1
|
Jeong H, Seebauer EG. Influence of interstitial cluster families on post-synthesis defect manipulation and purification of oxides using submerged surfaces. J Chem Phys 2024; 161:121103. [PMID: 39319644 DOI: 10.1063/5.0230224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
Injection of interstitial atoms by specially prepared surfaces submerged in liquid water near room temperature offers an attractive approach for post-synthesis defect manipulation and isotopic purification in device structures. However, this approach can be limited by trapping reactions that form small defect clusters. The compositions and dissociation barriers of such clusters remain mostly unknown. This communication seeks to address this gap by measuring the dissociation energies of oxygen interstitial traps in rutile TiO2 and wurtzite ZnO exposed to liquid water. Isotopic self-diffusion measurements using 18O, combined with progressive annealing protocols, suggest the traps are small interstitial clusters with dissociation energies ranging from 1.3 to 1.9 eV. These clusters may comprise a family incorporating various numbers, compositions, and configurations of O and H atoms; however, in TiO2, native interstitial clusters left over from initial synthesis may also play a role. Families of small clusters are probably common in semiconducting oxides and have several consequences for post-synthesis defect manipulation and purification of semiconductors using submerged surfaces.
Collapse
Affiliation(s)
- Heonjae Jeong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Edmund G Seebauer
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
2
|
Wang C, Xie Z, Wang Y, Ding Y, Leung MKH, Ng YH. Defects of Metal Halide Perovskites in Photocatalytic Energy Conversion: Friend or Foe? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402471. [PMID: 38828743 PMCID: PMC11304286 DOI: 10.1002/advs.202402471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Photocatalytic solar-to-fuel conversion over metal halide perovskites (MHPs) has recently attracted much attention, while the roles of defects in MHPs are still under debate. Specifically, the mainstream viewpoint is that the defects are detrimental to photocatalytic performance, while some recent studies show that certain types of defects contribute to photoactivity enhancement. However, a systematic summary of why it is contradictory and how the defects in MHPs affect photocatalytic performance is still lacking. In this review, the innovative roles of defects in MHP photocatalysts are highlighted. First, the origins of defects in MHPs are elaborated, followed by clarifying certain benefits of defects in photocatalysts including optical absorption, charge dynamics, and surface reaction. Afterward, the recent progress on defect-related MHP photocatalysis, i.e., CO2 reduction, H2 generation, pollutant degradation, and organic synthesis is systematically discussed and critically appraised, putting emphasis on their beneficial effects. With defects offering peculiar sets of merits and demerits, the personal opinion on the ongoing challenges is concluded and outlining potentially promising opportunities for engineering defects on MHP photocatalysts. This critical review is anticipated to offer a better understanding of the MHP defects and spur some inspiration for designing efficient MHP photocatalysts.
Collapse
Affiliation(s)
- Chunhua Wang
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Zhirun Xie
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Yannan Wang
- Department of Materials EngineeringKU LeuvenKasteelpark Arenberg 44Leuven3001Belgium
| | - Yang Ding
- College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhou310018China
| | - Michael K. H. Leung
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Yun Hau Ng
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| |
Collapse
|
3
|
Sharma M, Sajwan D, Gouda A, Sharma A, Krishnan V. Recent progress in defect-engineered metal oxides for photocatalytic environmental remediation. Photochem Photobiol 2024; 100:830-896. [PMID: 38757336 DOI: 10.1111/php.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Rapid industrial advancement over the last few decades has led to an alarming increase in pollution levels in the ecosystem. Among the primary pollutants, harmful organic dyes and pharmaceutical drugs are directly released by industries into the water bodies which serves as a major cause of environmental deterioration. This warns of a severe need to find some sustainable strategies to overcome these increasing levels of water pollution and eliminate the pollutants before being exposed to the environment. Photocatalysis is a well-established strategy in the field of pollutant degradation and various metal oxides have been proven to exhibit excellent physicochemical properties which makes them a potential candidate for environmental remediation. Further, with the aim of rapid industrialization of photocatalytic pollutant degradation technology, constant efforts have been made to increase the photocatalytic activity of various metal oxides. One such strategy is the introduction of defects into the lattice of the parent catalyst through doping or vacancy which plays a major role in enhancing the catalytic activity and achieving excellent degradation rates. This review provides a comprehensive analysis of defects and their role in altering the photocatalytic activity of the material. Various defect-rich metal oxides like binary oxides, perovskite oxides, and spinel oxides have been summarized for their application in pollutant degradation. Finally, a summary of existing research, followed by the existing challenges along with the potential countermeasures has been provided to pave a path for the future studies and industrialization of this promising field.
Collapse
Affiliation(s)
- Manisha Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Ashrumochan Gouda
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Anitya Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| |
Collapse
|
4
|
Park SH, Kim S, Park JW, Kim S, Cha W, Lee J. In-situ and wavelength-dependent photocatalytic strain evolution of a single Au nanoparticle on a TiO 2 film. Nat Commun 2024; 15:5416. [PMID: 38937506 PMCID: PMC11211407 DOI: 10.1038/s41467-024-49862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
Photocatalysis is a promising technique due to its capacity to efficiently harvest solar energy and its potential to address the global energy crisis. However, the structure-activity relationships of photocatalyst during wavelength-dependent photocatalytic reactions remains largely unexplored because it is difficult to measure under operating conditions. Here we show the photocatalytic strain evolution of a single Au nanoparticle (AuNP) supported on a TiO2 film by combining three-dimensional (3D) Bragg coherent X-ray diffraction imaging with an external light source. The wavelength-dependent generation of reactive oxygen species (ROS) has significant effects on the structural deformation of the AuNP, leading to its strain evolution. Density functional theory (DFT) calculations are employed to rationalize the induced strain caused by the adsorption of ROS on the AuNP surface. These observations provide insights of how the photocatalytic activity impacts on the structural deformation of AuNP, contributing to the general understanding of the atomic-level catalytic adsorption process.
Collapse
Affiliation(s)
- Sung Hyun Park
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sukyoung Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Whan Park
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Republic of Korea
| | - Seunghee Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Wonsuk Cha
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Chen Y, Ma S, Yang Y, Qiu J, Kang X, Liu G. Effective nitrogen doping of TiO 2 polymorphs at mild temperatures for visible-light-responsive hydrogen evolution. J Colloid Interface Sci 2024; 664:640-649. [PMID: 38490039 DOI: 10.1016/j.jcis.2024.03.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Herein, a mild-temperature nitrogen doping route with the urea-derived gaseous species as the active doping agent is proposed to realize visible-light-responsive photocatalytic hydrogen evolution both for the anatase and rutile TiO2. DFT simulations reveal that the cyanic acid (HOCN), derived from the decomposition of urea, plays a curial role in the effective doping of nitrogen in TiO2 at mild temperatures. Photocatalytic performance demonstrates that both the anatase and rutile TiO2 doped at mild temperatures exhibit the highest hydrogen evolution rates, although the ones prepared at high temperatures possess higher absorbance in the visible range. Steady-state and transient surface photovoltage characterizations of these doped TiO2 polymorphs prepared at different temperatures reveal that harsh conditions (high temperature reaction) typically result in the formation of intrinsic defects that are detrimental to the transport of the low-energy visible-light-induced electrons, while the mild-temperature nitrogen-doping could flatten the pristine upward band bending without triggering the formation of Ti3+, thus achieving enhanced visible-light-responsive hydrogen evolution rates. We anticipate that our findings will provide inspiring information for shrinking the gap between the visible-light-absorbance and the visible-light-responsiveness in the band engineering of wide-bandgap metal-oxide photocatalysts.
