1
|
Qian A, Cui M, Sun Y, Wang G, Hao Y, Yang C, Shi H. NiCo 2O 4 Nanowires Immobilized on Nitrogen-Doped Ti 3C 2T x for High-Performance Wearable Magnesium-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310398. [PMID: 38461535 DOI: 10.1002/smll.202310398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/15/2024] [Indexed: 03/12/2024]
Abstract
Flexible magnesium (Mg)-air batteries provide an ideal platform for developing efficient energy-storage devices toward wearable electronics and bio-integrated power sources. However, high-capacity bio-adaptable Mg-air batteries still face the challenges in low discharge potential and inefficient oxygen electrodes, with poor kinetics property toward oxygen reduction reaction (ORR). Herein, spinel nickel cobalt oxides (NiCo2O4) nanowires immobilized on nitrogen-doped Ti3C2Tx (NiCo2O4/N-Ti3C2Tx) are reported via surface chemical-bonded effect as oxygen electrodes, wherein surface-doped pyridinic-N-C and Co-pyridinic-N moieties accounted for efficient ORR owing to increased interlayer spacing and changed surrounding environment around Co metals in NiCo2O4. Importantly, in polyethylene glycol (PVA)-NaCl neutral gel electrolytes, the NiCo2O4/N-Ti3C2Tx-assembled quasi-solid wearable Mg-air batteries delivered high open-circuit potential of 1.5 V, good flexibility under various bent angles, high power density of 9.8 mW cm-2, and stable discharge duration to 12 h without obvious voltage drop at 5 mA cm-2, which can power a blue flexible light-emitting diode (LED) array and red smart rollable wearable device. The present study stimulates studies to investigate Mg-air batteries involving human-body adaptable neutral electrolytes, which will facilitate the application of Mg-air batteries in portable, flexible, and wearable power sources for electronic devices.
Collapse
Affiliation(s)
- Aniu Qian
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, China
| | - Miaomiao Cui
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yue Sun
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Guangyu Wang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuehui Hao
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chengli Yang
- Shanxi Dadi Environment Investment Holdings Co., Ltd., Taiyuan, 030006, China
| | - Hu Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
2
|
Song X, Wang X, Wei J, Zhou S, Wang H, Lou J, Zhang Y, Liu Y, Zou L, Zhao Y, Wei X, Osman SM, Li X, Yamauchi Y. 2D arrays of hollow carbon nanoboxes: outward contraction-induced hollowing mechanism in Fe-N-C catalysts. Chem Sci 2024; 15:10110-10120. [PMID: 38966354 PMCID: PMC11220593 DOI: 10.1039/d4sc01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Maximizing the utilization efficiency of monatomic Fe sites in Fe-N-C catalysts poses a significant challenge for their commercial applications. Herein, a structural and electronic dual-modulation is achieved on a Fe-N-C catalyst to substantially enhance its catalytic performance. We develop a facile multi-component ice-templating co-assembly (MIC) strategy to construct two-dimensional (2D) arrays of monatomic Fe-anchored hollow carbon nanoboxes (Fe-HCBA) via a novel dual-outward interfacial contraction hollowing mechanism. The pore engineering not only enlarges the physical surface area and pore volume but also doubles the electrochemically active specific surface area. Additionally, the unique 2D carbon array structure reduces interfacial resistance and promotes electron/mass transfer. Consequently, the Fe-HCBA catalysts exhibit superior oxygen reduction performance with a six-fold enhancement in both mass activity (1.84 A cm-2) and turnover frequency (0.048 e- site-1 s-1), compared to microporous Fe-N-C catalysts. Moreover, the incorporation of phosphorus further enhances the total electrocatalytic performance by three times by regulating the electron structure of Fe-N4 sites. Benefitting from these outstanding characteristics, the optimal 2D P/Fe-HCBA catalyst exhibits great applicability in rechargeable liquid- and solid-state zinc-air batteries with peak power densities of 186 and 44.5 mW cm-2, respectively.
