1
|
Cui F, Zhang Y, Sui Y, Chen H, Helms BA, Yan J. Rewritable Surface-Grafted Polymer Brushes with Dynamic Covalent Linkages. Angew Chem Int Ed Engl 2024; 63:e202410862. [PMID: 39146247 DOI: 10.1002/anie.202410862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Surface grafting of polymer brushes drastically modifies surface properties, including wettability, compatibility, responsiveness, etc. A broad variety of functionalities can be introduced to the surface via different types of polymers. Bringing together properties of two or more types of polymer brushes to one surface opens up even more possibilities in brush-modified materials. However, while it is generally feasible to introduce several chemical compositions along the brushes via copolymerization, it is challenging to vary the types of polymer brushes along a surface. Although previous studies have demonstrated binary brushes via orthogonal polymerization techniques or partial deactivation/regrafting, they commonly limit the number of polymer types to two. Here, we propose a strategy to introduce dynamic covalent diketoenamine linkages at the root of polymer brushes. The grafting density could be precisely tuned during surface functionalization. The surface-anchored polymer brushes were cleaved by the addition of small molecule amines. New polymer brushes can be regrafted from the surface following refunctionalization of exposed sites. The maneuverability allows tuning of the types and densities of the polymer brushes, pointing the way to the preparation of a new generation of well-defined brush-modified materials with mixed grafts, with potential applications in the design of smart materials and surfaces.
Collapse
Affiliation(s)
- Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yipeng Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hongwen Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
2
|
Choi W, Kim YE, Yoo H. Patterning of Organic Semiconductors Leads to Functional Integration: From Unit Device to Integrated Electronics. Polymers (Basel) 2024; 16:2613. [PMID: 39339077 PMCID: PMC11435555 DOI: 10.3390/polym16182613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The use of organic semiconductors in electronic devices, including transistors, sensors, and memories, unlocks innovative possibilities such as streamlined fabrication processes, enhanced mechanical flexibility, and potential new applications. Nevertheless, the increasing technical demand for patterning organic semiconductors requires greater integration and functional implementation. This paper overviews recent efforts to pattern organic semiconductors compatible with electronic devices. The review categorizes the contributions of organic semiconductor patterning approaches, such as surface-grafting polymers, capillary force lithography, wettability, evaporation, and diffusion in organic semiconductor-based transistors and sensors, offering a timely perspective on unconventional approaches to enable the patterning of organic semiconductors with a strong focus on the advantages of organic semiconductor utilization. In addition, this review explores the opportunities and challenges of organic semiconductor-based integration, emphasizing the issues related to patterning and interconnection.
Collapse
Affiliation(s)
- Wangmyung Choi
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Yeo Eun Kim
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Ivaldi C, Ospina Guarin VM, Antonioli D, Zuccheri G, Sparnacci K, Gianotti V, Perego M, Chiarcos R, Laus M. Polystyrene Brush Evolution by Grafting to Reaction on Deglazed and Not-Deglazed Silicon Substrates. Macromol Rapid Commun 2024; 45:e2400288. [PMID: 39012272 DOI: 10.1002/marc.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Indexed: 07/17/2024]
Abstract
Two model substrates for the grafting to reaction are considered: not-deglazed silicon, whose surface is coated by a thin oxide layer with reactive silanol groups on its surface; and deglazed silicon, where the oxide layer is removed by treatment with hydrofluoric acid. The reactive polymers are hydroxy-terminated polystyrenes with molecular weights ranging from 3.9 to 13.9 kg mol⁻1. The grafting to reaction is carried out at different temperatures and for different periods of time on the two different substrates. The thickness and the thermal stability of the resulting brushes are evaluated. Furthermore, the grafting of a highly dispersed system is simulated by blending two polymers with different molecular weights. Although the brush thickness growth is found to be faster on deglazed silicon, the preferential grafting of short chains occurs with equal chain selection propensity on both substrates.
Collapse
Affiliation(s)
- Chiara Ivaldi
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100, Italy
| | - Viviana Maria Ospina Guarin
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Diego Antonioli
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology and Interdepartmental Center for Industrial Research on Health Sciences & Technologies, University of Bologna, V. San Donato 19/2, Bologna, 40127, Italy
| | - Katia Sparnacci
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Valentina Gianotti
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100, Italy
| | - Michele Perego
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via C. Olivetti 2, Agrate-Brianza, 20864, Italy
| | - Riccardo Chiarcos
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Michele Laus
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| |
Collapse
|
4
|
Robertson H, Gresham IJ, Nelson ARJ, Prescott SW, Webber GB, Wanless EJ. Illuminating the nanostructure of diffuse interfaces: Recent advances and future directions in reflectometry techniques. Adv Colloid Interface Sci 2024; 331:103238. [PMID: 38917595 DOI: 10.1016/j.cis.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Diffuse soft matter interfaces take many forms, from end-tethered polymer brushes or adsorbed surfactants to self-assembled layers of lipids. These interfaces play crucial roles across a multitude of fields, including materials science, biophysics, and nanotechnology. Understanding the nanostructure and properties of these interfaces is fundamental for optimising their performance and designing novel functional materials. In recent years, reflectometry techniques, in particular neutron reflectometry, have emerged as powerful tools for elucidating the intricate nanostructure of soft matter interfaces with remarkable precision and depth. This review provides an overview of selected recent developments in reflectometry and their applications for illuminating the nanostructure of diffuse interfaces. We explore various principles and methods of neutron and X-ray reflectometry, as well as ellipsometry, and discuss advances in their experimental setups and data analysis approaches. Improvements to experimental neutron reflectometry methods have enabled greater time resolution in kinetic measurements and elucidation of diffuse structure under shear or confinement, while innovation in analysis protocols has significantly reduced data processing times, facilitated co-refinement of reflectometry data from multiple instruments and provided greater-than-ever confidence in proposed structural models. Furthermore, we highlight some significant research findings enabled by these techniques, revealing the organisation, dynamics, and interfacial phenomena at the nanoscale. We also discuss future directions and potential advancements in reflectometry techniques. By shedding light on the nanostructure of diffuse interfaces, reflectometry techniques enable the rational design and tailoring of interfaces with enhanced properties and functionalities.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Soft Matter at Interfaces, Technical University of Darmstadt, Darmstadt D-64289, Germany
| | - Isaac J Gresham
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
5
|
Yagasaki T, Matubayasi N. High Antifouling Performance of Weakly Hydrophilic Polymer Brushes: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15046-15058. [PMID: 39004900 DOI: 10.1021/acs.langmuir.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The antifouling performance of polymer brushes usually improves with increasing hydrophilicity of the grafted polymer. However, in some cases, less hydrophilic polymers show comparable or better antifouling performance than do more hydrophilic polymers. We investigate the mechanism of this anomalous behavior using molecular dynamics (MD) simulations of coarse-grained (CG) models of weakly and strongly hydrophilic polymers. The antifouling performance is evaluated from the potential of mean force of a model protein. The strongly hydrophilic polymer exhibits a better antifouling performance than the weakly hydrophilic polymer when the substrate of the polymer brush is repulsive. However, when the substrate is sufficiently attractive, the weakly hydrophilic polymer brush becomes more effective than the strongly hydrophilic brush in a certain range of grafting density. This is because the weakly hydrophilic polymer chains form a tightly packed layer that prevents the adsorbate molecule from contacting the substrate. We also perform all-atom (AA) MD simulations for several standard polymers to examine the correspondence with the CG polymer models. The weakly hydrophilic CG polymer is found to be similar to poly[N-(2-hydroxypropyl)methacrylamide] and poly(2-hydroxyethyl methacrylate), both of which have a hydroxyl group in a monomer unit. The strongly hydrophilic CG polymer resembles zwitterionic poly(carboxybetaine methacrylate). A discussion referring to the adsorption free energies of proteins on surfaces calculated in previous AA MD studies suggests that the higher antifouling performance of less hydrophilic polymer brushes can be realized for various combinations of protein and surface.