Collapse
Affiliation(s)
- Yaping Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shangyi Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yongqiang Yang
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Jianhang Qiu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiangdong Kang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Gang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
6
|
Manjunatha C, Rastogi CK, Manmadha Rao B, Girish Kumar S, Varun S, Raitani K, Maurya G, Karthik B, Swathi C, Sadrzadeh M, Khosla A. Advances in Hierarchical Inorganic Nanostructures for Efficient Solar Energy Harvesting Systems. CHEMSUSCHEM 2024; 17:e202301755. [PMID: 38478710 DOI: 10.1002/cssc.202301755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/10/2024] [Indexed: 04/17/2024]
Abstract
The urgent need to address the global energy and environmental crisis necessitates the development of efficient solar-power harvesting systems. Among the promising candidates, hierarchical inorganic nanostructures stand out due to their exceptional attributes, including a high specific surface area, abundant active sites, and tunable optoelectronic properties. In this comprehensive review, we delve into the fundamental principles underlying various solar energy harvesting technologies, including dye-sensitized solar cells (DSSCs), photocatalytic, photoelectrocatalytic (water splitting), and photothermal (water purification) systems, providing a foundational understanding of their operation. Thereafter, the discussion is focused on recent advancements in the synthesis, design, and development of hierarchical nanostructures composed of diverse inorganic material combinations, tailored for each of these solar energy harvesting systems. We meticulously elaborate on the distinct synthesis methods and conditions employed to fine-tune the morphological features of these hierarchical nanostructures. Furthermore, this review offers profound insights into critical aspects such as electron transfer mechanisms, band gap engineering, the creation of hetero-hybrid structures to optimize interface chemistry through diverse synthesis approaches, and precise adjustments of structural features. Beyond elucidating the scientific fundamentals, this review explores the large-scale applications of the aforementioned solar harvesting systems. Additionally, it addresses the existing challenges and outlines the prospects for achieving heightened solar-energy conversion efficiency.
Collapse
Affiliation(s)
- C Manjunatha
- Centre for Nanomaterials and Devices, Department of Chemistry, RV College of Engineering, Bengaluru, India
| | | | - B Manmadha Rao
- Department of Physics, VIT-AP University, Amaravati, Andhra Pradesh, India
| | - S Girish Kumar
- Centre for Nanomaterials and Devices, Department of Chemistry, RV College of Engineering, Bengaluru, India
| | - S Varun
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
| | - Karthik Raitani
- Centre for Advanced Studies, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, India
| | - Gyanprakash Maurya
- Centre for Advanced Studies, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, India
| | - B Karthik
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
| | - C Swathi
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Canada
| | - Ajit Khosla
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Province, China
| |
Collapse
|
7
|
Lv K, Hou M, Kou Y, Yu H, Liu M, Zhao T, Shen J, Huang X, Zhang J, Mady MF, Elzatahry AA, Li X, Zhao D. Black Titania Janus Mesoporous Nanomotor for Enhanced Tumor Penetration and Near-Infrared Light-Triggered Photodynamic Therapy. ACS NANO 2024; 18:13910-13923. [PMID: 38752679 DOI: 10.1021/acsnano.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Thanks to their excellent photoelectric characteristics to generate cytotoxic reactive oxygen species (ROS) under the light-activation process, TiO2 nanomaterials have shown significant potential in photodynamic therapy (PDT) for solid tumors. Nevertheless, the limited penetration depth of TiO2-based photosensitizers and excitation sources (UV/visible light) for PDT remains a formidable challenge when confronted with complex tumor microenvironments (TMEs). Here, we present a H2O2-driven black TiO2 mesoporous nanomotor with near-infrared (NIR) light absorption capability and autonomous navigation ability, which effectively enhances solid tumor penetration in NIR light-triggered PDT. The nanomotor was rationally designed and fabricated based on the Janus mesoporous nanostructure, which consists of a NIR light-responsive black TiO2 nanosphere and an enzyme-modified periodic mesoporous organosilica (PMO) nanorod that wraps around the TiO2 nanosphere. The overexpressed H2O2 can drive the nanomotor in the TME under catalysis of catalase in the PMO domain. By precisely controlling the ratio of TiO2 and PMO compartments in the Janus nanostructure, TiO2&PMO nanomotors can achieve optimal self-propulsive directionality and velocity, enhancing cellular uptake and facilitating deep tumor penetration. Additionally, by the decomposition of endogenous H2O2 within solid tumors, these nanomotors can continuously supply oxygen to enable highly efficient ROS production under the NIR photocatalysis of black TiO2, leading to intensified PDT effects and effective tumor inhibition.
Collapse
Affiliation(s)
- Kexin Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mengmeng Hou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yufang Kou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongyue Yu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mengli Liu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jiacheng Shen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xirui Huang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jie Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mohamed F Mady
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Ahmed A Elzatahry
- Department of Physics and Materials Science, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Xiaomin Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
8
|
Zuo C, Tang X, Wang H, Su Q. A Review of the Effect of Defect Modulation on the Photocatalytic Reduction Performance of Carbon Dioxide. Molecules 2024; 29:2308. [PMID: 38792169 PMCID: PMC11123808 DOI: 10.3390/molecules29102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Constructive defect engineering has emerged as a prominent method for enhancing the performance of photocatalysts. The mechanisms of the influence of defect types, concentrations, and distributions on the efficiency, selectivity, and stability of CO2 reduction were revealed for this paper by analyzing the effects of different types of defects (e.g., metallic defects, non-metallic defects, and composite defects) on the performance of photocatalysts. There are three fundamental steps in defect engineering techniques to promote photocatalysis, namely, light absorption, charge transfer and separation, and surface-catalyzed reactions. Defect engineering has demonstrated significant potential in recent studies, particularly in enhancing the light-harvesting, charge separation, and adsorption properties of semiconductor photocatalysts for reducing processes like carbon dioxide reduction. Furthermore, this paper discusses the optimization method used in defect modulation strategy to offer theoretical guidance and an experimental foundation for designing and preparing efficient and stable photocatalysts.
