomplish this, it is imperative that the modern schemes for catalysis will adopt a holistic approach based on sensible choice of raw materials, reliance on clean energy inputs and establishment of a robust framework of resource use and recovery. Some of these concepts are analysed here and discussed in Ref. [to a few selected examples.
Collapse
Affiliation(s)
- Michele Melchionna
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- ICCOM-CNR URT Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
2
|
Li S, Ajmal S, Zhou X, Lu M, Li X, Sun Z, Liu S, Zhu M, Li P. Mixed-Dimensional Partial Dealloyed PtCuBi/C as High-Performance Electrocatalysts for Methanol Oxidation with Enhanced CO Tolerance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309226. [PMID: 38126680 DOI: 10.1002/smll.202309226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Developing efficient electrocatalysts for methanol oxidation reaction (MOR) is crucial in advancing the commercialization of direct methanol fuel cells (DMFCs). Herein, carbon-supported 0D/2D PtCuBi/C (0D/2D PtCuBi/C) catalysts are fabricated through a solvothermal method, followed by a partial electrochemical dealloying process to form a novel mixed-dimensional electrochemically dealloyed PtCuBi/C (0D/2D D-PtCuBi/C) catalysts. Benefiting from distinctive mixed-dimensional structure and composition, the as-obtained 0D/2D D-PtCuBi/C catalysts possess abundant accessible active sites. The introduction of Cu as a water-activating element weakens the COads, and oxophilic metal Bi facilitates the OHads, thereby enhancing its tolerance to CO poisoning and promoting MOR activity. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS) collectively reveal the electron transfer from Cu and Bi to Pt, the electron-enrichment effect induced by dealloying, and the strong interactions among Pt-M (Cu, Pt, and Bi) multi-active sites, which improve the tuning of the electronic structure and enhancement of electron transfer ability. Impressively, the optimized 0D/2D D-PtCuBi/C catalysts exhibit the superior mass activity (MA) of 17.68 A mgPt -1 for MOR, which is 14.86 times higher than that of commercial Pt/C. This study offers a proposed strategy for Pt-based alloy catalysts, enabling their use as efficient anodic materials in fuel cell applications.
Collapse
Affiliation(s)
- Sichen Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Sara Ajmal
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Xiaoxing Zhou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Maoni Lu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Xinghao Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Zhenjie Sun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
3
|
Dutta S, Gu BS, Lee IS. Synthesis and Prospects of Holey Two-dimensional Platinum-group Metals in Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202312656. [PMID: 37702372 DOI: 10.1002/anie.202312656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Advanced electrocatalysts can enable the widespread implementation of clean energy technologies. This paper reviews an emerging class of electrocatalytic materials comprising holey two-dimensional free-standing Pt-group metal (h-2D-PGM) nanosheets, which are categorically challenging to synthesize but inherently rich in all the qualities necessary to counter the kinetic and thermodynamic challenges of an electrochemical conversion process with high catalytic efficiency and stability. Although the 2D anisotropic growth of typical nonlayered metal crystals has succeeded and partly improved their atom-utilization efficiency, regularly distributed in-planar porosity can further optimize three critical factors that govern efficient electrocatalysis process: mass diffusion, electron transfer, and surface reactivity. However, producing such advanced morphological features within h-2D-PGMs is difficult unless they are specially engineered using approaches such as templating or kinetic ramification during 2D growth or controlled etching of preformed 2D-PGM solids. Therefore, this review highlighting the successful fabrication of various porous PGM nanosheets and their electrocatalytic benefits involving smart nanoscale features could inspire next-generation scientific and technological innovations toward securing a sustainable energy future.
Collapse
Affiliation(s)
- Soumen Dutta
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Byeong Su Gu
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University Seoul 03722 (South Korea)
| |
Collapse
|
4
|
Jiang B, Guo Y, Sun F, Wang S, Kang Y, Xu X, Zhao J, You J, Eguchi M, Yamauchi Y, Li H. Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS NANO 2023. [PMID: 37367960 DOI: 10.1021/acsnano.3c01380] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Controlling the synthesis of metal nanostructures is one approach for catalyst engineering and performance optimization in electrocatalysis. As an emerging class of unconventional electrocatalysts, two-dimensional (2D) metallene electrocatalysts with ultrathin sheet-like morphology have gained ever-growing attention and exhibited superior performance in electrocatalysis owing to their distinctive properties originating from structural anisotropy, rich surface chemistry, and efficient mass diffusion capability. Many significant advances in synthetic methods and electrocatalytic applications for 2D metallenes have been obtained in recent years. Therefore, an in-depth review summarizing the progress in developing 2D metallenes for electrochemical applications is highly needed. Unlike most reported reviews on the 2D metallenes, this review starts by introducing the preparation of 2D metallenes based on the classification of the metals (e.g., noble metals, and non-noble metals) instead of synthetic methods. Some typical strategies for preparing each kind of metal are enumerated in detail. Then, the utilization of 2D metallenes in electrocatalytic applications, especially in the electrocatalytic conversion reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, fuel oxidation reaction, CO2 reduction reaction, and N2 reduction reaction, are comprehensively discussed. Finally, current challenges and opportunities for future research on metallenes in electrochemical energy conversion are proposed.