Collapse
Affiliation(s)
- Takuma Yagasaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
6
|
Yin R, Tarnsangpradit J, Gul A, Jeong J, Hu X, Zhao Y, Wu H, Li Q, Fytas G, Karim A, Bockstaller MR, Matyjaszewski K. Organic nanoparticles with tunable size and rigidity by hyperbranching and cross-linking using microemulsion ATRP. Proc Natl Acad Sci U S A 2024; 121:e2406337121. [PMID: 38985759 PMCID: PMC11260123 DOI: 10.1073/pnas.2406337121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of "interior tailorability," thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm-2) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this "bottom-up" synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.
Collapse
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Jirameth Tarnsangpradit
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Akhtar Gul
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Yuqi Zhao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Hanshu Wu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Qiqi Li
- Max Planck Institute for Polymer Research, Mainz55128, Germany
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion70013, Greece
| | - George Fytas
- Max Planck Institute for Polymer Research, Mainz55128, Germany
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion70013, Greece
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204
| | - Michael R. Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | | |
Collapse
|
7
|
Roy TR, Dutta-Gupta S, Iyer BVS. Deformation induced evolution of plasmonic responses in polymer grafted nanoparticle thin films. NANOSCALE 2024; 16:11705-11715. [PMID: 38861250 DOI: 10.1039/d4nr00789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Multi-functional nanoparticle thin films are being used in various applications ranging from biosensing to photo-voltaics. In this study, we integrate two different numerical approaches to understand the interplay between the mechanical deformation and optical response of polymer grafted plasmonic nanoparticle (PGPN) arrays. Using numerical simulations we examine the deformation of thin films formed by end-functionalised polymer grafted nanoparticles subject to uniaxial elongation. The induced deformation causes the particles in the thin film network to rearrange their positions by two different mechanisms viz. sliding and packing. In sliding, the particles move in the direction of induced deformation. On the other hand, in packing, the particles move in a direction normal to that of the induced deformation. By employing a Green's tensor formulation in polarizable backgrounds for evaluating the optical response of the nanoparticle network, we calculate the evolution of the plasmonic response of the structure as a function of strain. The results indicate that the evolution of plasmonic response closely follows the deformation. In particular, we show that the onset of relative electric field enhancement of the optical response occurs when there is significant rearrangement of the constituent PGPNs in the array. Furthermore, we show that depending on the local packing/sliding and the polarization of the incident light there can be both enhancement and suppression of the SERS response.
Collapse
Affiliation(s)
- Talem Rebeda Roy
- Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| | - Shourya Dutta-Gupta
- Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| | - Balaji V S Iyer
- Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| |
Collapse
|
8
|
Song X, Man J, Qiu Y, Wang J, Li R, Zhang Y, Cui G, Li J, Li J, Chen Y. Study of Hydration Repulsion of Zwitterionic Polymer Brushes Resistant to Protein Adhesion through Molecular Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17145-17162. [PMID: 38534071 DOI: 10.1021/acsami.3c18546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The fabrication of antifouling zwitterionic polymer brushes represents a leading approach to mitigate nonspecific adhesion on the surfaces of medical devices. This investigation seeks to elucidate the correlation between the material composition and structural attributes of these polymer brushes in preventing protein adhesion. To achieve this goal, we modeled three different zwitterionic brushes, namely, carboxybetaine methacrylate (CBMA), sulfobetaine methacrylate (SBMA), and (2-(methacryloyloxy)ethyl)-phosphorylcholine (MPC). The simulations revealed that elevating the grafting density enhances the structural stability, hydration strength, and resistance to protein adhesion exhibited by the polymer brushes. PCBMA manifests a more robust hydration layer, while PMPC demonstrates the slightest interaction with proteins. In a comprehensive evaluation, PSBMA polymer brushes emerged as the best choice with superior stability, enhanced protein repulsion, and minimally induced protein deformation, resulting in effective resistance to nonspecific adhesion. The high-density SBMA polymer brushes significantly reduce the level of protein adhesion in AFM testing. In addition, we have pioneered the quantitative characterization of hydration repulsion in polymer brushes by analyzing the hydration repulsion characteristics at different materials and graft densities. In summary, our study provides a nuanced understanding of the material and structural determinants influencing the capacity of zwitterionic polymer brushes to thwart protein adhesion. Additionally, it presents a quantitative elucidation of hydration repulsion, contributing to the advancement and application of antifouling polymer brushes.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Guanghui Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
9
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. High-density zwitterionic polymer brushes exhibit robust lubrication properties and high antithrombotic efficacy in blood-contacting medical devices. Acta Biomater 2024; 178:111-123. [PMID: 38423351 DOI: 10.1016/j.actbio.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
High-performance catheters are essential for interventional surgeries, requiring reliable anti-adhesive and lubricated surfaces. This article develops a strategy for constructing high-density sulfobetaine zwitterionic polymer brushes on the surface of catheters, utilizing dopamine and sodium alginate as the primary intermediate layers, where dopamine provides mussel-protein-like adhesion to anchor the polymer brushes to the catheter surface. Hydroxyl-rich sodium alginate increases the number of grafting sites and improves the grafting mass by more than 4 times. The developed high-density zwitterionic polymer brushes achieve long-lasting and effective lubricity (μ<0.0078) and are implanted in rabbits for four hours without bio-adhesion and thrombosis in the absence of anticoagulants such as heparin. Experiments and molecular dynamics simulations demonstrate that graft mass plays a decisive role in the lubricity and anti-adhesion of polymer brushes, and it is proposed to predict the anti-adhesion of polymer brushes by their lubricity to avoid costly and time-consuming bioassays during the development of amphoteric polymer brushes. A quantitative influence of hydration in the anti-adhesion properties of amphiphilic polymer brushes is also revealed. Thus, this study provides a new approach to safe, long-lasting lubrication and anticoagulant surface modification for medical devices in contact with blood. STATEMENT OF SIGNIFICANCE: High friction and bioadhesion on medical device surfaces can pose a significant risk to patients. In response, we have developed a safer, simpler, and more application-specific surface modification strategy that addresses both the lubrication and anti-bioadhesion needs of medical device surfaces. We used dopamine and sodium alginate as intermediate layers to drastically increase the grafting density of the zwitterionic brushes and enabled the modified surfaces to have an extremely low coefficient of friction (μ = 0.0078) and to remain non-bioadhesive for 4 hours in vivo. Furthermore, we used molecular dynamics simulations to gain insight into the mechanisms behind the superior anti-adhesion properties of the high-density polymer brushes. Our work contributes to the development and application of surface-modified coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
10
|
Wang X, Liu C, Liu C, Shi Z, Huang F. Development of alginate macroporous hydrogels using sacrificial CaCO 3 particles for enhanced hemostasis. Int J Biol Macromol 2024; 259:129141. [PMID: 38176504 DOI: 10.1016/j.ijbiomac.2023.129141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Polymeric hydrogels have increasingly garnered attention in the field of hemostasis. However, there remains a lack of targeted development and evaluation of non-dense polymeric hydrogels with physically incorporated pores to enhance hemostasis. Here, we present a facile route to macroporous alginate hydrogels using acid-induced CaCO3 dissolution to provide Ca2+ for alginate gelation and CO2 bubbles for subsequent macropore formation. The as-prepared pore structure in the hydrogels and its formation mechanisms were characterized through microscopic imaging and nitrogen adsorption/desorption tests. Functional analyses revealed that the macroporous hydrogels exhibited improved rheology, blood absorption, coagulation factor delivery, and platelet aggregation. Ultimately, the introduction of pores significantly enhanced the hemostatic effectiveness of alginate hydrogels in vivo, as demonstrated in rat tail amputation and liver injury models, leading to a reduction in blood loss of up to 77 % or a decrease in bleeding time of up to 88 %. Notably, hydrogels with higher porosity achieved with a CaCO3 to alginate ratio of 40 % outperformed those with lower porosity in the aforementioned properties. Furthermore, these improvements were found to be biocompatible and elicited minimal inflammation. Our findings underscore the potential of a simple porous hydrogel design to enhance hemostasis efficacy by physically incorporating macropores.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Chang Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| |