Collapse
Affiliation(s)
- Cheng Zuo
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xiao Tang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Haiquan Wang
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qian Su
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
9
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Heterogeneous Photocatalytic Degradation, Part II: Focus on Oxygen Vacancy. ACS OMEGA 2024; 9:6093-6127. [PMID: 38371849 PMCID: PMC10870278 DOI: 10.1021/acsomega.3c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Environmental problems, including the increasingly polluted water and the energy crisis, have led to a need to propose novel strategies/methodologies to contribute to sustainable progress and enhance human well-being. For these goals, heterogeneous semiconducting-based photocatalysis is introduced as a green, eco-friendly, cost-effective, and effective strategy. The introduction of anion vacancies in semiconductors has been well-known as an effective strategy for considerably enhancing the photocatalytic activity of such photocatalytic systems, giving them the advantages of promoting light harvesting, facilitating photogenerated electron-hole pair separation, optimizing the electronic structure, and enhancing the yield of reactive radicals. This Review will introduce the effects of anion vacancy-dominated photodegradation systems. Then, their mechanism will illustrate how an anion vacancy changes the photodegradation pathway to enhance the degradation efficiency toward pollutants and the overall photocatalytic performance. Specifically, the vacancy defect types and the methods of tailoring vacancies will be briefly illustrated, and this part of the Review will focus on the oxygen vacancy (OV) and its recent advances. The challenges and development issues for engineered vacancy defects in photocatalysts will also be discussed for practical applications and to provide a promising research direction. Finally, some prospects for this emerging field will be proposed and suggested. All permission numbers for adopted figures from the literature are summarized in a separate file for the Editor.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| | - Ahmad Reza Massah
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| |
Collapse
|
10
|
Xing Y, Zhang Y, Wang C, Wang R, Li D, Liang S, Zhang X. Activation of 2D titanate nanosheet photocatalysts by nitrogen doping and solution plasma processing. Dalton Trans 2023; 52:17193-17200. [PMID: 37942775 DOI: 10.1039/d3dt02550k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Novel two-dimensional (2D) oxides are of great interest for photocatalysis because of their superlative physical features, namely, large surface areas, short charge diffusion pathways, high crystallinity and easy surface modification. However, most 2D oxides suffer from weak visible light absorption and severe photogenerated carrier recombination. Nitrogen doping can successfully narrow the bandgap of 2D oxides but can hardly improve the charge separation. In this work, we pre-dope nitrogen into 2D titanate nanosheets (HTiO), followed by surface processing with solution plasma. By dual modification of nitrogen doping and solution plasma processing (SPP), the modified 2D titanate nanosheets (N-HTiO-SPP) display broad absorption extending to the visible light region and the healing of oxygen vacancies brought about by nitrogen doping. Compared with HTiO and nitrogen doped titanate (N-HTiO), a higher removal rate and mineralization rate towards the photocatalytic degradation of acetaldehyde were achieved over N-HTiO-SPP under solar light. This work provides a powerful way to activate 2D wide bandgap semiconductors for enhanced photocatalytic activity.
Collapse
Affiliation(s)
- Yanmei Xing
- Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Yiyan Zhang
- Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Changhua Wang
- Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Rui Wang
- Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Dashuai Li
- Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Shuang Liang
- Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Xintong Zhang
- Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
11
|
Deng G, Kang X, Yang Y, Wang L, Liu G. Skin B/N-doped anatase TiO 2 {001} nanoflakes for visible-light photocatalytic water oxidation. J Colloid Interface Sci 2023; 649:140-147. [PMID: 37348333 DOI: 10.1016/j.jcis.2023.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The limited visible-light-responsive photoactivities of most doped wide-bandgap photocatalysts with widened absorption range have long been the obstacles for the efficient conversion of solar energy to chemical energy by photocatalysis. The weak transport ability of visible-light-induced low-energy charge carriers, and numerous recombination centers arising from the energy-band modifiers along the transport path are two major factors responsible for such a mismatch. A potential solution is to shorten the transport path of photo-induced charges in well-modulated light absorbers with low-dimensional structure and the spatially concentrated dopants underneath their surfaces. As a proof of concept, skin B/N-doped red anatase TiO2 {001} nanoflakes with the absorption edge up to 675 nm were synthesized in this study. Experimental results revealed that boron dopants in the TiO2 nanoflakes from the hydrolysis of nanosized TiB2 played a crucial role in controlling nitrogen doping in the surface layer of the nanoflakes. As visible light excitation occurs at the surface layer, the photons can be sufficiently absorbed by the formed energy levels at the surface layers, and the photogenerated charge carriers can effectively migrate to the surface, thus leading to efficient visible-light-responsive photocatalytic oxygen evolution activity from water oxidation.
Collapse
Affiliation(s)
- Guoqiang Deng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Xiangdong Kang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Yongqiang Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
12
|
Bao X, Lu D, Wang Z, Yin H, Zhu B, Chen B, Shi M, Zhang Y, Xu Q, Qin Y, Shen XC, Wu K. Significantly enhanced photothermal catalytic CO 2 reduction over TiO 2/g-C 3N 4 composite with full spectrum solar light. J Colloid Interface Sci 2023; 638:63-75. [PMID: 36736119 DOI: 10.1016/j.jcis.2023.01.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Using solar energy to drive catalytic conversion of CO2 into value-added chemicals has great potential to alleviate the global energy shortage and anthropogenic climate change. Herein, a "hitting three birds with one stone" strategy was reported to prepared boron-doped g-C3N4/TiO2-x composite (BCT) by a one-step thermal reduction process. A series of characterizations showed that the composite catalyst has extended full-spectrum absorption, rapid photogenerated charge separation, and outstanding CO2 photoreduction performance (265.2 μmol g-1h-1), which is 7.5 and 9.2 times higher than that of pure TiO2 and g-C3N4, respectively. In addition, the CO2 conversion rate can be further increased to 345.1 μmol g-1h-1 at 70 °C due to its excellent photothermal conversion. Mechanistic studies reveal that synergistic effects alter the charge density distribution, thereby lowering the energy barrier for CO2 conversion by adsorbing and activating CO2 molecules. This work provides a novel three-in-one integrated strategy for fabricating high-efficiency catalysts.
Collapse
Affiliation(s)
- Xiaoyan Bao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Dawei Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Zining Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Yin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Biao Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Bin Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Meixiang Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Qianxin Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yumei Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Liu W, Li B, Zhao J. Efficient adsorption and photodegradation of various organic dyes over B-doped TiO2-x. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
14
|
Deng G, Rong J, Yang Y, Hong X, Liu G. Red anatase TiO 2 microspheres with exposed major {001} facets and boron-stabilized hydrogen-occupied oxygen vacancies for visible-light-responsive water oxidation. J Colloid Interface Sci 2023; 640:211-219. [PMID: 36863178 DOI: 10.1016/j.jcis.2023.02.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
In pursuit of efficient solar energy to chemical energy conversion through band engineering of wide-bandgap photocatalysts such as TiO2, a compromise occurs between a narrow bandgap and high-redox-capacity photo-induced charge carriers, which impairs the potential advantages associated with the widened absorption range. The key to this compromise is an integrative modifier that can simultaneously modulate both the bandgap and band edge positions. Herein, we theoretically and experimentally demonstrate that oxygen vacancies occupied by boron-stabilized hydrogen pairs (OVBH) serve as an integrative band modifier. Compared to hydrogen-occupied oxygen vacancies (OVH), which require the aggregation of nanosized anatase TiO2 particles, oxygen vacancies coupled with boron (OVBH) can be easily introduced into large and highly crystalline TiO2 particles, as shown by density functional theory (DFT) calculations. The coupling with interstitial boron facilitates the introduction of paired hydrogen atoms. The red-colored {001} faceted anatase TiO2 microspheres with OVBH benefit from the narrowed bandgap of 1.84 eV and the down-shifted band position. These microspheres not only absorb long-wavelength visible light up to 674 nm but also enhance visible-light-driven photocatalytic oxygen evolution.