Collapse
Affiliation(s)
- Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Yanna Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Fengyu Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunqing Kang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Jungmok You
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Miharu Eguchi
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
5
|
Wang J, Guo L, Pan B, Jin T, Li Z, Tang Q, Andreazza P, Chen Y, An L, Chen F. Plasmon-driven methanol oxidation on PtAg nanoalloys prepared by improved pulsed laser deposition. Faraday Discuss 2023; 242:499-521. [PMID: 36178069 DOI: 10.1039/d2fd00102k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The methanol oxidation reaction (MOR) is crucial in many energy-conversion devices. Although intensive efforts have been devoted to improving the MOR catalytic activity of Pt-based catalysts by treatment or alloying, enhancing the MOR catalyst performance utilizing solar energy has been less investigated. PtAg nanoalloys, combining the intrinsic catalytic activity of Pt toward the MOR with the visible spectrum plasmonic response of Ag, are expected to be a good MOR catalyst for solar energy, however, it remains challenging to incorporate these immiscible elements into a nanoalloy in a controlled way using conventional synthetic techniques. Herein, we proposed a general strategy for alloying silver and platinum elements into single-phase solid-solution nanoparticles with arbitrarily desired composition by bonding pure Pt targets with pure Ag strips in an improved pulsed laser deposition. The as-prepared PtAg nanoalloys show two crystalline phases and an average particle size of about 4 nm. To prove utility, we use the PtAg nanoalloys as support-free MOR catalysts anchored on the surface of a glassy carbon electrode solidly and uniformly. The PtAg nanoalloys exhibit a mass catalytic activity of 3.6 A mg-1, which is 4.5 times higher than that of the commercial Pt/C catalyst. Besides, the PtAg nanoalloys exhibit a promising regenerability after reactivation by cyclic voltammetry. Furthermore, the MOR catalytic activity of PtAg nanoalloys increased by 16% under irradiation by simulated sunlight, which is attributed to the surface plasmon resonance as ascertained from the UV-vis absorption spectra and photocurrent response experiments. These studies are believed to provide a new strategy for the enhancement of MOR catalytic activity with visible light as the driving force.
Collapse
Affiliation(s)
- Junpeng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, China.
| | - Longfei Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, China.
| | - Bowei Pan
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, China.
| | - Tao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, China.
| | - Zhen Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, China.
| | - Quan Tang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, China.
| | - Pascal Andreazza
- Interfaces, Confinement, Matériaux et Nanostructures, ICMN, Université d'Orléans, CNRS, Orléans, France
| | - Yu Chen
- Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, UK
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, China.
| |
Collapse
|
6
|
Recent Progress in High Entropy Alloys for Electrocatalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Gao F, Li C, Ren Y, Li B, Lv C, Yang X, Zhang X, Lu Z, Yu X, Li L. High‐Efficient Ultrathin PdCuMo Porous Nanosheets with Abundant Defects for Oxygen Reduction Reaction. Chemistry 2022; 28:e202201860. [DOI: 10.1002/chem.202201860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fan Gao
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Chuanliang Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Yangyang Ren
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Baosong Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Chenhao Lv
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Xiaojing Yang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Xinghua Zhang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Zunming Lu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Xiaofei Yu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Lanlan Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
8
|
Zhang Y, Peck TC, Reddy GK, Banerjee D, Jia H, Roberts CA, Ling C. Descriptor-Free Design of Multicomponent Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ying Zhang
- Toyota Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Torin C. Peck
- Toyota Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Gunugunuri K. Reddy
- Toyota Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Debasish Banerjee
- Toyota Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Hongfei Jia
- Toyota Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Charles A. Roberts
- Toyota Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Chen Ling
- Toyota Research Institute of North America, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
9
|
Yang H, Liu X, Qin K, Bu Q, Liu Q. Enhancement Strategy of Photoelectrocatalytic Activity of Cobalt-Copper Layer Double Hydroxide toward Methanol Oxidation: Cerium Doping and Modification with Porphyrin. Inorg Chem 2022; 61:7414-7425. [PMID: 35512284 DOI: 10.1021/acs.inorgchem.2c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing durable, high-active, and low-cost noble-metal-free photoelectrocatalysts for methanol electrooxidation is highly demanded but remains a challenge. Herein, the photoelectrocatalytic activity of cobalt-copper layer double hydroxide (CoCu-LDH) for methanol oxidation reaction (MOR) in the alkaline media under light was remarkably enhanced by cerium (Ce) doping and further by 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin (TCPP) modification. TCPP/Ce-CoCu-LDH exhibits a remarkable mass activity of 1788.2 mA mg-1 in 1 mol L-1 KOH with 1 mol L-1 methanol under light, which is 2.3 and 1.8 times higher than that of CoCu-LDH (782.2 mA mg-1) and Ce-CoCu-LDH (987.4 mA mg-1). The UV-vis diffuse reflectance spectra and photoluminescence emission spectra reveal that TCPP/Ce-CoCu-LDH can effectively utilize the visible light and inhibit the electron-hole pairs' recombination because of the introduction of porphyrin. Furthermore, more active sites and the greater electrical conductivity of TCPP/Ce-CoCu-LDH also contributed to the high photoelectrocatalytic activity. Thus, TCPP/Ce-CoCu-LDH can be used as a low-cost alternative for Pt-based catalyst toward MOR.
Collapse
Affiliation(s)
- Hui Yang
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xiangwei Liu
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Kang Qin
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Qijing Bu
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| |
Collapse
|
10
|
Chen W, Luo S, Sun M, Tang M, Fan X, Cheng Y, Wu X, Liao Y, Huang B, Quan Z. Hexagonal PtBi Intermetallic Inlaid with Sub-Monolayer Pb Oxyhydroxide Boosts Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107803. [PMID: 35212141 DOI: 10.1002/smll.202107803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Engineering multicomponent nanocatalysts is effective to improve electrocatalysis in many applications, yet it remains a challenge in constructing well-defined multimetallic active sites at the atomic level. Herein, the surface inlay of sub-monolayer Pb oxyhydroxide onto hexagonal PtBi intermetallic nanoplates with intrinsically isolated Pt atoms to boost the methanol oxidation reaction (MOR) is reported. The well-defined PtBi@6.7%Pb nanocatalyst exhibits 4.0 and 7.4 times higher mass activity than PtBi nanoplates and commercial Pt/C catalyst toward MOR in the alkaline electrolyte at 30 °C. Meanwhile, it also achieves a record-high mass activity of 51.07 A mg-1 Pt at direct methanol fuel cells operation temperature of 60 °C. DFT calculations reveal that the introduction of Pb oxyhydroxide on the surface not only promotes the electron transfer efficiency but also suppresses the CO poisoning effect, and the efficient p-d coupling optimizes the electroactivity of PtBi@6.7%Pb nanoplates toward the MOR process with low reaction barriers. This work offers a nanoengineering strategy to effectively construct and modulate multimetallic nanocatalysts to improve the electroactivity toward the MOR in future research.