Collapse
Affiliation(s)
- Xiaokai Song
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Xiaoke Wang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Jiamin Wei
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Shenghua Zhou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Jiali Lou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Yaqi Zhang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Yuhai Liu
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Luyao Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Xiaoqian Wei
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
| |
Collapse
|
3
|
Yan R, Zhao Z, Zhu R, Wu M, Liu X, Adeli M, Yin B, Cheng C, Li S. Alveoli-Inspired Carbon Cathodes with Interconnected Porous Structure and Asymmetric Coordinated Vanadium Sites for Superior Li-S Batteries. Angew Chem Int Ed Engl 2024; 63:e202404019. [PMID: 38622071 DOI: 10.1002/anie.202404019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Accelerating sulfur conversion catalysis to alleviate the shuttle effect has become a novel paradigm for effective Li-S batteries. Although nitrogen-coordinated metal single-atom (M-N4) catalysts have been investigated, further optimizing its utilization rate and catalytic activities is urgently needed for practical applications. Inspired by the natural alveoli tissue with interconnected structure and well-distributed enzyme catalytic sites on the wall for the simultaneously fast diffusion and in situ catalytic conversion of substrates, here, we proposed the controllable synthesis of bioinspired carbon cathode with interconnected porous structure and asymmetric coordinated V-S1N3 sites for efficient and stable Li-S batteries. The enzyme-mimetic V-S1N3 shows asymmetric electronic distribution and high tunability, therefore enhancing in situ polysulfide conversion activities. Experimental and theoretical results reveal that the high charge asymmetry degree and large atom radius of S in V-S1N3 result in sloping adsorption for polysulfide, thereby exhibiting low thermodynamic energy barriers and long-range stability (0.076 % decay over 600 cycles).
Collapse
Affiliation(s)
- Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ran Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Xi Z, Han J, Jin Z, Hu K, Qiu HJ, Ito Y. All-Solid-State Mg-Air Battery Enhanced with Free-Standing N-Doped 3D Nanoporous Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308045. [PMID: 37828632 DOI: 10.1002/smll.202308045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Nitrogen (N) doping of graphene with a three-dimensional (3D) porous structure, high flexibility, and low cost exhibits potential for developing metal-air batteries to power electric/electronic devices. The optimization of N-doping into graphene and the design of interconnected and monolithic graphene-based 3D porous structures are crucial for mass/ion diffusion and the final oxygen reduction reaction (ORR)/battery performance. Aqueous-type and all-solid-state primary Mg-air batteries using N-doped nanoporous graphene as air cathodes are assembled. N-doped nanoporous graphene with 50-150 nm pores and ≈99% porosity is found to exhibit a Pt-comparable ORR performance, along with satisfactory durability in both neutral and alkaline media. Remarkably, the all-solid-state battery exhibits a peak power density of 72.1 mW cm-2 ; this value is higher than that of a battery using Pt/carbon cathodes (54.3 mW cm-2 ) owing to the enhanced catalytic activity induced by N-doping and rapid air breathing in the 3D porous structure. Additionally, the all-solid-state battery demonstrates better performances than the aqueous-type battery owing to slow corrosion of the Mg anode by solid electrolytes. This study sheds light on the design of free-standing and catalytically active 3D nanoporous graphene that enhances the performance of both Mg-air batteries and various carbon-neutral-technologies using neutral electrolytes.
Collapse
Affiliation(s)
- Zeyu Xi
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Jiuhui Han
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Zeyu Jin
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Kailong Hu
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8573, Japan
| |
Collapse
|
5
|
Wang Q, Kaushik S, Xiao X, Xu Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem Soc Rev 2023; 52:6139-6190. [PMID: 37565571 DOI: 10.1039/d2cs00684g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sustainable zinc-air batteries (ZABs) are considered promising energy storage devices owing to their inherent safety, high energy density, wide operating temperature window, environmental friendliness, etc., showing great prospect for future large-scale applications. Thus, tremendous efforts have been devoted to addressing the critical challenges associated with sustainable ZABs, aiming to significantly improve their energy efficiency and prolong their operation lifespan. The growing interest in sustainable ZABs requires in-depth research on oxygen electrocatalysts, electrolytes, and Zn anodes, which have not been systematically reviewed to date. In this review, the fundamentals of ZABs, oxygen electrocatalysts for air cathodes, physicochemical properties of ZAB electrolytes, and issues and strategies for the stabilization of Zn anodes are systematically summarized from the perspective of fundamental characteristics and design principles. Meanwhile, significant advances in the in situ/operando characterization of ZABs are highlighted to provide insights into the reaction mechanism and dynamic evolution of the electrolyte|electrode interface. Finally, several critical thoughts and perspectives are provided regarding the challenges and opportunities for sustainable ZABs. Therefore, this review provides a thorough understanding of the advanced sustainable ZAB chemistry, hoping that this timely and comprehensive review can shed light on the upcoming research horizons of this prosperous area.