Collapse
Affiliation(s)
- Guoqiang Deng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Ju Rong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yongqiang Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| | - Xingxing Hong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
15
|
Oxygen-vacancy-rich Ag/Bi5O7Br nanosheets enable improved photocatalytic NO removal and oxygen evolution under visible light exposure. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Ren Z, Chen B, Li Y, Carabineiro SA, Duan Y, Dong F. Remarkable formaldehyde photo-oxidation efficiency of Zn2SnO4 co-modified by Mo doping and oxygen vacancies. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Xue J, Zhang H, Guan R, Liu T, Gao J, Liu X, Wu M, Guo K, Jia H, Shen Q. Kinetics analysis of oxygen vacancies in TiO2 solar water reduction: Revealing effects and eliminating disadvantages. J Colloid Interface Sci 2023; 630:382-393. [DOI: 10.1016/j.jcis.2022.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
18
|
Wang F, Yang S, Lu Q, Liu W, Sun P, Wang Q, Cao W. Colloidal Cu-doped TiO2 nanocrystals containing oxygen vacancies for highly-efficient photocatalytic degradation of benzene and antibacterial. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
Li Z, Mao C, Pei Q, Duchesne PN, He T, Xia M, Wang J, Wang L, Song R, Jelle AA, Meira DM, Ge Q, Ghuman KK, He L, Zhang X, Ozin GA. Engineered disorder in CO2 photocatalysis. Nat Commun 2022; 13:7205. [DOI: 10.1038/s41467-022-34798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractLight harvesting, separation of charge carriers, and surface reactions are three fundamental steps that are essential for an efficient photocatalyst. Here we show that these steps in the TiO2 can be boosted simultaneously by disorder engineering. A solid-state reduction reaction between sodium and TiO2 forms a core-shell c-TiO2@a-TiO2-x(OH)y heterostructure, comprised of HO-Ti-[O]-Ti surface frustrated Lewis pairs (SFLPs) embedded in an amorphous shell surrounding a crystalline core, which enables a new genre of chemical reactivity. Specifically, these SFLPs heterolytically dissociate dihydrogen at room temperature to form charge-balancing protonated hydroxyl groups and hydrides at unsaturated titanium surface sites, which display high reactivity towards CO2 reduction. This crystalline-amorphous heterostructure also boosts light absorption, charge carrier separation and transfer to SFLPs, while prolonged carrier lifetimes and photothermal heat generation further enhance reactivity. The collective results of this study motivate a general approach for catalytically generating sustainable chemicals and fuels through engineered disorder in heterogeneous CO2 photocatalysts.
Collapse
|
20
|
Gao J, Qian X, Wei Q, Chen Z, Liu C, Wang W, Chen J, Chen X, Liu Y, Wei G. Construction of core-shell cesium lead bromide-silica by precipitation coating method with applications in aqueous photocatalysis. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Haruna A, Chong FK, Ho YC, Merican ZMA. Preparation and modification methods of defective titanium dioxide-based nanoparticles for photocatalytic wastewater treatment-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70706-70745. [PMID: 36044146 DOI: 10.1007/s11356-022-22749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The rapid population growth and industrial expansion worldwide have created serious water contamination concerns. To curb the pollution issue, it has become imperative to use a versatile material for the treatment. Titanium dioxide (TiO2) has been recognized as the most-studied nanoparticle in various fields of science and engineering due to its availability, low cost, efficiency, and other fascinating properties with a wide range of applications in modern technology. Recent studies revealed the photocatalytic activity of the material for the treatment of industrial effluents to promote environmental sustainability. With the wide band gap energy of 3.2 eV, TiO2 can be activated under UV light; thus, many strategies have been proposed to extend its photoabsorption to the visible light region. In what follows, this has generated increasing attention to study its characteristics and structural modifications in different forms for photocatalytic applications. The present review provides an insight into the understanding of the synthesis methods of TiO2, the current progress in the treatment techniques for the degradation of wide environmental pollutants employing modified TiO2 nanoparticles, and the factors affecting its photocatalytic activities. Further, recent developments in using titania for practical applications, the approach for designing novel nanomaterials, and the prospects and opportunities in this exciting area have been discussed.
Collapse
Affiliation(s)
- Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria.
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Fai-Kait Chong
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre for Urban Resource Sustainability, Institute for Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
22
|
Co, Cu, Fe, and Ni Deposited over TiO2 and Their Photocatalytic Activity in the Degradation of 2,4-Dichlorophenol and 2,4-Dichlorophenoxyacetic Acid. INORGANICS 2022. [DOI: 10.3390/inorganics10100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pure TiO2 synthesized by the sol-gel method and subsequently deposited at 5% by weight with Co, Cu, Fe, and Ni ions by the deposition–precipitation method were studied as photocatalysts. The nanomaterials were analyzed by SEM, TEM, UV-Vis DRS, DRX, Physisorption N2, and XPS. The SEM and TEM images present a semi-spherical shape with small agglomerations of particles and average size between 63 and 65 nm. UV-Vis results show that a reduction below 3.2 eV exhibits a redshift displacement and increment in the optical absorption of the nanoparticles promoting the absorption in the UV-visible region. XRD spectra and analysis SAED suggest the characteristic anatase phase in TiO2 and deposited materials according to JCPDS 21-1272. The specific surface area was calculated and the nanomaterial Ni/TiO2 (21.3 m2 g−1) presents a slight increment when comparing to TiO2 (20.37 m2g−1). The information generated by the XPS spectra present the deposition of metallic ions on the support and the presence of different valence states for each photocatalyst. The photocatalytic activity was carried out in an aqueous solution with 80 mg L−1 of 2,4-D or 2,4-DCP under UV light (285 nm) with 100 mg L−1 of each photocatalysts for 360 min. The nanomaterial that presented the best efficiency was Ni/TiO2, obtaining a degradation of 85.6% and 90.3% for 2,4-D and 2,4-DCP, respectively. Similarly, this material was the one that presented the highest mineralization, 68.3% and 86.5% for 2,4-D and 2,4-DCP, respectively. Photocatalytic reactions correspond to the pseudo-first-order Langmuir–Hinshelwood model.
Collapse
|
23
|
Jia T, Sun C, Shi N, Yu D, Long F, Hu J, Wang J, Dong B, Li J, Fu F, Hu S, Lee JH. Efficient Oxygen Vacancy Defect Engineering for Enhancing Visible-Light Photocatalytic Performance over SnO 2-x Ultrafine Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3342. [PMID: 36234469 PMCID: PMC9565659 DOI: 10.3390/nano12193342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Regardless of its good electron-transfer ability and chemical stability, pure Zn2SnO4 (ZSO) still has intrinsic deficiencies of a narrow spectral response region, poor absorption ability, and high photo-activated carrier recombination rate. Aiming to overcome the deficiencies above-mentioned, we designed a facile hydrothermal route for etching ZSO nanoparticles in a dilute acetic acid solution, through which efficient oxygen vacancy defect engineering was accomplished and SnO2-x nanocrystals were obtained with an ultrafine particle size. In comparison with the untreated ZSO nanoparticles, the specific surface area of SnO2-x nanocrystals was substantially enlarged, subsequently leading to the notable augmentation of active sites for the photo-degradation reaction. Aside from the above, it is worth noting that SnO2-x nanocrystals were endowed with a broad spectral response, enhancing light absorption capacity and the photo-activated carrier transfer rate with the aid of oxygen vacancy defect engineering. Accordingly, SnO2-x nanocrystals exhibited significantly enhanced photoactivity toward the degradation of the organic dye rhodamine B (RhB), which could be imputed to the synergistic effect of increasing active sites, intensified visible-light harvesting, and the separation rate of the photo-activated charge carrier caused by the oxygen vacancy defect engineering. In addition, these findings will inspire us to open up a novel pathway to design and prepare oxide compound photocatalysts modified by oxygen vacancy defects in pursuing excellent visible-light photoactivity.