Collapse
Affiliation(s)
- Wen Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Shuiping Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Min Tang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Xiaokun Fan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Yu Cheng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Xiaoyu Wu
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Yujia Liao
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| |
Collapse
|
11
|
Zhao F, Zheng L, Yuan Q, Yang X, Zhang Q, Xu H, Guo Y, Yang S, Zhou Z, Gu L, Wang X. Ultrathin PdAuBiTe Nanosheets as High-Performance Oxygen Reduction Catalysts for a Direct Methanol Fuel Cell Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103383. [PMID: 34468056 DOI: 10.1002/adma.202103383] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Ultrathin 2D metal nanostructures have sparked a lot of research interest because of their improved electrocatalytic properties for fuel cells. So far, no effective technique for preparing ultrathin 2D Pd-based metal nanostructures with more than three compositions has been published. Herein, a new visible-light-induced template technique for producing PdAuBiTe alloyed 2D ultrathin nanosheets is developed. The mass activity of the PdAuBiTe nanosheets against the oxygen reduction reaction (ORR) is 2.48 A mgPd -1 , which is 27.5/17.7 times that of industrial Pd/C/Pt/C, respectively. After 10 000 potential cyclings, there is no decrease in ORR activity. The PdAuBiTe nanosheets exhibit high methanol tolerance and in situ anti-CO poisoning properties. The PdAuBiTe nanosheets, as cathode electrocatalysts in direct methanol fuel cells, can thus give significant improvement in terms of power density and durability. In O2 /air, the power density can be increased to 235.7/173.5 mW cm-2 , higher than that reported in previous work, and which is 2.32/3.59 times higher than Pt/C.
Collapse
Affiliation(s)
- Fengling Zhao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Qinghua Zhang
- Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Han Xu
- Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Yuanlong Guo
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Song Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Zhiyou Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lin Gu
- Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Kim Y, Lee YW, Lee S, Gong J, Lee HS, Han SW. One-Pot Synthesis of Ternary Alloy Hollow Nanostructures with Controlled Morphologies for Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45538-45546. [PMID: 34530610 DOI: 10.1021/acsami.1c13171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rational design and synthesis of multimetallic hollow nanostructures (HNSs) have been attracting great attention due to their structural and compositional advantages for application in electrocatalysis. Herein, the one-pot synthesis of Pd-Pt-Ag ternary alloy HNSs with controllable morphologies through a self-templating approach without any pre-synthesized templates is reported. Simultaneous reduction of multiple metal precursors by ascorbic acid in the presence of cetyltrimethylammonium chloride (CTAC) yielded initially metastable Pd-Ag nanocrystals, which can act as a self-template, and subsequent galvanic replacement and reduction led to the formation of final Pd-Pt-Ag HNSs. The size and hollowness (the ratio of inner cavity diameter to outer diameter) of the HNSs could be tuned through control over the concentration of CTAC. This can be attributed to the manipulated reduction kinetics of multiple metal precursors with the change in the CTAC concentration. The prepared Pd-Pt-Ag HNSs exhibited improved catalytic performance for ethanol electro-oxidation due to their large active surface areas and ternary alloy composition.
Collapse
Affiliation(s)
- Yonghyeon Kim
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Young Wook Lee
- Department of Education Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Seunghoon Lee
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
- Department of Chemistry, Dong-A University, Busan 49315, Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
13
|
Wu M, Chen C, Zhao Y, Zhu E, Li Y. Atomic Regulation of PGM Electrocatalysts for the Oxygen Reduction Reaction. Front Chem 2021; 9:699861. [PMID: 34295875 PMCID: PMC8290132 DOI: 10.3389/fchem.2021.699861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022] Open
Abstract
With the increasing enthusiasm for the hydrogen economy and zero-emission fuel cell technologies, intensive efforts have been dedicated to the development of high-performance electrocatalytic materials for the cathodic oxygen reduction reaction (ORR). Some major fundamental breakthroughs have been made in the past few years. Therefore, reviewing the most recent development of platinum-group-metal (PGM) ORR electrocatalysts is of great significance to pushing it forward. It is known that the ORR on the fuel cell electrode is a heterogeneous reaction occurring at the solid/liquid interface, wherein the electron reduces the oxygen along with species in the electrolyte. Therefore, the ORR kinetic is in close correlation with the electronic density of states and wave function, which are dominated by the localized atomic structure including the atomic distance and coordination number (CN). In this review, the recent development in the regulation over the localized state on the catalyst surface is narrowed down to the following structural factors whereby the corresponding strategies include: the crystallographic facet engineering, phase engineering, strain engineering, and defect engineering. Although these strategies show distinctive features, they are not entirely independent, because they all correlate with the atomic local structure. This review will be mainly divided into four parts with critical analyses and comparisons of breakthroughs. Meanwhile, each part is described with some more specific techniques as a methodological guideline. It is hoped that the review will enhance an insightful understanding on PGM catalysts of ORR with a visionary outlook.
Collapse
Affiliation(s)
| | | | | | - Enbo Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Wang H, Chen J, Lin Y, Wang X, Li J, Li Y, Gao L, Zhang L, Chao D, Xiao X, Lee JM. Electronic Modulation of Non-van der Waals 2D Electrocatalysts for Efficient Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008422. [PMID: 34032317 DOI: 10.1002/adma.202008422] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The exploration of efficient electrocatalysts for energy conversion is important for green energy development. Owing to their high surface areas and unusual electronic structure, 2D electrocatalysts have attracted increasing interest. Among them, non-van der Waals (non-vdW) 2D materials with numerous chemical bonds in all three dimensions and novel chemical and electronic properties beyond those of vdW 2D materials have been studied increasingly over the past decades. Herein, the progress of non-vdW 2D electrocatalysts is critically reviewed, with a special emphasis on electronic structure modulation. Strategies for heteroatom doping, vacancy engineering, pore creation, alloying, and heterostructure engineering are analyzed for tuning electronic structures and achieving intrinsically enhanced electrocatalytic performances. Lastly, a roadmap for the future development of non-vdW 2D electrocatalysts is provided from material, mechanism, and performance viewpoints.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yanping Lin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Xiaohan Wang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yao Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lijun Gao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
15
|
Recent Advances on Properties and Utility of Nanomaterials Generated from Industrial and Biological Activities. CRYSTALS 2021. [DOI: 10.3390/cryst11060634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today is the era of nanoscience and nanotechnology, which find applications in the field of medicine, electronics, and environmental remediation. Even though nanotechnology is in its emerging phase, it continues to provide solutions to numerous challenges. Nanotechnology and nanoparticles are found to be very effective because of their unique chemical and physical properties and high surface area, but their high cost is one of the major hurdles to its wider application. So, the synthesis of nanomaterials, especially 2D nanomaterials from industrial, agricultural, and other biological activities, could provide a cost-effective technique. The nanomaterials synthesized from such waste not only minimize pollution, but also provide an eco-friendly approach towards the utilization of the waste. In the present review work, emphasis has been given to the types of nanomaterials, different methods for the synthesis of 2D nanomaterials from the waste generated from industries, agriculture, and their application in electronics, medicine, and catalysis.