Collapse
|
11
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
12
|
Li M, Li Y. Solid-Phase Electrosynthesis. Acc Chem Res 2023; 56:3694-3703. [PMID: 38053314 DOI: 10.1021/acs.accounts.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
ConspectusThe significance of the new synthetic approach is that it can overcome the limitations of conventional methods and produce previously inaccessible polymer structures and materials. The solid-phase synthesis developed by Merrifield in 1964 is widely employed for the synthesis of biological molecules, such as peptides, nucleic acids, and oligosaccharides. Although the variety of iterative reactions available is theoretically implemented for most organic synthesis protocols, they are usually required to have high efficiency against sluggish reaction kinetics at the solid-liquid interface and process with protection and deprotection steps. Generally, unsatisfied reaction dynamics at the solid-liquid interface cannot statistically permit accurate and uniform polymer synthesis of sophisticated structures and functions within an acceptable time scale. To address this challenge, we propose the concept of solid-phase electrosynthesis, which simultaneously enables rapidly surface-initiated uniform electrosynthesis and unidirectional assembly of metallopolymers via kinetically accelerated and statistically allowed iterative growth. In particular, on a self-assembled monolayer (SAM) of the metal complex with electroactive unit A, the iterative monomer with two electroactive units A and B can be alternatively activated by oxidative and reductive potentials for A-A and B-B covalent couplings with the SAM, respectively. This enables topochemical one-by-one additions of the iterative monomers to end-on-oriented self-assembled molecules through alternative redox reactions. Each iterative step is purified by washing. Repeating the same iterative reaction enables further reaction of the unreactive sites on the SAMs and repairs the morphology defects, thereby ensuring the statistically allowed uniform synthesis and fabrication of polymer monolayers. The resulting monolayers exhibit subnanometer-uniform morphology over centimeter-sized areas with crystalline states and show thicknesses similar to theoretical molecular lengths. This demonstrates the unidirectional formation of polymer assemblies, providing a pathway for obtaining highly ordered formation of noncrystalline polymers. The length-controlled electrosynthesis of metallopolymers can be generalized for many types of organic ligands and metal species, enabling quantitative design of the composition and sequence-controlled metallopolymers with the precise relationships of structures and properties. Solid-phase electrosynthesis offers a unique approach to synthesize polymer structures and monolayers with enhanced functionality and superior physical properties, including physical density, modulus, and conductance. Through the utilization of precise and efficient iterative growth, this predictable electrosynthesis, coupled with optical and electrical monitoring, not only expands the scope of current synthetic chemistry but also paves a potential way for the automated generation of optoelectric molecular monolayers with large-area dimensional consistency and enhanced physical performance.
Collapse
Affiliation(s)
- Mao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yongfang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
13
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
14
|
Kuzmyn AR, van Galen M, van Lagen B, Zuilhof H. SI-PET-RAFT in flow: improved control over polymer brush growth. Polym Chem 2023; 14:3357-3363. [PMID: 37497044 PMCID: PMC10367056 DOI: 10.1039/d3py00488k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) provides a light-dependent tool to synthesize polymer brushes on different surfaces that tolerates oxygen and water, and does not require a metal catalyst. Here we introduce improved control over SI-PET-RAFT polymerizations via continuous flow conditions. We confirm the composition and topological structure of the brushes by X-ray photoelectron spectroscopy, ellipsometry, and AFM. The improved control compared to no-flow conditions provides prolonged linear growth of the polymer brush (up to 250 nm, where no-flow polymerization maxed out <50 nm), and improved polymerization control of the polymer brush that allows the construction of diblock polymer brushes. We further show the linear correlation between the molecular weight of the polymer brush and its dry thickness by combining ellipsometry and single-molecule force spectroscopy.
Collapse
Affiliation(s)
- Andriy R Kuzmyn
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Martijn van Galen
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
- Laboratory of Biochemistry, Wageningen University and Research Stippeneng 4 6708 WE Wageningen the Netherlands
| | - Barend van Lagen
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University 92 Weijin Road Tianjin 300072 China
| |
Collapse
|
15
|
Teunissen LW, Smulders MMJ, Zuilhof H. Modular and Substrate-Independent Grafting-To Procedure for Functional Polymer Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37216307 DOI: 10.1021/acs.langmuir.3c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to tailor polymer brush coatings to the last nanometer has arguably placed them among the most powerful surface modification techniques currently available. Generally, the synthesis procedures for polymer brushes are designed for a specific surface type and monomer functionality and cannot be easily employed otherwise. Herein, we describe a modular and straightforward two-step grafting-to approach that allows introduction of polymer brushes of a desired functionality onto a large range of chemically different substrates. To illustrate the modularity of the procedure, gold, silicon oxide (SiO2), and polyester-coated glass substrates were modified with five different block copolymers. In short, the substrates were first modified with a universally applicable poly(dopamine) primer layer. Subsequently, a grafting-to reaction was performed on the poly(dopamine) films using five distinct block copolymers, all of which contained a short poly(glycidyl methacrylate) segment and longer segment of varying chemical functionality. Ellipsometry, X-ray photoelectron spectroscopy, and static water contact angle measurements confirmed successful grafting of all five block copolymers to the poly(dopamine)-modified gold, SiO2, and polyester-coated glass substrates. In addition, our method was used to provide direct access to binary brush coatings, by simultaneous grafting of two different polymer materials. The ability to synthesize binary brush coatings further adds to the versatility of our approach and paves the way toward production of novel multifunctional and responsive polymer coatings.
Collapse
Affiliation(s)
- Lucas W Teunissen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| |
Collapse
|
16
|
Wang J, Zhang H, Li S, Ding C, Zhao Y, Long X, Wei C, Wang Y, Li Y, Shen L, Cui S, Hong W, Li M. Crystalline Unipolymer Monolayer with High Modulus and Conductivity. Angew Chem Int Ed Engl 2023; 62:e202216838. [PMID: 36440880 DOI: 10.1002/anie.202216838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
The synthesis of crystalline polymer with a well-defined orientated state and a two-dimensional crystalline size beyond a micrometer will be essential to achieve the highest physical feature of polymer material but remain challenging. Herein, we show the synthesis of the crystalline unipolymer monolayer with an unusual ultrahigh modulus that is higher than the ITO substrate and high conductance by simultaneous electrosynthesis and manipulation. We find that the polymer monolayer has fully extended in the vertical and unidirectional orientation, which is proposed to approach their theoretically highest density, modulus, and conductivity among all aggregation formations of the current polymer. The modulus and current density can reach 40 and 1000 times higher than their amorphous counterpart. It is also found that these monolayers exhibit the bias- and length-dependent multiple charge states and asymmetrically negative differential resistance (NDR) effect, indicating that this unique molecular tailoring and ordering design is promising for multilevel resistive memory devices. Our work demonstrates the creation of a crystalline polymer monolayer for approaching the physical limit of polymer electronic materials and also provides an opportunity to challenge the synthetically iterative limit of an isolated ultra-long polymer.