Collapse
Affiliation(s)
- Tiekun Jia
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Chenxi Sun
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Nianfeng Shi
- Henan Province Engineering Research Center of Industrial Intelligent Vision, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Dongsheng Yu
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Fei Long
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Ji Hu
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jilin Wang
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Binbin Dong
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jili Li
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Fang Fu
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Shujing Hu
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
24
|
Benavides-Guerrero JA, Gerlein LF, Trudeau C, Banerjee D, Guo X, Cloutier SG. Synthesis of vacancy-rich titania particles suitable for the additive manufacturing of ceramics. Sci Rep 2022; 12:15441. [PMID: 36104380 PMCID: PMC9474447 DOI: 10.1038/s41598-022-19824-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
In the last decades, titania (or TiO2) particles played a crucial role in the development of photo-catalysis and better environmentally-friendly energy-harvesting techniques. In this work, we engineer a new generation of TiO2 particles rich in oxygen vacancies using a modified sol–gel synthesis. By design, these vacancy-rich particles efficiently absorb visible light to allow carefully-controlled light-induced conversion to the anatase or rutile crystalline phases. FTIR and micro-Raman spectroscopy reveal the formation of oxygen vacancies during conversion and explain this unique laser-assisted crystallization mechanism. We achieve low-energy laser-assisted crystallization in ambient environment using a modified filament 3D printer equipped with a low-power laser printhead. Since the established high-temperature treatment necessary to convert to crystalline TiO2 is ill-suited to additive manufacturing platforms, this work removes a major fundamental hurdle and opens whole new vistas of possibilities towards the additive manufacturing of ceramics, including carefully-engineered crystalline TiO2 substrates with potential applications for new and better photo-catalysis, fuel cells and energy-harvesting technologies.
Collapse
|
25
|
Verifying the relationships of defect site and enhanced photocatalytic properties of modified ZrO 2 nanoparticles evaluated by in-situ spectroscopy and STEM-EELS. Sci Rep 2022; 12:11295. [PMID: 35789195 PMCID: PMC9253032 DOI: 10.1038/s41598-022-15557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Base treatment and metal doping were evaluated as means of enhancing the photocatalytic activity of ZrO2 nanoparticles (NPs) via the generation of oxygen vacancies (OvS), and the sites responsible for this enhancement were identified and characterized by spectroscopic and microscopic techniques. We confirmed that OvS produced by base treatment engaged in photocatalytic activity for organic pollutant degradation, whereas surface defects introduced by Cr-ion doping engaged in oxidative catalysis of molecules. Moreover, we verified that base-treated ZrO2 NPs outperformed their Cr-ion doped counterparts as photocatalysts using in situ X-ray photoelectron spectroscopy and scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS). Thus, our study provides valuable information on the origin of the enhanced photocatalytic activity of modified ZrO2 NPs and demonstrates the practicality of in situ spectroscopy and STEM-EELS for the evaluation of highly efficient metal oxide photocatalysts.
Collapse
|
26
|
Zhang X, Tang P, Zhai G, Lin X, Zhang Q, Chen J, Wei X. Regulating Phase Junction and Oxygen Vacancies of TiO2 Nanoarrays for Boosted Photoelectrochemical Water Oxidation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2076-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Wang S, Zhang JJ, Zong MY, Xu J, Wang DH, Bu XH. Energy Level Engineering: Ru Single Atom Anchored on Mo-MOF with a [Mo 8O 26(im) 2] 4– Structure Acts as a Biomimetic Photocatalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shuo Wang
- TKL of Metal and Molecule Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ji-Jie Zhang
- TKL of Metal and Molecule Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng-Ya Zong
- TKL of Metal and Molecule Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jun Xu
- Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Lab for Rare Earth Materials and Applications, National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dan-Hong Wang
- TKL of Metal and Molecule Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- TKL of Metal and Molecule Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
28
|
Ma J, Zhang X, Zhang Q, Kang K, Zhang J, Wang L. Application of defective TiO2 inverse opal in photocatalytic non-oxidative CH4 coupling. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation. NANOMATERIALS 2022; 12:nano12091564. [PMID: 35564273 PMCID: PMC9105496 DOI: 10.3390/nano12091564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
Abstract
Nitrogen (N) doping is an effective strategy for improving the solar-driven photocatalytic performance of anatase TiO2, but controllable methods for nitrogen-rich doping and associated defect engineering are highly desired. In this work, N-rich doped anatase TiO2 nanoparticles (4.2 at%) were successfully prepared via high-temperature nitridation based on thermally stable H3PO4-modified TiO2. Subsequently, the associated deep-energy-level defects such as oxygen vacancies and Ti3+ were successfully healed by smart photo-Fenton oxidation treatment. Under visible-light irradiation, the healed N-doped TiO2 exhibited a ~2-times higher activity of gas-phase acetaldehyde degradation than the non-treated one and even better than standard P25 TiO2 under UV-visible-light irradiation. The exceptional performance is attributed to the extended spectral response range from N-rich doping, the enhanced charge separation from hole capturing by N-doped species, and the healed defect levels with the proper thermodynamic ability for facilitating O2 reduction, depending on the results of ∙O2− radicals and defect measurement by electron spin resonance, X-ray photoelectron spectroscopy, atmosphere-controlled surface photovoltage spectra, etc. This work provides an easy and efficient strategy for the preparation of high-performance solar-driven TiO2 photocatalysts.
Collapse
|
30
|
Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214440] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Sabinas-Hernández SA, Gracia Jiménez JM, Silva González NR, Elizalde-González MP, Salazar-Kuri U, Tehuacanero-Cuapa S. Blue Titania: The Outcome of Defects, Crystalline-Disordered Core-Shell Structure, and Hydrophilicity Change. NANOMATERIALS 2022; 12:nano12091501. [PMID: 35564210 PMCID: PMC9104741 DOI: 10.3390/nano12091501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023]
Abstract
In this research, changes in several characteristics of partially reduced titania were studied. The reduction process used made it possible to gradually observe changes in the material depending on the amount of reducing agent used. We used NaBH4 to impregnate commercial TiO2 with isopropyl alcohol. Impregnated TiO2 nanoparticles were dried and thermally treated in a nitrogen flow to obtain blue titania samples. Thorough spectroscopic characterization showed that oxygen atoms from hydroxyl groups, as well as from the surface, and the lattice of TiO2 was consumed. This caused changes in the surface and even in the bulk of TiO2 when the amount of reducing agent used was increased. Structural, optical, superficial, and textural characteristics were studied using XRD, Raman, DRS UV-Vis-NIR, Mid-DRIFT, XPS, and nitrogen adsorption/desorption isotherms. A photocatalytic test of the degradation of methylene blue dye was performed. Among different effects on the mentioned characteristics, we found evidence of changes in the surface properties of the blue titania samples and their probable effect on the photocatalytic properties. The reduction process implied a preponderant decrease in the surface hydrophilicity of the reduced samples, an effect shown for the first time in this type of material.
Collapse
Affiliation(s)
- Sergio A. Sabinas-Hernández
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Apartado Postal J-48, Puebla 72570, Mexico; (J.M.G.J.); (N.R.S.G.); (U.S.-K.)