Collapse
Affiliation(s)
- Qichen Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Shubham Kaushik
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
6
|
Zhao H, Chen L, Ni N, Lv Y, Wang H, Zhang J, Li Z, Liu Y, Geng Y, Xie Y, Wang L. Zn-Induced Synthesis of Porous Fe-N,S-C Electrocatalyst with Iron-Based Active Sites Containing Sulfides, Oxides and Nitrides for Efficient Oxygen Reduction and Zinc-Air Batteries. Molecules 2023; 28:5885. [PMID: 37570853 PMCID: PMC10421323 DOI: 10.3390/molecules28155885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
There is an urgent need to design and synthesize non-noble metal electrocatalysts (NNMEs) for the replacement of platinum-based electrocatalysts to enhance the sluggish oxygen reduction reaction (ORR) for Zn-air batteries and fuel cells. Herein, Fe-N,S-C materials were fabricated through two steps: first, reprecipitating hemin by adjusting the pH and, then, decorating it with melamine and cysteine in the presence of Zn2+. The resulting Fe-N,S-C-950 (Zn) was prepared after pyrolysis at 950 °C. Using this method, abundant iron-based active species with good dispersion were obtained. The fabrication of more micropores in Fe-N,S-C-950 (Zn) plays a positive role in the improvement of ORR activity. On comparison, Fe-N,S-C-950 (Zn) outperforms Fe-N,S-C-950 and Fe-N-C-950 (Zn) with respect to the ORR due to its larger specific surface area, porous structure, multiple iron-based active sites and N- and S-doped C. Fe-N,S-C-950 (Zn) achieves outstanding ORR performances, including a half-wave potential (E1/2) of 0.844 V and 0.715 V versus a reversible hydrogen electrode (RHE) in 0.1 M KOH and 0.1 M HClO4 solution, respectively. In addition, Fe-N,S-C-950 (Zn) shows an outstanding Zn-air battery performance with an open-circuit voltage (OCV) of 1.450 V and a peak power density of 121.9 mW cm-2, which is higher than that of 20 wt% Pt/C. As a result, the as-prepared electrocatalyst in this work shows the development of the Zn-assisted strategy combined with the assembly of porphyrins as NNMEs for the enhancement of the ORR in both alkaline and acidic solutions.
Collapse
Affiliation(s)
- Haiyan Zhao
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| | - Li Chen
- Shanghai Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China;
| | - Nan Ni
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| | - Yang Lv
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China;
| | - Hezhen Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Jia Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Zhiwen Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, No. 536 West Huolinhe Road, Tongliao 028000, China
| | - Yubo Geng
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| | - Yan Xie
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Li Wang
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| |
Collapse
|
7
|
Wu Z, Sun Y, Mu S, Bai M, Li Q, Ma T, Ma L, Chen F, Luo X, Ye L, Cheng C. Manganese-Based Antioxidase-Inspired Biocatalysts with Axial Mn-N 5 Sites and 2D d-π-Conjugated Networks for Rescuing Stem Cell Fate. Angew Chem Int Ed Engl 2023; 62:e202302329. [PMID: 37002706 DOI: 10.1002/anie.202302329] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Constructing highly effective biocatalysts with controllable coordination geometry for eliminating reactive oxygen species (ROS) to address the current bottlenecks in stem-cell-based therapeutics remains challenging. Herein, inspired by the coordination structure of manganese-based antioxidase, we report a manganese-coordinated polyphthalocyanine-based biocatalyst (Mn-PcBC) with axial Mn-N5 sites and 2D d-π-conjugated networks that serves as an artificial antioxidase to rescue stem cell fate. Owing to the unique chemical and electronic structures, Mn-PcBC displays efficient, multifaceted, and robust ROS-scavenging activities, including elimination of H2 O2 and O2 ⋅- . Consequently, Mn-PcBC efficiently rescues the bioactivity and functionality of stem cells in high-ROS-level microenvironments by protecting the transcription of osteogenesis-related genes. This study offers essential insight into the crucial functions of axially coordinated Mn-N5 sites in ROS scavenging and suggests new strategies to create efficient artificial antioxidases for stem-cell therapies.