Collapse
Affiliation(s)
- Jinxin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,University of Science and Technology of China, 230026, Hefei, China
| | - Hao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Shumu Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, 100190, Beijing, China
| | - Caijun Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,University of Science and Technology of China, 230026, Hefei, China
| | - Yongjie Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Xiuzhen Long
- Key Lab of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, 610031, Chengdu, China
| | - Chang Wei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,University of Science and Technology of China, 230026, Hefei, China
| | - Yanfang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Yongfang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,University of Science and Technology of China, 230026, Hefei, China
| | - Lingyun Shen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,University of Science and Technology of China, 230026, Hefei, China
| | - Shuxun Cui
- Key Lab of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, 610031, Chengdu, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Mao Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
17
|
Chiarcos R, Perego M, Laus M. Polymer Brushes by Grafting to Reaction in Melt: New Insights into the Mechanism. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Università del Piemonte Orientale (UPO) Viale T. Michel 11 Alessandria 15121 Italy
| | - Michele Perego
- CNR‐IMM Unit of Agrate Brianza Via C. Olivetti 2 Agrate Brianza 20864 Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Università del Piemonte Orientale (UPO) Viale T. Michel 11 Alessandria 15121 Italy
| |
Collapse
|
18
|
Huang X, Hürlimann D, Spanke HT, Wu D, Skowicki M, Dinu IA, Dufresne ER, Palivan CG. Cell-Derived Vesicles with Increased Stability and On-Demand Functionality by Equipping Their Membrane with a Cross-Linkable Copolymer. Adv Healthc Mater 2022; 11:e2202100. [PMID: 36208079 PMCID: PMC11469159 DOI: 10.1002/adhm.202202100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/28/2023]
Abstract
Cell-derived vesicles retain the cytoplasm and much of the native cell membrane composition. Therefore, they are attractive for investigations of membrane biophysics, drug delivery systems, and complex molecular factories. However, their fragility and aggregation limit their applications. Here, the mechanical properties and stability of giant plasma membrane vesicles (GPMVs) are enhanced by decorating them with a specifically designed diblock copolymer, cholesteryl-poly[2-aminoethyl methacrylate-b-poly(ethylene glycol) methyl ether acrylate]. When cross-linked, this polymer brush enhances the stability of the GPMVs. Furthermore, the pH-responsiveness of the copolymer layer allows for a controlled cargo loading/release, which may enable various bioapplications. Importantly, the cross-linked-copolymer GPMVs are not cytotoxic and preserve in vitro membrane integrity and functionality. This effective strategy to equip the cell-derived vesicles with stimuli-responsive cross-linkable copolymers is expected to open a new route to the stabilization of natural membrane systems and overcome barriers to biomedical applications.
Collapse
Affiliation(s)
- Xinan Huang
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
| | - Dimitri Hürlimann
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| | - Hendrik T. Spanke
- Laboratory for Soft and Living MaterialsDepartment of MaterialsETH ZurichVladimir‐Prelog‐Weg 5Zurich8093Switzerland
| | - Dalin Wu
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
| | - Michal Skowicki
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| | - Ionel Adrian Dinu
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| | - Eric R. Dufresne
- Laboratory for Soft and Living MaterialsDepartment of MaterialsETH ZurichVladimir‐Prelog‐Weg 5Zurich8093Switzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| |
Collapse
|
19
|
Phukan M, Haritha P, Roy TR, Iyer BVS. Mechanical response of networks formed by end-functionalised spherical polymer grafted nanoparticles. SOFT MATTER 2022; 18:8591-8604. [PMID: 36325950 DOI: 10.1039/d2sm01174c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Via computer simulations we examine the mechanical response of hybrid polymer-particle networks composed of rigid spherical nanoparticles with long flexible polymer chains grafted onto their surface. The canopy of grafted polymer arms are end-functionalised such that interacting polymer-grafted nanoparticles (PGNs) form labile bonds when their coronas overlap. In the present study, the number of grafted arms, f, are such that the PGN brushes are in the small (f = 600) and intermediate curvature (f = 900 and 1200) regime with stable bonded interactions. To investigate the mechanical response of networks formed by these PGNs, controlled uniaxial elongation at a specified pulling rate is imposed on a 2-D network of PGNs placed on a hexagonal lattice. In the simulations, the force required to deform the network is measured as a function of the elongation and pulling rate imposed on the network until the network fails. By analysis of the force-strain curves and the rearrangement of the PGNs in the network we show that an increase in the number of grafted arms, pulling velocity and energy of the bonded interactions alters both the toughness and the mode of failure of the networks. In particular, we show that an increase in the number of grafted arms results in a reduction of toughness. Furthermore, analysis of the simulations of force relaxation after rapid extension indicates that the relaxation in deformed networks can be characterised by one or two time scales that depend on the number of grafted arms. The analysis of force-strain curves and force relaxation demonstrate the role of Deborah number, De, and the limitations in the use of a unique De in understanding the mechanical response of the networks respectively.
Collapse
Affiliation(s)
- Monmee Phukan
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| | - Pindi Haritha
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| | - Talem Rebeda Roy
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| | - Balaji V S Iyer
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| |
Collapse
|
20
|
Barcus K, Lin PA, Zhou Y, Arya G, Cohen SM. Influence of Polymer Characteristics on the Self-Assembly of Polymer-Grafted Metal-Organic Framework Particles. ACS NANO 2022; 16:18168-18177. [PMID: 36252115 PMCID: PMC9706656 DOI: 10.1021/acsnano.2c05175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Polymer-grafted metal-organic frameworks (MOFs) can combine the properties of MOFs and polymers into a single, matrix-free composite material. Herein, we examine polymer-grafted MOF particles (using UiO-66 as a model system) to examine how the molecular weight, grafting density, and chemical functionality of the polymer graft affects the preparation of free-standing self-assembled MOF monolayers (SAMMs). The physical properties of the monolayers are influenced by the choice of polymer, and robust, flexible monolayers were achieved more readily with poly(methyl acrylate) when compared to poly(methyl methacrylate) or poly(benzyl methacrylate). Molecular dynamics simulations were carried out to provide insights into the orientation and ordering of MOFs in the monolayers with respect to MOF size, graft length, and hydrophobicity. The relationship between molecular weight and graft density of the polymer brush was investigated and related to polymer brush conformation, offering design rules for further optimizations to balance mechanical strength, MOF weight fraction, and processability for this class of hybrid materials.