- Correspondence:
| | - Justo Miguel Gracia Jiménez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Apartado Postal J-48, Puebla 72570, Mexico; (J.M.G.J.); (N.R.S.G.); (U.S.-K.)
| | - Nicolás Rutilo Silva González
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Apartado Postal J-48, Puebla 72570, Mexico; (J.M.G.J.); (N.R.S.G.); (U.S.-K.)
| | - María P. Elizalde-González
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. IC7, Puebla 72570, Mexico;
| | - Ulises Salazar-Kuri
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Col. San Manuel, Ciudad Universitaria, Apartado Postal J-48, Puebla 72570, Mexico; (J.M.G.J.); (N.R.S.G.); (U.S.-K.)
| | - Samuel Tehuacanero-Cuapa
- Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| |
Collapse
|
32
|
Duosiken D, Yang R, Dai Y, Marfavi Z, Lv Q, Li H, Sun K, Tao K. Near-Infrared Light-Excited Reactive Oxygen Species Generation by Thulium Oxide Nanoparticles. J Am Chem Soc 2022; 144:2455-2459. [PMID: 35118859 DOI: 10.1021/jacs.1c11704] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exploring materials that can absorb near-infrared (NIR) light to produce reactive oxygen species (ROS) is necessary for many fields. Herein we show that thulium oxide nanoparticles are viable for NIR-stimulated ROS generation. This property may be related to the unique energy levels, large absorption cross section, low fluorescence emission, and ∼10-3 s lifetime of the 3H4 state of Tm ions. We further demonstrate the impact of these nanoparticles on photodynamic therapy (PDT), in which impressive tumor inhibition was recorded after exposure to either a broadband halogen lamp or an 808 nm laser. Our results may provide insight into the areas of photocatalysis, pollution treatment, and fine chemical synthesis.
Collapse
Affiliation(s)
- Dida Duosiken
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yingfan Dai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zeinab Marfavi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hanyin Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
33
|
Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214280] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Li HT, Zhang WG, Niu L, Wang J, Zuo ZJ, Liu YM. Preparation of Ni-loaded oxygen-enriched vacancy TiO 2−x hierarchical micro-nanospheres and the study of their photocatalytic hydrogen evolution performance. NEW J CHEM 2022. [DOI: 10.1039/d1nj06197f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ni-loaded oxygen-enriched vacancy TiO2−x hierarchical micro-nanospheres were prepared, and the photocatalytic hydrogen production properties were greatly improved due to the synergetic effect between THS, oxygen vacancies and Ni-based promoters.
Collapse
Affiliation(s)
- Hao-tian Li
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan Shanxi, 030024, China
| | - Wang-gang Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
| | - Lu Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
| | - Jian Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
| | - Zhi-jun Zuo
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan Shanxi, 030024, China
| | - Yi-ming Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
- Shanxi Academy of Analytical Sciences, Taiyuan Shanxi 030006, China
| |
Collapse
|
35
|
Defective Grey TiO2 with Minuscule Anatase–Rutile Heterophase Junctions for Hydroxyl Radicals Formation in a Visible Light-Triggered Photocatalysis. Catalysts 2021. [DOI: 10.3390/catal11121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The novelty of this work was to prepare a series of defect-rich colored TiO2 nanostructures, using a peroxo solvothermal-assisted, high-pressure nitrogenation method. Among these solids, certain TiO2 materials possessed a trace quantity of anatase–rutile heterojunctions, which are beneficial in obtaining high reaction rates in photocatalytic reactions. In addition, high surface area (above 100 m2/g), even when utilizing a high calcination temperature (500 °C), and absorption of light at higher wavelengths, due to the grey color of the synthesized titania, were observed as an added advantage for photocatalytic hydroxyl radical formation. In this work, we adopted a photoluminescent probe method to monitor the temporal evolution of hydroxyl radicals. As a result, promising hydroxyl radical formations were observed for all the colored samples synthesized at 400 and 500 °C, irrespective of the duration of calcination.
Collapse
|
36
|
Yamazaki Y, Mori K, Kuwahara Y, Kobayashi H, Yamashita H. Defect Engineering of Pt/TiO 2-x Photocatalysts via Reduction Treatment Assisted by Hydrogen Spillover. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48669-48678. [PMID: 34615345 DOI: 10.1021/acsami.1c13756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defect engineering of metal oxides is a facile and promising strategy to improve their photocatalytic activity. In the present study, Pt/TiO2-x was prepared by a reduction treatment assisted by hydrogen spillover to pure rutile, anatase, and brookite and was subsequently used for hydrogen production from an aqueous methanol solution. With increasing reduction temperature, the photocatalytic activity of the rutile Pt/TiO2-x increased substantially, whereas the activity of anatase Pt/TiO2-x decreased and that of brookite Pt/TiO2-x was independent of the treatment temperature. Electron-spin resonance analysis revealed that rutile and brookite possess similar defect sites (Ti3+ and concomitant oxygen vacancy) after the reduction at 600 °C, whereas different resonance signals were observed for anatase after the reduction at 600 °C. During the reduction process, electrons donated from spillover hydrogen migrate between the conduction band and the inherent midgap states. This research demonstrates that the depth of the inherent midgap states, depending on the crystal phases, influences the generation of defects, which play a key role in the photocatalytic performance of Pt/TiO2-x.
Collapse
Affiliation(s)
- Yukari Yamazaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hisayoshi Kobayashi
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Xu Z, Liang J, Wang Y, Dong K, Shi X, Liu Q, Luo Y, Li T, Jia Y, Asiri AM, Feng Z, Wang Y, Ma D, Sun X. Enhanced Electrochemical H 2O 2 Production via Two-Electron Oxygen Reduction Enabled by Surface-Derived Amorphous Oxygen-Deficient TiO 2-x. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33182-33187. [PMID: 34251177 DOI: 10.1021/acsami.1c09871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electrochemical oxygen reduction reaction (ORR) is regarded as an attractive alternative to the anthraquinone process for sustainable and on-site hydrogen peroxide (H2O2) production. It is however hindered by low selectivity due to strong competition from the four-electron ORR and needs efficient catalysts to drive the 2e- ORR. Here, an acid oxidation strategy is proposed as an effective strategy to boost the 2e- ORR activity of metallic TiC via in-site generation of a surface amorphous oxygen-deficient TiO2-x layer. The resulting a-TiO2-x/TiC exhibits a low overpotential and high H2O2 selectivity (94.1% at 0.5 V vs reversible hydrogen electrode (RHE)), and it also demonstrates robust stability with a remarkable productivity of 7.19 mol gcat.-1 h-1 at 0.30 V vs RHE. The electrocatalytic mechanism of a-TiO2-x/TiC is further revealed by density functional theory calculations.