Collapse
|
16
|
Li M, Li Z, Fu G, Tang Y. Recent Advances in Amino-Based Molecules Assisted Control of Noble-Metal Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007179. [PMID: 33709573 DOI: 10.1002/smll.202007179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Morphology-control synthesis is an effective means to tailor surface structure of noble-metal nanocrystals, which offers a sensitive knob for tuning their electrocatalytic properties. The functional molecules are often indispensable in the morphology-control synthesis through preferential adsorption on specific crystal facets, or controlling certain crystal growth directions. In this review, the recent progress in morphology-control synthesis of noble-metal nanocrystals assisted by amino-based functional molecules for electrocatalytic applications are focused on. Although a mass of noble-metal nanocrystals with different morphologies have been reported, few review studies have been published related to amino-based molecules assisted control strategy. A full understanding for the key roles of amino-based molecules in the morphology-control synthesis is still necessary. As a result, the explicit roles and mechanisms of various types of amino-based molecules, including amino-based small molecules and amino-based polymers, in morphology-control of noble-metal nanocrystals are summarized and discussed in detail. Also presented in this progress are unique electrocatalytic properties of various shaped noble-metal nanocrystals. Particularly, the optimization of electrocatalytic selectivity induced by specific amino-based functional molecules (e.g., polyallylamine and polyethyleneimine) is highlighted. At the end, some critical prospects, and challenges in terms of amino-based molecules-controlled synthesis and electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 79407, USA
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
17
|
Zheng Y, Wang X, Kong Y, Ma Y. Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00975c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this highlight article, the recent progress on the preparation and application of multimetallic alloy nanocrystals with 2D nanostructures is systematically reviewed, as well as perspectives on future challenges and opportunities.
Collapse
Affiliation(s)
- Yiqun Zheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiping Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuhan Kong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
18
|
Lu W, Xia X, Wei X, Li M, Zeng M, Guo J, Cheng S. Nanoengineering 2D Dendritic PdAgPt Nanoalloys with Edge-Enriched Active Sites for Enhanced Alcohol Electroxidation and Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21569-21578. [PMID: 32309921 DOI: 10.1021/acsami.0c01690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lots of research studies reveal that the surface atoms on the top/bottom facets of the nanosheets are the key features in enhancing electrocatalytic activity while the edge and corner sites of electrocatalysts often possess superior activity. Herein, we report 2D dendritic PdAgPt ternary nanoalloys with abundant crystal defects such as steps, twin boundary, and atomic holes, which can effectively work as catalytic active-sites. The morphology of PdAgPt nanoalloys can be regulated readily from dendritic nanosheets to nanowheels. Compared with binary Pd68Ag32 nanodendrites, Pd62Pt38 nanospheres, and Pt/C catalyst, the composition- and morphology-optimized Pd43Ag21Pt36 nanowheels exhibit the best mass/specific activity and stability for methanol/ethanol oxidation reaction (MOR/EOR). The mass peak current density for EOR/MOR of Pd43Ag21Pt36 is 7.08/3.50 times of the Pt/C catalyst. Simultaneously, the hydrogen evolution reaction performance of the Pd43Ag21Pt36 nanowheels in terms of the lowest overpotential of 9 mv at a current density of 10 mA/cm2 and high electrochemical stability is much better than that of binary Pd68Ag32 nanodendrites, Pd62Pt38 nanospheres, and Pt/C.
Collapse
Affiliation(s)
- Wenya Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xinyue Xia
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xiaoxu Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Manman Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Guo
- Testing & Analysis Center, Soochow University, Suzhou 215123, China
| | - Si Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
19
|
Wang J, Li M, Zhang J, Yan Y, Qiu X, Cai B, Yang G, Tang Y. Atom‐Ratio‐Conducted Tailoring of PdAu Bimetallic Nanocrystals with Distinctive Shapes and Dimensions for Boosting the ORR Performance. Chemistry 2020; 26:4480-4488. [DOI: 10.1002/chem.201905284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/29/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jingchun Wang
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of, Biomedical Functional Materials School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 P. R. China
| | - Meng Li
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of, Biomedical Functional Materials School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 P. R. China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of, Biomedical Functional Materials School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 P. R. China
| | - Yawei Yan
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of, Biomedical Functional Materials School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 P. R. China
| | - Xiaoyu Qiu
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of, Biomedical Functional Materials School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 P. R. China
| | - Bingfeng Cai
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of, Biomedical Functional Materials School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 P. R. China
| | - Gaixiu Yang
- Guangzhou Institute of Energy ConversionChinese Academy of SciencesCAS Key Laboratory of Renewable EnergyGuangdong Provincial Key Laboratory of New and Renewable Energy Research and Development Guangzhou 510640 P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of, Biomedical Functional Materials School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 P. R. China
| |
Collapse
|
20
|
Luo B, Zhao F, Xie Z, Yuan Q, Yang F, Yang X, Li C, Zhou Z. Polyhedron-Assembled Ternary PtCuCo Nanochains: Integrated Functions Enhance the Electrocatalytic Performance of Methanol Oxidation at Elevated Temperature. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32282-32290. [PMID: 31408312 DOI: 10.1021/acsami.9b10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, the preparation of a high-performance one-dimensional alloy nanostructure for fuel cells has been given increasing attention due to its smart-structure merits and electronic effect triggered by alloying different kinds of metals at the nanoscale. In this study, unique ternary PtCuCo nanochains assembled with small polyhedra are first achieved and used as high-performance anode electrocatalysts toward methanol oxidation at elevated temperature (60 °C) that is closer to the operating temperature of direct methanol fuel cells than room temperature. The specific activity/mass activity of Pt45Cu35Co20 one-dimensional nanochains can reach up to 18.24 mA cm-2/4.19 A mg-1Pt that is 9.25/10.47 times that of commercial Pt black in sulfuric acid medium. After a 3600 s durability test, the remaining current density of Pt45Cu35Co20 one-dimensional nanochains is 73.3 times that of commercial Pt black. The structure characterizations show that the high density of surface active sites, d-band center of the Pt downshift, moderate strain effect, and synergetic effect are jointly responsible for the enhanced electrocatalytic performance of one-dimensional ternary PtCuCo nanochains.