Collapse
Affiliation(s)
- Kyle Barcus
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California92093, United States
| | - Po-An Lin
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina27710, United States
| | - Yilong Zhou
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina27710, United States
| | - Gaurav Arya
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina27710, United States
| | - Seth M. Cohen
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California92093, United States
| |
Collapse
|
21
|
Kuzmyn A, Teunissen LW, Kroese MV, Kant J, Venema S, Zuilhof H. Antiviral Polymer Brushes by Visible-Light-Induced, Oxygen-Tolerant Covalent Surface Coating. ACS OMEGA 2022; 7:38371-38379. [PMID: 36340175 PMCID: PMC9631418 DOI: 10.1021/acsomega.2c03214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
This work presents a novel route for creating metal-free antiviral coatings based on polymer brushes synthesized by surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization, applying eosin Y as a photocatalyst, water as a solvent, and visible light as a driving force. The polymer brushes were synthesized using N-[3-(decyldimethyl)-aminopropyl] methacrylamide bromide and carboxybetaine methacrylamide monomers. The chemical composition, thickness, roughness, and wettability of the resulting polymer brush coatings were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle measurements, and ellipsometry. The antiviral properties of coatings were investigated by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian influenza viruses, with further measurement of residual viable viral particles. The best performance was obtained with Cu surfaces, with a ca. 20-fold reduction of SARS-Cov-2 and a 50-fold reduction in avian influenza. On the polymer brush-modified surfaces, the number of viable virus particles decreased by about 5-6 times faster for avian flu and about 2-3 times faster for SARS-CoV-2, all compared to unmodified silicon surfaces. Interestingly, no significant differences were obtained between quaternary ammonium brushes and zwitterionic brushes.
Collapse
Affiliation(s)
- Andriy
R. Kuzmyn
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lucas W. Teunissen
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Michiel V. Kroese
- Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Jet Kant
- Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Sandra Venema
- Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
- Department
of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Molecular Dynamics and Structure of Poly(Methyl Methacrylate) Chains Grafted from Barium Titanate Nanoparticles. Molecules 2022; 27:molecules27196372. [PMID: 36234912 PMCID: PMC9571223 DOI: 10.3390/molecules27196372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Core−shell nanocomposites comprising barium titanate, BaTiO3 (BTO), and poly(methyl methacrylate) (PMMA) chains grafted from its surface with varied grafting densities were prepared. BTO nanocrystals are high-k inorganic materials, and the obtained nanocomposites exhibit enhanced dielectric permittivity, as compared to neat PMMA, and a relatively low level of loss tangent in a wide range of frequencies. The impact of the molecular dynamics, structure, and interactions of the BTO surface on the polymer chains was investigated. The nanocomposites were characterized by broadband dielectric and vibrational spectroscopies (IR and Raman), transmission electron microscopy, differential scanning calorimetry, and nuclear magnetic resonance. The presence of ceramic nanoparticles in core–shell composites slowed down the segmental dynamic of PMMA chains, increased glass transition temperature, and concurrently increased the thermal stability of the organic part. It was also evidenced that, in addition to segmental dynamics, local β relaxation was affected. The grafting density influenced the self-organization and interactions within the PMMA phase, affecting the organization on a smaller size scale of polymeric chains. This was explained by the interaction of the exposed surface of nanoparticles with polymer chains.
Collapse
|
23
|
Iyer BVS. Effect of functional anisotropy on the local dynamics of polymer grafted nanoparticles. SOFT MATTER 2022; 18:6209-6221. [PMID: 35894123 DOI: 10.1039/d2sm00710j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
End-functionalised polymer grafted nanoparticles (PGNs) form bonds when their coronas overlap. The bonded interactions between the overlapping PGNs depend on the energy of the bonds (U). In the present study, oscillatory deformation imposed on a simple system with interacting PGNs placed on the vertices of a triangle is employed to examine the local dynamics as a function of energy of the bonds and the frequency of oscillation relative to the characteristic rupture frequency, ω0 = 2πν exp(-U/kBT), of the bonds. In particular, the effect of functional anisotropy is studied by introducing bonds of two different energies between adjacent PGNs. A multicomponent model developed by Kadre and Iyer, Macromol. Theory Simul., 2021, 30, 2100005, that combines the features of effective interactions between PGNs, self-consistent field theory and master equation approach to study bond kinetics is employed to obtain the local dynamics. The resulting force-strain curves are found to exhibit a simple broken symmetry where Fx (γ,) ≠ -Fx (-γ,-) and Fy (γ,) ≠ Fy (-γ,-) in systems with functional anisotropy. Fourier analysis of the dynamic response reveals that functional anisotropy leads to finite even harmonic terms and systematic variation of both the elastic and dissipative response from that of the isotropic systems. Furthermore, the intra-cycle variations in the strain stiffening and shear thickening ratios obtained from the analysis indicate that functional anisotropy leads to anisotropic nonlinear response.
Collapse
Affiliation(s)
- Balaji V S Iyer
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| |
Collapse
|
24
|
Yin R, Chmielarz P, Zaborniak I, Zhao Y, Szczepaniak G, Wang Z, Liu T, Wang Y, Sun M, Wu H, Tarnsangpradit J, Bockstaller MR, Matyjaszewski K. Miniemulsion SI-ATRP by Interfacial and Ion-Pair Catalysis for the Synthesis of Nanoparticle Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Paweł Chmielarz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Izabela Zaborniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jirameth Tarnsangpradit
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
25
|
Liang CX, Lu H, Huang BY, Xing JY, Gu FL, Liu H. Physical Insight for Grafting Polymer Chains onto the Substrate via Computer Simulations: Kinetics and Property. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
27
|
Wang YM, Kálosi A, Halahovets Y, Romanenko I, Slabý J, Homola J, Svoboda J, de los Santos Pereira A, Pop-Georgievski O. Grafting density and antifouling properties of poly[ N-(2-hydroxypropyl) methacrylamide] brushes prepared by “grafting to” and “grafting from”. Polym Chem 2022. [DOI: 10.1039/d2py00478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(HPMA) brushes prepared by a grafting-from method suppress fouling from blood plasma by an order of magnitude better than the polymer brushes of the same molecular weight prepared by a grafting-to method.
Collapse
Affiliation(s)
- Yu-Min Wang
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Anna Kálosi
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Yuriy Halahovets
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Iryna Romanenko
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Jiří Slabý
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 18251 Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 18251 Prague, Czech Republic
| | - Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
| | | | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
| |
Collapse
|
28
|
Chiarcos R, Antonioli D, Gianotti V, Laus M, Munaò G, Milano G, De Nicola A, Perego M. Short vs. long chains competition during “ grafting to” process from melt. Polym Chem 2022. [DOI: 10.1039/d2py00364c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A preferential grafting of short chains occurs during the “grafting to” reaction of hydroxy terminated P(S-st-MMA) blends consisting of short and long chains. The enrichment is enhanced when the chain length difference increases.
Collapse
Affiliation(s)
- Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Antonio De Nicola
- Scuola Superiore Meridionale, University of Naples Federico II, Largo S. Marcellino 10, Naples 80138, Italy
| | - Michele Perego
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
29
|
Jesmer AH, Huynh V, Marple AST, Ding X, Moran-Mirabal JM, Wylie RG. Graft-Then-Shrink: Simultaneous Generation of Antifouling Polymeric Interfaces and Localized Surface Plasmon Resonance Biosensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52362-52373. [PMID: 34704743 DOI: 10.1021/acsami.1c14930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antifouling polymer coatings that are simple to manufacture are crucial for the performance of medical devices such as biosensors. "Grafting-to", a simple technique where presynthesized polymers are immobilized onto surfaces, is commonly employed but suffers from nonideal polymer packing leading to increased biofouling. Herein, we present a material prepared via the grafting-to method with improved antifouling surface properties and intrinsic localized surface plasmon resonance (LSPR) sensor capabilities. A new substrate shrinking fabrication method, Graft-then-Shrink, improved the antifouling properties of polymer-coated Au surfaces by altering graft-to polymer packing while simultaneously generating wrinkled Au structures for LSPR biosensing. Thiol-terminated, antifouling, hydrophilic polymers were grafted to Au-coated prestressed polystyrene (PS) followed by shrinking upon heating above the PS glass transition temperature. Interestingly, the polymer molecular weight and hydration influenced Au wrinkling patterns. Compared to Shrink-then-Graft controls, where polymers are immobilized post shrinking, Graft-then-Shrink increased the polymer content by 76% in defined footprints and improved the antifouling properties as demonstrated by 84 and 72% reduction in macrophage adhesion and protein adsorption, respectively. Wrinkled Au LSPR sensors had sensitivities of ∼200-1000 Δλ/ΔRIU, comparing favorably to commercial LSPR sensors, and detected biotin-avidin and desthiobiotin-avidin complexation in a concentration-dependent manner using a standard plate reader and a 96-well format.