Collapse
Affiliation(s)
- Zhaoquan Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineeing, Henan University, Kaifeng 475004, Henan, China
| | - Kai Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yonglan Luo
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineeing, Henan University, Kaifeng 475004, Henan, China
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Zhesheng Feng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineeing, Henan University, Kaifeng 475004, Henan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
38
|
Shen M, Zhang L, Shi J. Defect Engineering of Photocatalysts towards Elevated CO 2 Reduction Performance. CHEMSUSCHEM 2021; 14:2635-2654. [PMID: 33872463 DOI: 10.1002/cssc.202100677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic CO2 reduction provides a promising solution to address the crises of massive CO2 emissions and fossil energy shortages. As one of the most effective strategies to promote CO2 photoconversion, defect engineering shows great potential in modulating the electronic structure and light absorption properties of photocatalysts while increasing surface active sites for CO2 activation and conversion. This Review summarizes the recent progress in defect engineering of photocatalysts to promote CO2 reduction performances from the following four aspects: 1) Approaches to defect (mainly vacancy and dopant) generation in photocatalysts; 2) defect structure characterization techniques; 3) physical and chemical properties of defect-engineered photocatalysts; 4) CO2 reduction performance enhancements in activity, selectivity, and stability of photocatalysts by defect engineering. This Review is expected to present readers with a comprehensive view of progress in the field of photocatalytic CO2 reduction through defect engineering for elevated CO2 -to-fuels conversion efficiency.
Collapse
Affiliation(s)
- Meng Shen
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquanlu, 19 A, Beijing, 100049, P. R. China
| | - Lingxia Zhang
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquanlu, 19 A, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Jianlin Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquanlu, 19 A, Beijing, 100049, P. R. China
| |
Collapse
|
39
|
Zu X, Zhao Y, Li X, Chen R, Shao W, Wang Z, Hu J, Zhu J, Pan Y, Sun Y, Xie Y. Ultrastable and Efficient Visible-light-driven CO 2 Reduction Triggered by Regenerative Oxygen-Vacancies in Bi 2 O 2 CO 3 Nanosheets. Angew Chem Int Ed Engl 2021; 60:13840-13846. [PMID: 33786954 DOI: 10.1002/anie.202101894] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Indexed: 12/23/2022]
Abstract
Herein, we first design a fast low-pressure ultraviolet light irradiation strategy for easily regenerating the nearly equivalent surface vacancies. Taking the defective Bi2 O2 CO3 nanosheets as an example, nearly equal amount of oxygen vacancies can be regenerated under UV light irradiation. Synchrotron-radiation quasi in situ X-ray photoelectron spectra disclose the Bi sites in the O-defective Bi2 O2 CO3 nanosheets can act as the highly active sites, which not only help to activate CO2 molecules, but also contribute to stabilizing the rate-limiting COOH* intermediate. Also, in situ Fourier transform infrared spectroscopy and in situ mass spectrometry unravel the UV light irradiation contributes to accelerating CO desorption process. As a result, the O-defective Bi2 O2 CO3 nanosheets achieve a stability up to 2640 h over 110 cycling tests and a high evolution rate of 275 μmol g-1 h-1 for visible-light-driven CO2 reduction to CO.
Collapse
Affiliation(s)
- Xiaolong Zu
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuan Zhao
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaodong Li
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Runhua Chen
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Weiwei Shao
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiqiang Wang
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Hu
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Pan
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yongfu Sun
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Yi Xie
- Hefei National Laboratory for Physical Science at Microscale, National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| |
Collapse
|
40
|
Zu X, Zhao Y, Li X, Chen R, Shao W, Wang Z, Hu J, Zhu J, Pan Y, Sun Y, Xie Y. Ultrastable and Efficient Visible‐light‐driven CO
2
Reduction Triggered by Regenerative Oxygen‐Vacancies in Bi
2
O
2
CO
3
Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaolong Zu
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
| | - Yuan Zhao
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
| | - Xiaodong Li
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
| | - Runhua Chen
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
| | - Weiwei Shao
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhiqiang Wang
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
| | - Jun Hu
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
| | - Yang Pan
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
| | - Yongfu Sun
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 China
| | - Yi Xie
- Hefei National Laboratory for Physical Science at Microscale National Synchrotron Radiation Laboratory CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 China
| |
Collapse
|
41
|
Yu C, Yu XX, Zheng DS, Yin H. Piezoelectric potential enhanced photocatalytic performance based on ZnO with different nanostructures. NANOTECHNOLOGY 2021; 32:135703. [PMID: 33291085 DOI: 10.1088/1361-6528/abd1ab] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, two novel nanostructures with ZnO nanowire and nanosheet arrays vertically growing on the FTO and Al foil have been synthesized by a hydrothermal method, which exhibit both the piezoelectric and photocatalytic properties. These nanostructures have typical wurtzite structures based on the XRD results. From the SEM results, the average diameter and length of nanowire have been measured to be about 150 nm and 4.5 μm, the thickness of ZnO nanosheet is about 50 nm and the width is about 5 μm. In the photocatalytic test, the photodegradation of RhB under 365 nm illumination for nanowire and nanosheet is about 25% and 37% in 80 min reaction. With stirring, the degradation rate is increased to 61% and 85%. Finally, the photocurrent test and finite element method were used to analyze the piezo-photodegradation mechanism.
Collapse
Affiliation(s)
- Cheng Yu
- School of Geography Science and Geomatics Engineering, Su Zhou University of Science and Technology, No.99 Xuefu Road, SuZhou 215009, People's Republic of China
| | - Xiang-Xiang Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Ding-Shan Zheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Hong Yin
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| |
Collapse
|
42
|
Niazi Z, Goharshadi EK, Mashreghi M, Jorabchi MN. Highly efficient solar photocatalytic degradation of a textile dye by TiO 2/graphene quantum dots nanocomposite. Photochem Photobiol Sci 2021; 20:87-99. [PMID: 33721238 DOI: 10.1007/s43630-020-00005-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Herein, two sunlight responsive photocatalysts including TiO2 nanoparticles (NPs) and TiO2/graphene quantum dots (GQDs) nanocomposite for degrading a textile dye, Reactive Black 5 (RB5), were prepared. The results showed that 100% of 50 ppm RB5 could be degraded by TiO2 NPs and TiO2/GQDs within 60 and 30 min sunlight irradiation, respectively. Hence, much better photocatalytic activity in degradation of RB5 was achieved by TiO2/GQDs under sunlight irradiation compared with pure TiO2 NPs due to its lower band gap (2.13 eV) and electron/hole recombination rate. The photocatalytic degradation mechanism of RB5 by TiO2 NPs was elucidated by adding some scavengers to the solution. The main reactive species contributing to RB5 degradation were surface hydroxyl radicals. The first-order solar degradation rate constant of RB5 for TiO2/GQDs is greater than that of TiO2 NPs under sunlight illumination.
Collapse
Affiliation(s)
- Zohreh Niazi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Elaheh K Goharshadi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran. .,Nano Research Center, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Majid Namayandeh Jorabchi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.,Institute of Chemistry, Physical and Theoretical Chemistry, University of Rostock, Albert-Einstein-Straße 21, 18059, Rostock, Germany
| |
Collapse
|
43
|
Zhang S, Si Y, Li B, Yang L, Dai W, Luo S. Atomic-Level and Modulated Interfaces of Photocatalyst Heterostructure Constructed by External Defect-Induced Strategy: A Critical Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004980. [PMID: 33289948 DOI: 10.1002/smll.202004980] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Despite the existence of numerous photocatalyst heterostructures, their separation efficiency and charge flow precision remain low due to the poor study on interfacial properties. The photocatalysts with confined defects can effectively control the photogenerated carrier migration, but the metastability of such defects considerably decreases the photocatalyst stability. Meanwhile, the introduction of defective region can increase the coordinative unsaturation and delocalize local electrons to promote their interactions with the molecules/ions in that region. The selective growth of modulated heterogeneous interface by defect-induced strategy may not only increase the stability of defective structures, but also enhance the migration of interfacial charges. Using this method, photocatalytic heterostructures with low contact resistances and intimate interfaces are constructed to achieve the optimal charge migration in terms of efficiency and accuracy. In this work, the point, linear, and planar heterogeneous interfaces and related defect engineering techniques are discussed. Particularly, it is focused on the external, defect-induced interfacial heterogeneities with various spatial and dimensional configurations, which exhibit modulated and controllable interfacial properties. Furthermore, the main aspects of fabricating photocatalyst heterostructures by the defect-induced strategy, including the i) controllable generation of defects, ii) advanced characterization methods, and iii) elaborate construction of the minimal interface, are described.