Collapse
Affiliation(s)
- Bin Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Fengling Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Zixuan Xie
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Qiang Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Fang Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Xiaotong Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Chaozhong Li
- Department of Chemistry, College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , Guizhou Province , P. R. China
| | - Zhiyou Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , People's Republic of China
| |
Collapse
|
21
|
Zhang Y, Gao F, Wang C, Shiraishi Y, Du Y. Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30880-30886. [PMID: 31368299 DOI: 10.1021/acsami.9b09110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg-1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| | - Caiqin Wang
- College of Science , Nanjing Forestry University , 159 Longpan Road , Nanjing 210037 , P.R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| |
Collapse
|
22
|
Singh K, Tetteh EB, Lee HY, Kang TH, Yu JS. Tailor-Made Pt Catalysts with Improved Oxygen Reduction Reaction Stability/Durability. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01420] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kiranpal Singh
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Emmanuel Batsa Tetteh
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ha-Young Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Tong-Hyun Kang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
23
|
Wang C, Yang H, Zhang Y, Wang Q. NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angew Chem Int Ed Engl 2019; 58:6099-6103. [DOI: 10.1002/anie.201902446] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Changhong Wang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceDivision of Nanobiomedicine and i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 P. R. China
| | - Hongchao Yang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceDivision of Nanobiomedicine and i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 P. R. China
| | - Yejun Zhang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceDivision of Nanobiomedicine and i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 P. R. China
| | - Qiangbin Wang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceDivision of Nanobiomedicine and i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 P. R. China
| |
Collapse
|
24
|
Wang C, Yang H, Zhang Y, Wang Q. NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Changhong Wang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceDivision of Nanobiomedicine and i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 P. R. China
| | - Hongchao Yang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceDivision of Nanobiomedicine and i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 P. R. China
| | - Yejun Zhang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceDivision of Nanobiomedicine and i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 P. R. China
| | - Qiangbin Wang
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceDivision of Nanobiomedicine and i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 P. R. China
| |
Collapse
|
25
|
Yin S, Wang H, Deng K, Dai Z, Wang Z, Xu Y, Li X, Xue H, Wang L. Ultralong Ternary PtRuTe Mesoporous Nanotubes Fabricated by Micelle Assembly with a Self‐Sacrificial Template. Chemistry 2019; 25:5316-5321. [DOI: 10.1002/chem.201806382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Zechuan Dai
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hairong Xue
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| |
Collapse
|
26
|
Bhalothia D, Lin CY, Yan C, Yang YT, Chen TY. H 2 Reduction Annealing Induced Phase Transition and Improvements on Redox Durability of Pt Cluster-Decorated Cu@Pd Electrocatalysts in Oxygen Reduction Reaction. ACS OMEGA 2019; 4:971-982. [PMID: 31459372 PMCID: PMC6648878 DOI: 10.1021/acsomega.8b02896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/31/2018] [Indexed: 05/27/2023]
Abstract
Hierarchical structures in shell with transition metal underneath is a promising design for high-performance and low-cost heterogeneous nanocatalysts (NCs). Such a design enables the optimum extent of synergetic effects in NC surface. It facilitates intermediate reaction steps and, therefore, boosts activity of NC in oxygen reduction reaction (ORR). In this study, carbon nanotube (CNT)-supported ternary metallic NC comprising Cucluster-in-Pdcluster nanocrystal and surface decoration of atomic Pt clusters (14 wt %) is synthesized by using the wet chemical reduction method with sequence and reaction time controls. By annealing in H2 environment (H2/N2 = 9:1, 10 sccm) at 600 K for 2 h, specific activity of Cu@Pd/Pt is substantially improved by ∼2.0-fold as compared to that of the pristine sample and commercial Pt catalysts. By cross-referencing results of electron microscopic, X-ray spectroscopic, and electrochemical analyses, we demonstrated that reduction annealing turns ternary NC into complex of Cu3Pt alloy and Cu x Pd1-x alloy. Such a transition preserves Pt and Pd in metallic phases, therefore improving the activity by ∼29% and the stability of NC in an accelerated degradation test (ADT) as compared to those of pristine Cu@Pd/Pt in 36 000 cycles at 0.85 V (vs RHE). This study presents robust H2 annealing for structure stabilization of NC and systematic characterizations for rationalization of the corresponding mechanisms. These results provide promising scenarios for facilitation of heterogeneous NC in ORR applications.