Collapse
Affiliation(s)
- Alexander H Jesmer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Vincent Huynh
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - April S T Marple
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Xiuping Ding
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Ryan G Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
30
|
Wilson BK, Prud'homme RK. Processing Chitosan for Preparing Chitosan-Functionalized Nanoparticles by Polyelectrolyte Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8517-8524. [PMID: 34236205 DOI: 10.1021/acs.langmuir.1c00990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chitosan-coated nanoparticles are a promising class of drug delivery vehicles that have been studied as tools for improving the gastrointestinal delivery of therapeutics. Here we present an analysis of chitosan-coated nanoparticles with an emphasis on characterizing the chitosan polymer properties. Cationic nanoparticles are produced by adsorbing a layer of chitosan HCl on an anionic (-40 mV ζ-potential) polyacrylic acid (PAA) coated primary nanoparticle. Commercially available chitosan (90% deacetylated) must be processed into a nearly completely deacetylated HCl salt form (99% deacetylation); otherwise, primary nanoparticle aggregation occurs. Deacetylated chitosan HCl produces stable, cationic (+35 mV ζ-potential) nanoparticles within 10% of the original anionic particle hydrodynamic diameter at a 1:2 molar ratio of chitosan glucosamine HCl monomers to PAA acrylic acid monomers.
Collapse
Affiliation(s)
- Brian K Wilson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
31
|
|
32
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Zuo B, Li C, Xu Q, Randazzo K, Jiang N, Wang X, Priestley RD. Ultrastable Glassy Polymer Films with an Ultradense Brush Morphology. ACS NANO 2021; 15:9568-9576. [PMID: 34032418 DOI: 10.1021/acsnano.0c09631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glassy polymer films with extreme stability could enable major advancements in a range of fields that require the use of polymers in confined environments. Yet, from a materials design perspective, we now know that the glass transition temperature (Tg) and thermal expansion of polymer thin films can be dramatically different from those characteristics of the bulk, i.e., exhibiting confinement-induced diminished thermal stability. Here, we demonstrate that polymer brushes with an ultrahigh grafting density, i.e., an ultradense brush morphology, exhibit a significant enhancement in thermal stability, as manifested by an exceptionally high Tg and low expansivity. For instance, a 5 nm thick polystyrene brush film exhibits an ∼75 K increase in Tg and ∼90% reduction in expansivity compared to a spin-cast film of similar thickness. Our results establish how morphology can overcome confinement and interfacial effects in controlling thin-film material properties and how this can be achieved by the dense packing and molecular ordering in the amorphous state of ultradense brushes prepared by surface-initiated atom transfer radical polymerization in combination with a self-assembled monolayer of initiators.
Collapse
Affiliation(s)
| | | | - Quanyin Xu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Katelyn Randazzo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
34
|
Kadre D, Iyer BVS. Modeling Local Oscillatory Shear Dynamics of Functionalized Polymer Grafted Nanoparticles. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diksha Kadre
- Department of Chemical Engineering Indian Institute of Technology Hyderabad 502285 India
| | - Balaji V. S. Iyer
- Department of Chemical Engineering Indian Institute of Technology Hyderabad 502285 India
| |
Collapse
|
35
|
Lee J, Bae C, Ou Z, Park S, Kim J, Kim J. Nanoscopic morphological effect on the optical properties of polymer-grafted gold polyhedra. NANOSCALE ADVANCES 2021; 3:1927-1933. [PMID: 36133089 PMCID: PMC9419197 DOI: 10.1039/d1na00035g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles show highly sensitive optical properties upon local dielectric environment changes. Hybridisation of plasmonic nanoparticles with active polymeric materials can allow stimuli-responsive and multiplex sensing over conventional monotonic sensing capacity. Such heterogeneous adlayers around the plasmonic core component, however, are likely to perturb the local refractive index in the nanometre regime and lead to uncertainty in its intrinsic sensitivity. Herein we prepare a series of polystyrene-grafted polyhedral gold nanoparticles, cubic and concave cubic cores, with different edge lengths and polymer thicknesses with precise synthesis control. Their localised surface plasmon resonance (LSPR) spectral changes are monitored to understand the effect of core morphological details in the interplay of nanoscale polymeric shells. Quantitative image analysis of changes in the core and shell shape contours and finite-difference time-domain simulations of the corresponding LSPR spectra and electric field distributions reveal that the magnitude of the LSPR spectral shift is closely dependent on the core morphology, polymer shell thickness and electric field intensity. We also demonstrate that the polystyrene-grafted gold concave cube displays higher sensitivity for nanoscale refractive index change in the polymer shell than the polystyrene-grafted gold cube at different temperatures. Our systematic investigation will help design polymer-composited plasmonic nanosensors for desirable applications.
Collapse
Affiliation(s)
- Jaedeok Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| | - Cheongwon Bae
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University Stanford California 94305 USA
| | - Suhyeon Park
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| | - Jeongeon Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 South Korea
| |
Collapse
|
36
|
Antonioli D, Chiarcos R, Gianotti V, Terragno M, Laus M, Munaò G, Milano G, De Nicola A, Perego M. Inside the brush: partition by molecular weight in grafting to reactions from melt. Polym Chem 2021. [DOI: 10.1039/d1py01303c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A substantial partition by molecular weight takes place during the grafting to reactions.