Collapse
Affiliation(s)
- Shuqu Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Yanmei Si
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Bing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Lixia Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Weili Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi Province, 330063, P. R. China
| |
Collapse
|
44
|
Lyu S, Hao H, Li X, Lang X. Cooperative TiO 2 photocatalysis with TEMPO and N-hydroxysuccinimide for blue light-driven selective aerobic oxidation of amines. CHEMOSPHERE 2021; 262:127873. [PMID: 33182137 DOI: 10.1016/j.chemosphere.2020.127873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
TiO2 has been the focus of attention in semiconductor photocatalysis for several decades because it can potentially settle the grand energy and environmental issues with earth-abundant elements of Ti and O. However, because of its wide band gap, TiO2 can only collect UV light, hindering its practical applications under the illumination of sunlight. In view of this, an interesting phenomenon of light-driven adsorption of amines onto TiO2 to form a visible light-absorbing complex was adapted to assemble smart photocatalysis. The endurance of this complex was eminently refurbished by blue light-driven continuous adsorption of amines. This in turn promoted a vital selective chemical transformation, blue light-driven selective oxidation of amines into imines with atmospheric dioxygen (O2). More importantly, the inclusion of TEMPO and N-hydroxysuccinimide (NHS) into the smart photocatalytic system could cooperatively expedite the blue light-driven selective aerobic oxidation of amines into imines through dual independent reaction channels, resembling that of enzymatic catalysis. This work underscores the importance of manoeuvring multiple reaction channels by cooperative photocatalysis during selective chemical transformations.
Collapse
Affiliation(s)
- Shaoshuai Lyu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Huimin Hao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
45
|
Han W, Lin H, Fang F, Zhang Y, Zhang K, Yu X, Chang K. The effect of Fe( iii) ions on oxygen-vacancy-rich BiVO 4 on the photocatalytic oxygen evolution reaction. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01559a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The surface oxygen vacancies could promote the photocatalytic O2 evolution of BiVO4. Simultaneously, Fe3+ ions in solution could facilitate the holes' transfer to improve the water oxidation reaction.
Collapse
Affiliation(s)
- Wenjun Han
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Huiwen Lin
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Fan Fang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yaqian Zhang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Kai Zhang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Kun Chang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
46
|
Huang J, Chen T, Zhao M, Yi P, Zhao F, He B, Wang Y, Chen Y, Liu X, Li Z. Surface oxygen vacancies of TiO 2 nanorods by electron beam irradiation for efficient photoelectrochemical water splitting. CrystEngComm 2021. [DOI: 10.1039/d1ce00205h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TiO2 nanorods with oxygen vacancies are produced via a facial, controllable and scalable high energy electron beam irradiation treatment, resulting in a remarkable enhancement of photocurrent density of about 85.4% at 1.23 VRHE.
Collapse
|
47
|
Xu Y, Tay TF, Cui L, Fan J, Niu C, Chen D, Guo ZX, Sun C, Zhang XL, Caruso RA. Trace-Level Fluorination of Mesoporous TiO 2 Improves Photocatalytic and Pb(II) Adsorbent Performances. Inorg Chem 2020; 59:17631-17637. [PMID: 33179923 DOI: 10.1021/acs.inorgchem.0c02869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorination is an effective way of tuning the physicochemical property and activity of TiO2 nanocrystallites, which usually requires a considerable amount of hydrofluoric acid (or NH4F) for a typical F/Ti molar ratio, RF, of 0.5-69.0 during synthesis. This has consequential environmental issues due to the high toxicity and hazard of the reactants. In the present work, an environmentally benign fluorination approach is demonstrated that uses only a trace amount of sodium fluoride with an RF of 10-6 during synthesis. While it maintained the desirable high surface area (102.4 m2/g), the trace-level fluorination enabled significant enhancements on photocatalytic activities (e.g., a 56% increase on hydrogen evolution rate) and heavy metal Pb(II) removal (31%) of the mesoporous TiO2. This can be attributed to enriched Ti3+ and localized spatial charge separation due to fluorination as proved by X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance spectroscopy (EPR), and density functional theory (DFT) analyses.
Collapse
Affiliation(s)
| | - Teng Fern Tay
- School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia
| | | | | | | | - Dehong Chen
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Zheng Xiao Guo
- Department of Chemistry and Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | | | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
48
|
Ma R, Sun J, Li DH, Wei JJ. Exponentially self-promoted hydrogen evolution by uni-source photo-thermal synergism in concentrating photocatalysis on co-catalyst-free P25 TiO2. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Zhu Q, Jiang S, Ye K, Hu W, Zhang J, Niu X, Lin Y, Chen S, Song L, Zhang Q, Jiang J, Luo Y. Hydrogen-Doping-Induced Metal-Like Ultrahigh Free-Carrier Concentration in Metal-Oxide Material for Giant and Tunable Plasmon Resonance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004059. [PMID: 33174328 DOI: 10.1002/adma.202004059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The practical utilization of plasmon-based technology relies on the ability to find high-performance plasmonic materials other than noble metals. A key scientific challenge is to significantly increase the intrinsically low concentration of free carriers in metal-oxide materials. Here, a novel electron-proton co-doping strategy is developed to achieve uniform hydrogen doping in metal-oxide MoO3 at mild conditions, which creates a metal-like ultrahigh free-carrier concentration approaching that of noble metals (1021 cm-3 in H1.68 MoO3 versus 1022 cm-3 in Au/Ag). This bestows giant and tunable plasmonic resonances in the visible region to this originally semiconductive material. Using ultrafast spectroscopy characterizations and first-principle simulations, the formation of a quasi-metallic energy band structure that leads to long-lived and strong plasmonic field is revealed. As verified by the surface-enhanced Raman spectra (SERS) of rhodamine 6G molecules on Hx MoO3 , the SERS enhancement factor reaches as high as 1.1 × 107 with a detection limit at concentration as low as 1 × 10-9 mol L-1 , representing the best among the hitherto reported non-metal systems. The findings not only provide a set of metal-like semiconductor materials with merits of low cost, tunable electronic structure, and plasmonic resonance, but also a general strategy to induce tunable ultrahigh free-carrier concentration in non-metal systems.
Collapse
Affiliation(s)
- Qing Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shenlong Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ke Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaoyou Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunxiang Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuangming Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Li Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
50
|
Wu X, Li J, Xie S, Duan P, Zhang H, Feng J, Zhang Q, Cheng J, Wang Y. Selectivity Control in Photocatalytic Valorization of Biomass-Derived Platform Compounds by Surface Engineering of Titanium Oxide. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|