Collapse
Affiliation(s)
- Dinesh Bhalothia
- Institute
of Electronics Engineering, Department of Engineering and System
Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Yang Lin
- Institute
of Electronics Engineering, Department of Engineering and System
Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Che Yan
- Institute
of Electronics Engineering, Department of Engineering and System
Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ya-Tang Yang
- Institute
of Electronics Engineering, Department of Engineering and System
Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsan-Yao Chen
- Institute
of Electronics Engineering, Department of Engineering and System
Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Hierarchical
Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
27
|
Sun Y, Huang B, Xu N, Li Y, Luo M, Li C, Qin Y, Wang L, Guo S. Rh-doped PdAg nanoparticles as efficient methanol tolerance electrocatalytic materials for oxygen reduction. Sci Bull (Beijing) 2019; 64:54-62. [PMID: 36659523 DOI: 10.1016/j.scib.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023]
Abstract
Direct methanol fuel cells (DMFCs) have received extensive attention on their high efficiency, high reliability, and no carbon emission. Unfortunately, the poor methanol tolerance and sluggish oxygen reduction reaction (ORR) at cathode have seriously hindered their further development. Herein we report the synthesis of a new class of Rh-doped PdAg alloy nanoparticles (NPs) for boosting ORR activity with high methanol tolerance capacity concurrently. The ORR mass activity of typical Rh4Pd40Ag56 NPs is 4.2 times higher than that of commercial Pt catalyst. Moreover, it shows a great methanol tolerance capability by maintaining 92.4% in ORR mass activity in alkaline solution with 0.1 mol L-1 methanol, against a big decrease of almost 100% for commercial Pt. Even after 30,000 potential cycles with 1.0 mol L-1 methanol, Rh4Pd40Ag56 NPs still retain ORR mass activity of up to 68.3%. DFT calculations reveal that excellent ORR performance with excellent methanol tolerance originates the active d-band-pinning engineering for an efficient site-independent electron-transfer. A generalized d-band mediated fine electron-transfer tuning path has blueprinted for effectively minimizing intrinsic ORR barriers with high current density. The present work highlights the key role of Rh doping in enhancing the ORR activity and methanol tolerance ability of PdAg NPs for future high-performance DMFCs.
Collapse
Affiliation(s)
- Yingjun Sun
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Nuoyan Xu
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yingjie Li
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chunji Li
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yingnan Qin
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaojun Guo
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Lan J, Li C, Liu T, Yuan Q. One-step synthesis of porous PtNiCu trimetallic nanoalloy with enhanced electrocatalytic performance toward methanol oxidation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Park J, Kwon T, Kim J, Jin H, Kim HY, Kim B, Joo SH, Lee K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem Soc Rev 2018; 47:8173-8202. [PMID: 30009297 DOI: 10.1039/c8cs00336j] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the realization of clean and sustainable energy conversion systems primarily requires the development of highly efficient catalysts, one of the main issues had been designing the structure of the catalysts to fulfill minimum cost as well as maximum performance. Until now, noble metal-based nanocatalysts had shown outstanding performances toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the scarcity and high cost of them impeded their practical use. Recently, hollow nanostructures including nanocages and nanoframes had emerged as a burgeoning class of promising electrocatalysts. The hollow nanostructures could expose a high proportion of active surfaces while saving the amounts of expensive noble metals. In this review, we introduced recent advances in the synthetic methodologies for generating noble metal-based hollow nanostructures based on thermodynamic and kinetic approaches. We summarized electrocatalytic applications of hollow nanostructures toward the ORR, OER, and HER. We next provided strategies that could endow structural robustness to the flimsy structural nature of hollow structures. Finally, we concluded this review with perspectives to facilitate the development of hollow nanostructure-based catalysts for energy applications.
Collapse
Affiliation(s)
- Jongsik Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ud Din MA, Saleem F, Zulfiqar M, Wang X. Synthesis of self-assembled PtPdAg nanostructures with a high catalytic activity for oxygen reduction reactions. NANOSCALE 2018; 10:17140-17147. [PMID: 30183046 DOI: 10.1039/c8nr03593h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Designing a self-assembling structure for a Pt-based catalyst offers a great opportunity to enhance the electrocatalytic performance and maximize the use of precious metals. Herein, we report an etching method based on thermal treatment for the removal of less active metals from Pt-based alloys for the enhancement of the oxygen reduction reaction. PtPdAg nanostructures' self-assembly can be easily controlled to the dimer stage or nanowires by stirring the nanoparticles in formamide with or without potassium iodide under heat for specific times. Thus oxygen reduction reaction-favoring PtPdAg hollow nanoparticle, nanodimer and nanowire catalysts are synthesized, all of which have been demonstrated to be promoting factors for the ORR. In a Pt-based catalyst, the arrangement and configuration of the surface or topmost few layer atoms influence the adsorption of oxygen and activation for ORR. The PtPdAg dimer catalyst shows excellent ORR activity compared to other PtPdAg nanostructures and commercial Pt/C i.e. 7.2 times higher specific activity and 4.1 times higher mass activity. We further carried out DFT calculations and from the results, we conclude that the most chemically inequivalent structure such as PtPdAg/C nanodimer alloys possesses the weakest oxygen binding energy.
Collapse
Affiliation(s)
- Muhammad Aizaz Ud Din
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
31
|
Yan Y, Li X, Tang M, Zhong H, Huang J, Bian T, Jiang Y, Han Y, Zhang H, Yang D. Tailoring the Edge Sites of 2D Pd Nanostructures with Different Fractal Dimensions for Enhanced Electrocatalytic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800430. [PMID: 30128248 PMCID: PMC6096982 DOI: 10.1002/advs.201800430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Indexed: 05/21/2023]
Abstract
The important role of edge sites in atomically thin 2D materials serving as catalysts is already of concerned in plenty of material systems and catalytic reactions, whereas comprehensive study of the edge sites in 2D noble-metal nanocatalysts is still lacking. Herein, for the first time, a controllable etching approach to tailor the fractal dimensions and edge sites of Pd nanosheets is developed and the edge sites in these 2D nanostructures from both structural and chemical aspects are investigated. The as-tailored 2D Pd nanostructures with extra edge sites exhibit substantially enhanced electrocatalytic performance for the formic acid oxidation reaction (FAOR). Moreover, careful analysis of the results from electrocatalytic measurements reveals that the specific activities for the edge sites in the 2D nanostructures far exceed the activities for the low-index planes of Pd and even dominate the overall activity exhibited by the 2D noble-metal catalysts.