Collapse
Affiliation(s)
- Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Margherita Terragno
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Antonio De Nicola
- Dipartimento di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, via G. Paolo II 134, 84084, Fisciano, SA, Italy
| | - Michele Perego
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
37
|
Michalek L, Krappitz T, Mundsinger K, Walden SL, Barner L, Barner-Kowollik C. Mapping Photochemical Reactivity Profiles on Surfaces. J Am Chem Soc 2020; 142:21651-21655. [PMID: 33337866 DOI: 10.1021/jacs.0c11485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we introduce a comprehensive methodology to map the reactivity of photochemical systems on surfaces. The reactivity of photoreactive groups in solution often departs from their corresponding solution absorption spectra. On surfaces, the relationship between the surface absorption spectra and reactivity remains unexplored. Thus, herein, the reactivity of an o-methylbenzaldehyde and a tetrazole, as ligation partners for maleimide functionalized polymers, was investigated when the reactive moieties are tethered to a surface. The ligation reaction of tetrazole functionalized surfaces was found to proceed rapidly leading to high grafting densities, while o-methylbenzaldehyde functionalized substrates required longer irradiation times and resulted in lower surface coverage at the same wavelength (330 nm). Critically, wavelength resolved reactivity profiles were found to closely match the surface absorption spectra, contrary to previously reported red shifts in solution for the same chromophores.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Tim Krappitz
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Kai Mundsinger
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Leonie Barner
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| |
Collapse
|
38
|
Preparation and characterization of tissue-factor-loaded alginate: Toward a bioactive hemostatic material. Carbohydr Polym 2020; 249:116860. [DOI: 10.1016/j.carbpol.2020.116860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
|
39
|
Neira HD, Jeeawoody S, Herr AE. Reversible Functionalization of Clickable Polyacrylamide Gels with Protein and Graft Copolymers. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005010. [PMID: 33708029 PMCID: PMC7942169 DOI: 10.1002/adfm.202005010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 06/12/2023]
Abstract
Modular strategies to fabricate gels with tailorable chemical functionalities are relevant to applications spanning from biomedicine to analytical chemistry. Here, the properties of clickable poly(acrylamide-co-propargyl acrylate) (pAPA) hydrogels are modified via sequential in-gel copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. Under optimized conditions, each in-gel CuAAC reaction proceeds with rate constants of ~0.003 s-1, ensuring uniform modifications for gels < 200 μm thick. Using the modular functionalization approach and a cleavable disulfide linker, pAPA gels were modified with benzophenone and acrylate groups. Benzophenone groups allow gel functionalization with unmodified proteins using photoactivation. Acrylate groups enabled copolymer grafting onto the gels. To release the functionalized unit, pAPA gels were treated with disulfide reducing agents, which triggered ~50 % release of immobilized protein and grafted copolymers. The molecular mass of grafted copolymers (~6.2 kDa) was estimated by monitoring the release process, expanding the tools available to characterize copolymers grafted onto hydrogels. Investigation of the efficiency of in-gel CuAAC reactions revealed limitations of the sequential modification approach, as well as guidelines to convert a pAPA gel with a single functional group into a gel with three distinct functionalities. Taken together, we see this modular framework to engineer multifunctional hydrogels as benefiting applications of hydrogels in drug delivery, tissue engineering, and separation science.
Collapse
Affiliation(s)
- Hector D Neira
- Department of Bioengineering, University of California Berkeley Berkeley, CA 94720 (USA)
| | - Shaheen Jeeawoody
- Department of Bioengineering, University of California Berkeley Berkeley, CA 94720 (USA)
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley Berkeley, CA 94720 (USA)
| |
Collapse
|
40
|
Roeven E, Kuzmyn AR, Scheres L, Baggerman J, Smulders MMJ, Zuilhof H. PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10187-10199. [PMID: 32820926 PMCID: PMC7498161 DOI: 10.1021/acs.langmuir.0c01675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Indexed: 06/11/2023]
Abstract
In this work, we compare three routes to prepare antifouling coatings that consist of poly(l-lysine)-poly(N-(2-hydroxypropyl)methacrylamide) bottlebrushes. The poly(l-lysine) (PLL) backbone is self-assembled onto the surface by charged-based interactions between the lysine groups and the negatively charged silicon oxide surface, whereas the poly(N-(2-hydroxypropyl)methacrylamide) [poly(HPMA)] side chains, grown by reversible addition-fragmentation chain-transfer (RAFT) polymerization, provide antifouling properties to the surface. First, the PLL-poly(HPMA) coatings are synthesized in a bottom-up fashion through a grafting-from approach. In this route, the PLL is self-assembled onto a surface, after which a polymerization agent is immobilized, and finally HPMA is polymerized from the surface. In the second explored route, the PLL is modified in solution by a RAFT agent to create a macroinitiator. After self-assembly of this macroinitiator onto the surface, poly(HPMA) is polymerized from the surface by RAFT. In the third and last route, the whole PLL-poly(HPMA) bottlebrush is initially synthesized in solution. To this end, HPMA is polymerized from the macroinitiator in solution and the PLL-poly(HPMA) bottlebrush is then self-assembled onto the surface in just one step (grafting-to approach). Additionally, in this third route, we also design and synthesize a bottlebrush polymer with a PLL backbone and poly(HPMA) side chains, with the latter containing 5% carboxybetaine (CB) monomers that eventually allow for additional (bio)functionalization in solution or after surface immobilization. These three routes are evaluated in terms of ease of synthesis, scalability, ease of characterization, and a preliminary investigation of their antifouling performance. All three coating procedures result in coatings that show antifouling properties in single-protein antifouling tests. This method thus presents a new, simple, versatile, and highly scalable approach for the manufacturing of PLL-based bottlebrush coatings that can be synthesized partly or completely on the surface or in solution, depending on the desired production process and/or application.
Collapse
Affiliation(s)
- Esther Roeven
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Andriy R. Kuzmyn
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Luc Scheres
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Jacob Baggerman
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People’s Republic of China
- Department
of Chemical and Materials Engineering, King
Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Zhang S, Liu W, Wu Z, Chen H. Tri-functional platform for the facile construction of dual-functional surfaces via a one-pot strategy. J Mater Chem B 2020; 8:5602-5605. [PMID: 32525197 DOI: 10.1039/d0tb01222j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The scope of simultaneously introducing two new functionalities into the same polymeric substrate is largely limited to facile grafting approaches. Here, we designed a novel tri-functional platform and facilely constructed dual-functional surfaces in one pot by combining the "sulfur(vi)-fluoride exchange" (SuFEx) click reaction, photoinitiated polymerization and benzophenone photochemistry.
Collapse
Affiliation(s)
- Shuxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu Province, Soochow University, Suzhou 215123, P. R. China.
| | - Wenying Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu Province, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu Province, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu Province, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
42
|
Jesmer AH, Huynh V, Wylie RG. Fabrication of low-fouling, high-loading polymeric surfaces through pH-controlled RAFT. RSC Adv 2020; 10:20302-20312. [PMID: 35520404 PMCID: PMC9054213 DOI: 10.1039/d0ra02693j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/18/2020] [Indexed: 12/03/2022] Open
Abstract
Low-fouling and high-loading surfaces are increasingly important for biosensing and blood purification technologies. Selective and efficient target binding from complex media can be achieved with poly(carboxybetaine) (pCB) surfaces that consist of a dense brush layer to resist non-specific protein adsorption and a sparse “mushroom” upper layer for high-density capture agent immobilization (i.e. high-loading). We developed pH-controlled surface-reversible addition–fragmentation chain-transfer (S-RAFT) polymerization to simplify fabrication of multi-modal, low-fouling and high-loading pCB surfaces without the need for quenching or re-initiation steps, toxic transition metals or light irradiation. Multi-modal polymer layers were produced through partial polymer termination by temporarily raising the pH to aminolyse a fraction of dormant chain transfer agents (CTAs); remaining polymer chains with intact CTAs continued uninterrupted extension to create the “mushroom” upper layer. The multi-modal pCB surfaces were low-fouling towards proteins (<6.7 ng cm−2), and macrophages. Compared to mono-modal brush surfaces, multi-modal pCB surfaces were high-loading with 5-fold greater capture agent immobilization (e.g. antibody) and 4-fold greater target binding (e.g. biotin-fluorescein). pH-Controlled surface-reversible addition–fragmentation chain-transfer (S-RAFT) polymerization yields a one-pot synthesis for bimodal polymeric surfaces for improved capture agent immobilization.![]()
Collapse
Affiliation(s)
- Alexander H Jesmer
- Department of Chemistry and Chemical Biology, McMaster University Hamilton Ontario L8S 4M1 Canada
| | - Vincent Huynh
- Department of Chemistry and Chemical Biology, McMaster University Hamilton Ontario L8S 4M1 Canada
| | - Ryan G Wylie
- Department of Chemistry and Chemical Biology, McMaster University Hamilton Ontario L8S 4M1 Canada .,School of Biomedical Engineering, McMaster University Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
43
|
Bukvic AJ, Crivoi DG, Garwood HG, McKay AI, Chen TTD, Martínez-Martínez AJ, Weller AS. Tolerant to air σ-alkane complexes by surface modification of single crystalline solid-state molecular organometallics using vapour-phase cationic polymerisation: SMOM@polymer. Chem Commun (Camb) 2020; 56:4328-4331. [PMID: 32191244 DOI: 10.1039/d0cc01140a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vapour-phase surface-initiated cationic polymerisation of ethylvinylether occurs at single-crystals of the σ-alkane complex [Rh(Cy2PCH2CH2PCy2)(NBA)][BArF4]. This new surface interface makes these normally very air sensitive materials tolerant to air, while also allowing for onward single-crystal to single-crystal reactivity at metal sites within the lattice.