Collapse
Affiliation(s)
- Yucong Yan
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Xiao Li
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Min Tang
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Hao Zhong
- Department of MathematicsZhejiang UniversityHangzhou310027China
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Ting Bian
- School of Energy and Power EngineeringJiangsu University of Science and TechnologyZhenjiang212003China
| | - Yi Jiang
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Yu Han
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
32
|
Guo Z, Su Y, Li YX, Li G, Huang XJ. Porous Single-Crystalline CdSe Nanobelts: Cation-Exchange Synthesis and Highly Selective Photoelectric Sensing toward Cu2+. Chemistry 2018; 24:9877-9883. [DOI: 10.1002/chem.201801215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Zheng Guo
- Institute of Physical Science and Information Technology; Anhui University; Hefei 230601 P. R. China
- Key Laboratory of Environmental Optics and Technology; Institute of Intelligent Machines; Chinese Academy of Sciences; Hefei 230031 P. R. China
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Yao Su
- Key Laboratory of Environmental Optics and Technology; Institute of Intelligent Machines; Chinese Academy of Sciences; Hefei 230031 P. R. China
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Yi-Xiang Li
- Key Laboratory of Environmental Optics and Technology; Institute of Intelligent Machines; Chinese Academy of Sciences; Hefei 230031 P. R. China
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Gang Li
- Key Laboratory of Environmental Optics and Technology; Institute of Intelligent Machines; Chinese Academy of Sciences; Hefei 230031 P. R. China
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Xing-Jiu Huang
- Institute of Physical Science and Information Technology; Anhui University; Hefei 230601 P. R. China
- Key Laboratory of Environmental Optics and Technology; Institute of Intelligent Machines; Chinese Academy of Sciences; Hefei 230031 P. R. China
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 P. R. China
| |
Collapse
|
33
|
Yang H, Bradley SJ, Wu X, Chan A, Waterhouse GIN, Nann T, Zhang J, Kruger PE, Ma S, Telfer SG. General Synthetic Strategy for Libraries of Supported Multicomponent Metal Nanoparticles. ACS NANO 2018; 12:4594-4604. [PMID: 29667838 DOI: 10.1021/acsnano.8b01022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticles comprising three or more different metals are challenging to prepare. General methods that tackle this challenge are highly sought after as multicomponent metal nanoparticles display favorable properties in applications such as catalysis, biomedicine, and imaging. Herein, we report a practical and versatile approach for the synthesis of nanoparticles composed of up to four different metals. This method relies on the thermal decomposition of nanostructured composite materials assembled from platinum nanoparticles, a metal-organic framework (ZIF-8), and a tannic acid coordination polymer. The controlled integration of multiple metal cations (Ni, Co, Cu, Mn, Fe, and/or Tb) into the tannic acid shell of the precursor material dictates the composition of the final multicomponent metal nanoparticles. Upon thermolysis, the platinum nanoparticles seed the growth of the multicomponent metal nanoparticles via coalescence with the metallic constituents of the tannic acid coordination polymer. The nanoparticles are supported in the walls of hollow nitrogen-doped porous carbon capsules created by the decomposition of the organic components of the precursor. The capsules prevent sintering and detachment of the nanoparticles, and their porosity allows for efficient mass transport. To demonstrate the utility of producing a broad library of supported multicomponent metal nanoparticles, we tested their electrocatalytic performance toward the hydrogen evolution reaction and oxygen evolution reaction. We discovered functional relationships between the composition of the nanoparticles and their electrochemical activity and identified the PtNiCu and PtNiCuFe nanoparticles as particularly efficient catalysts. This highlights how to generate diverse libraries of multicomponent metal nanoparticles that can be synthesized and subsequently screened to identify high-performance materials for target applications.
Collapse
Affiliation(s)
- Hui Yang
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences , Massey University , Palmerston North 4442 , New Zealand
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P.R. China
- Department of Chemistry , University of South Florida , CHE205A, 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Siobhan J Bradley
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6140 , New Zealand
| | - Xin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P.R. China
| | - Andrew Chan
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences , The University of Auckland , Auckland 1142 , New Zealand
| | - Geoffrey I N Waterhouse
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences , The University of Auckland , Auckland 1142 , New Zealand
| | - Thomas Nann
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6140 , New Zealand
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P.R. China
| | - Paul E Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences , University of Canterbury , Christchurch 8140 , New Zealand
| | - Shengqian Ma
- Department of Chemistry , University of South Florida , CHE205A, 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Shane G Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences , Massey University , Palmerston North 4442 , New Zealand
| |
Collapse
|
34
|
Wang J, Chen F, Jin Y, Johnston RL. Gold-Copper Aerogels with Intriguing Surface Electronic Modulation as Highly Active and Stable Electrocatalysts for Oxygen Reduction and Borohydride Oxidation. CHEMSUSCHEM 2018; 11:1354-1364. [PMID: 29438594 DOI: 10.1002/cssc.201800052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/06/2018] [Indexed: 06/08/2023]
Abstract
We, for the first time, report the successful synthesis of self-assembled AuCu aerogels by a one-pot kinetically controlled approach. A startling electronic modulation effect of Cu on Au was observed across the entire alloy composition range, for which the optimal upshift of the d-band center for the highest activities was 0.24 eV. Owing to the combination of a nanoporous architecture and a robust electronic effect, the Au52 Cu48 aerogels exhibited better catalytic performance for the oxygen reduction reaction (ORR) and the direct borohydride oxidation reaction (BOR) than commercial Pt/C catalysts. The specific and mass ORR activities were 4.5 and 6.3 times higher, respectively, on the Au52 Cu48 aerogels than on Pt/C with negligible activity decay even after 10 000 cycles and a duration of 40 000 s. For the BOR, the Au52 Cu48 aerogels also exhibited far better selectivity and activity than Pt/C. The new AuCu aerogels show great potential as a promising alternative for Pt-based catalysts in fuel cells.