Collapse
Affiliation(s)
- Alexander J Bukvic
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Wu T, Lankshear ER, Downard AJ. Simultaneous Electro‐Click and Electrochemically Mediated Polymerization Reactions for One‐Pot Grafting from a Controlled Density of Anchor Sites. ChemElectroChem 2019. [DOI: 10.1002/celc.201901395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ting Wu
- School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8140 New Zealand
| | - Ethan R. Lankshear
- School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8140 New Zealand
| | - Alison J. Downard
- School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8140 New Zealand
| |
Collapse
|
45
|
An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials 2019; 218:119190. [DOI: 10.1016/j.biomaterials.2019.05.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
|
46
|
Chimisso V, Maffeis V, Hürlimann D, Palivan CG, Meier W. Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromol Biosci 2019; 20:e1900257. [PMID: 31549783 DOI: 10.1002/mabi.201900257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Biomembranes play a crucial role in a multitude of biological processes, where high selectivity and efficiency are key points in the reaction course. The outstanding performance of biological membranes is based on the coupling between the membrane and biomolecules, such as membrane proteins. Polymer-based membranes and assemblies represent a great alternative to lipid ones, as their presence not only dramatically increases the mechanical stability of such systems, but also opens the scope to a broad range of chemical functionalities, which can be fine-tuned to selectively combine with a specific biomolecule. Tethering the membranes or nanoassemblies on a solid support opens the way to a class of functional surfaces finding application as sensors, biocomputing systems, molecular recognition, and filtration membranes. Herein, the design, physical assembly, and biomolecule attachment/insertion on/within solid-supported polymeric membranes and nanoassemblies are presented in detail with relevant examples. Furthermore, the models and applications for these materials are highlighted with the recent advances in each field.
Collapse
Affiliation(s)
- Vittoria Chimisso
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| |
Collapse
|
47
|
Michalek L, Mundsinger K, Barner L, Barner-Kowollik C. Quantifying Solvent Effects on Polymer Surface Grafting. ACS Macro Lett 2019; 8:800-805. [PMID: 35619509 DOI: 10.1021/acsmacrolett.9b00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When grafting polymers onto surfaces, the reaction conditions critically influence the resulting interface properties, including the grafting density and molar mass distribution (MMD) on the surface. Herein, we show theoretically and experimentally that the application of poor solvents is beneficial for the "grafting-to" approach. We demonstrate the effect by grafting poly(methyl methacrylate) chains on silica nanoparticles in different solvents and compare the MMD of the polymer in solution before and after grafting via size exclusion chromatography (SEC). The shorter polymer chains are preferentially grafted onto the surface, leading to a distortion effect between the MMD in solution and on surfaces. The molecular weight distortion effect is significantly higher for ethyl acetate (good solvent quality, difference in Mw surface to solution 14%) than for N,N-dimethylacetamide (poor solvent quality, 6%). The difference in MMD on the surface to the solution significantly affects both the surface properties (e.g. the grafting densities) and their determination.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Kai Mundsinger
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Leonie Barner
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany
| |
Collapse
|
48
|
Ferrand-Drake Del Castillo G, Koenig M, Müller M, Eichhorn KJ, Stamm M, Uhlmann P, Dahlin A. Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3479-3489. [PMID: 30742441 DOI: 10.1021/acs.langmuir.9b00056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catalysis by enzymes on surfaces has many applications. However, strategies for efficient enzyme immobilization with preserved activity are still in need of further development. In this work, we investigate polyelectrolyte brushes prepared by both grafting-to and grafting-from with the aim to achieve high catalytic activity. For comparison, self-assembled monolayers that bind enzymes with the same chemical interactions are included. We use the model enzyme glucose oxidase and two kinds of polymers: anionic poly(acrylic acid) and cationic poly(diethylamino)methyl methacrylate. Surface plasmon resonance and spectroscopic ellipsometry are used for accurate quantification of surface coverage. Besides binding more enzymes, the "3D-like" brush environment enhances the specific activity compared to immobilization on self-assembled monolayers. For grafting-from brushes, multilayers of enzymes were spontaneously and irreversibly immobilized without conjugation chemistry. When the pH was between the pI of the enzyme and the p Ka of the polymer, binding was considerable (thousands of ng/cm2 or up to 50% of the polymer mass), even at physiological ionic strength. However, binding was observed also when the brushes were neutrally charged. For acidic brushes (both grafting-to and grafting-from), the activity was higher for covalent immobilization compared to noncovalent. For grafting-from brushes, a fully preserved specific activity compared to enzymes in the liquid bulk was achieved, both with covalent (acidic brush) and noncovalent (basic brush) immobilization. Catalytic activity of hundreds of pmol cm-2 s-1 was easily obtained for polybasic brushes only tens of nanometers in dry thickness. This study provides new insights for designing functional interfaces based on enzymatic catalysis.
Collapse
Affiliation(s)
| | - Meike Koenig
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Klaus-Jochen Eichhorn
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Manfred Stamm
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Petra Uhlmann
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Department of Chemistry , University of Nebraska-Lincoln , Hamilton Hall, 639 North 12th Street , Lincoln , Nebraska 68588 , United States
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Göteborg , Sweden
| |
Collapse
|
49
|
Michalek L, Mundsinger K, Barner-Kowollik C, Barner L. The long and the short of polymer grafting. Polym Chem 2019. [DOI: 10.1039/c8py01470a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymer chains are grafted depending on their size onto solid interfaces, leading to a distortion of the surface grafted size distribution. We herein predict and quanitify this distortion effect, which has critical consequences for functional polymer interface design.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry
- Physics and Mechanical Engineering
- Institute for Future Environments
- Queensland University of Technology (QUT)
- QLD 4000
| | - Kai Mundsinger
- School of Chemistry
- Physics and Mechanical Engineering
- Institute for Future Environments
- Queensland University of Technology (QUT)
- QLD 4000
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Institute for Future Environments
- Queensland University of Technology (QUT)
- QLD 4000
| | - Leonie Barner
- School of Chemistry
- Physics and Mechanical Engineering
- Institute for Future Environments
- Queensland University of Technology (QUT)
- QLD 4000
| |
Collapse
|
50
|
Sreedevi AM, Iyer BVS. Computational Study of Pair Interactions between Functionalized Polymer Grafted Nanoparticles. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Athira M. Sreedevi
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Kandi Village, Sangareddy 502285, Telangana, India
| | - Balaji V. S. Iyer
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Kandi Village, Sangareddy 502285, Telangana, India
| |
Collapse
|