Collapse
Affiliation(s)
- Jiali Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yachao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Roy L Johnston
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
35
|
Yan X, Hu X, Fu G, Xu L, Lee JM, Tang Y. Facile Synthesis of Porous Pd 3 Pt Half-Shells with Rich "Active Sites" as Efficient Catalysts for Formic Acid Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703940. [PMID: 29409151 DOI: 10.1002/smll.201703940] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Exploring highly efficient electrocatalysts is greatly important for the widespread uptake of the fuel cells. However, many newly generated nanocrystals with attractive nanostructures often have extremely limited surface area or large particle-size, which leads them to display limited electrocatalytic performance. Herein, a novel anode catalyst of hollow and porous Pd3 Pt half-shells with rich "active sites" is synthesized by using urea as a guiding surfactant. It is identified that the formation of Pd3 Pt half-shells involves the combination of bubble guiding, in situ deposition of particles and bubble burst. The obtained Pd3 Pt half-shells demonstrate a rich edge area with abundant exposed active sites and surface defects, indicating great potential for the electrocatalysis. When used as an electrocatalyst, the Pd3 Pt half-shells exhibit remarkably improved electrocatalytic performance for formic acid oxidation (FAO), where it promotes the dehydrogenation process of FAO by suppressing the formation of poisonous species COads via the electronic effect and ensemble effect.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuejiao Hu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
36
|
Zeb Gul Sial MA, Ud Din MA, Wang X. Multimetallic nanosheets: synthesis and applications in fuel cells. Chem Soc Rev 2018; 47:6175-6200. [DOI: 10.1039/c8cs00113h] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
From the perspective of multimetallic nanosheets, their synthesis and applications in fuel cells are highlighted.
Collapse
Affiliation(s)
- Muhammad Aurang Zeb Gul Sial
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Muhammad Aizaz Ud Din
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| |
Collapse
|
37
|
Lai J, Guo S. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702156. [PMID: 29116672 DOI: 10.1002/smll.201702156] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field.
Collapse
Affiliation(s)
- Jianping Lai
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Shaojun Guo
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
38
|
Park J, Kanti Kabiraz M, Kwon H, Park S, Baik H, Choi SI, Lee K. Radially Phase Segregated PtCu@PtCuNi Dendrite@Frame Nanocatalyst for the Oxygen Reduction Reaction. ACS NANO 2017; 11:10844-10851. [PMID: 29024581 DOI: 10.1021/acsnano.7b04097] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pt-based alloy nanoframes have shown great potential as electrocatalysts toward the oxygen reduction reaction (ORR) in fuel cells. However, the intrinsically infirm nanoframes could be severely deformed during extended electro-cyclings, which eventually leads to the loss of the initial catalytic activity. Therefore, the structurally robust nanoframe is a worthy synthetic target. Furthermore, ternary alloy phase electrocatalysts offer more opportunities in optimizing the stability and activity than binary alloy ones. Herein, we report a robust PtCuNi ternary nanoframe, structurally fortified with an inner-lying PtCu dendrite, which shows a highly active and stable catalytic performance toward ORR. Remarkably, the PtCu@PtCuNi catalyst exhibited 11 and 16 times higher mass and specific activities than those of commercial Pt/C.
Collapse
Affiliation(s)
- Jongsik Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Korea
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| | - Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University , Daegu 41566, Korea
| | - Hyukbu Kwon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| | - Suhyun Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI) , Seoul 02841, Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University , Daegu 41566, Korea
| | - Kwangyeol Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Korea
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| |
Collapse
|
39
|
Jiang B, Li C, Qian H, Hossain MSA, Malgras V, Yamauchi Y. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores. Angew Chem Int Ed Engl 2017; 56:7836-7841. [DOI: 10.1002/anie.201703609] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/03/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Bo Jiang
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Cuiling Li
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Huayu Qian
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Md. Shahriar A. Hossain
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| | - Victor Malgras
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| |
Collapse
|
40
|
Jiang B, Li C, Qian H, Hossain MSA, Malgras V, Yamauchi Y. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bo Jiang
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Cuiling Li
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Huayu Qian
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Md. Shahriar A. Hossain
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| | - Victor Malgras
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| |
Collapse
|
41
|
Mahmood A, Xie N, Ud Din MA, Saleem F, Lin H, Wang X. Shape controlled synthesis of porous tetrametallic PtAgBiCo nanoplates as highly active and methanol-tolerant electrocatalyst for oxygen reduction reaction. Chem Sci 2017; 8:4292-4298. [PMID: 28626567 PMCID: PMC5468992 DOI: 10.1039/c7sc00318h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
Mechanistic control is a powerful means for manufacturing specific shapes of metal nanostructures and optimizing their performance in a variety of applications. Thus, we successfully synthesized multimetallic nanoplates (PtAgBiCo and PtAgBi) by combining the concepts of crystal symmetry, oxidative etching and seed ratio, and tuned their activity, stability and methanol tolerance, as well as Pt utilization, for the oxygen reduction reaction in direct methanol fuel cells. Systematic studies reveal that the formation of PtAgBiCo triangular nanoplates with a high morphological yield (>90%) can be achieved by crystallinity alteration, while electrochemical measurements indicate that the PtAgBiCo nanoplates have superior electrocatalytic activity towards the oxygen reduction reaction. The specific and mass activity of the PtAgBiCo nanoplates are 8 and 5 times greater than that of the commercial Pt/C catalyst, respectively. In addition, the tetrametallic PtAgBiCo nanoplates exhibit a more positive half-wave potential for the oxygen reduction reaction and possess an excellent methanol tolerance limit compared with the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Azhar Mahmood
- Key Lab of Organic Optoelectronics and Molecular Engineering , Department of Chemistry , Tsinghua University , Beijing , 100084 , China .
| | - Nanhong Xie
- Key Lab of Organic Optoelectronics and Molecular Engineering , Department of Chemistry , Tsinghua University , Beijing , 100084 , China .
| | - Muhammad Aizaz Ud Din
- Key Lab of Organic Optoelectronics and Molecular Engineering , Department of Chemistry , Tsinghua University , Beijing , 100084 , China .
| | - Faisal Saleem
- Key Lab of Organic Optoelectronics and Molecular Engineering , Department of Chemistry , Tsinghua University , Beijing , 100084 , China .
| | - Haifeng Lin
- Key Lab of Organic Optoelectronics and Molecular Engineering , Department of Chemistry , Tsinghua University , Beijing , 100084 , China .
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering , Department of Chemistry , Tsinghua University , Beijing , 100084 , China .
| |
Collapse
|