Collapse
Affiliation(s)
- Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yimin Sun
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shengdong Mu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ling Ye
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Yang C, Wu Z, Zhao Z, Gao Y, Ma T, He C, Wu C, Liu X, Luo X, Li S, Cheng C, Zhao C. Electronic Structure-Dependent Water-Dissociation Pathways of Ruthenium-Based Catalysts in Alkaline H 2 -Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206949. [PMID: 36599619 DOI: 10.1002/smll.202206949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Ruthenium (Ru)-based catalysts have displayed compelling hydrogen evolution activities, which hold the promising potential to substitute platinum in alkaline H2 -evolution. In the challenging alkaline electrolytes, the water-dissociation process involves multistep reactions, while the profound origin and intrinsic factors of diverse Ru species on water-dissociation pathways and reaction principles remain ambiguous. Here the fundamental origin of water-dissociation pathways of Ru-based catalysts in alkaline media to be from their unique electronic structures in complex coordination environments are disclosed. These theoretical results validate that the modulated electronic structures with delocalization-localization coexistence at their boundaries between the Ru nanocluster and single-atom site have a profound influence on water-dissociation pathways, which push H2 O* migration and binding orientation during the splitting process, thus enhancing the dissociation kinetics. By creating Ru catalysts with well-defined nanocluster, single-atom site, and also complex site, the electrocatalytic data shows that both the nanocluster and single-atom play essential roles in water-dissociation, while the complex site possesses synergistically enhanced roles in alkaline electrolytes. This study discloses a new electronic structure-dependent water-dissociation pathway and reaction principle in Ru-based catalysts, thus offering new inspiration to design efficient and durable catalysts for the practical production of H2 in alkaline electrolytes.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Chao He
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
9
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li 2 S 2 -Li 2 S Reduction Catalysis in Ferromagnetic Atoms-based Lithium-Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2023; 62:e202215414. [PMID: 36321878 PMCID: PMC10107143 DOI: 10.1002/anie.202215414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accelerating insoluble Li2 S2 -Li2 S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high-efficient lithium-sulfur battery cathodes, such as single-atom catalysts by offering high-density active sites to realize in situ reaction with solid Li2 S2 . However, the profound origin of diverse single-atom species on solid-solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li2 S2 -Li2 S reduction catalysis in ferromagnetic elements-based single-atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe-N4 -based cathodes exhibit the fastest deposition kinetics of Li2 S (226 mAh g-1 ) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li2 S2 -Li2 S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long-life batteries.
Collapse
Affiliation(s)
- Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhenyang Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhao Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Bo Yin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of ChemistryTechnische Universität BerlinBerlin10623Germany
| |
Collapse
|
10
|
Wu Z, Liu L, Zhao Z, Yang C, Mu S, Zhou H, Luo X, Ma T, Li S, Zhao C. Modulating Electronic Environment of Ru Nanoclusters via Local Charge Transfer for Accelerating Alkaline Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204738. [PMID: 36403218 DOI: 10.1002/smll.202204738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Compared to platinum catalysts, ruthenium (Ru) is disclosed as a promising alternative for alkaline water electrolysis due to its similar hydrogen adsorption energy and relatively lower water dissociation barrier. However, in the challenging alkaline media, the dissatisfied Volmer step during water dissociation of Ru metal prohibits its practical applications. Here, a new pathway to modulate the electronic environment of Ru catalysts via a local charge transfer strategy for tuning the water dissociation kinetics and accelerating the alkaline water electrolysis is proposed. The obtained catalysts are engineered by assembling and subsequently pyrolyzing the layer-stacked and 2D porphyrin-based Ru-N coordination polymers on nanocarbon supports. Benefiting from the well-defined Ru nanocluster-Nx -coordination bonds (Runc -Nx ), unique electronic environments, and local charge transfer properties, the catalysts exhibit the exceptional activity of 17 mV overpotential at 10 mA cm-2 and robust stability in water, which is more efficient than state-of-the-art Ru catalysts. The theoretical calculation suggests that the Runc -Nx sites enhance the nucleophilic attack of water and weaken the HOH bond. This study manifests that tailoring the bond environments of Ru clusters can significantly modulate their intrinsic catalytic activities and stabilities, which may open new avenues for developing high-active and durable catalysts for water electrolysis.
Collapse
Affiliation(s)
- Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Luchang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shengdong Mu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongju Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Nephrology, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Nephrology, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Shen M, Hu W, Duan C, Li J, Ding S, Zhang L, Zhu J, Ni Y. Cellulose nanofibers carbon aerogel based single-cobalt-atom catalyst for high-efficiency oxygen reduction and zinc-air battery. J Colloid Interface Sci 2023; 629:778-785. [DOI: 10.1016/j.jcis.2022.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
|
12
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li
2
S
2
−Li
2
S Reduction Catalysis in Ferromagnetic Atoms‐based Lithium‐Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202215414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Rui Yan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Menghao Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhao Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Xikui Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Bo Yin
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Shuang Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Chemistry Technische Universität Berlin Berlin 10623 Germany
| |
Collapse
|
13
|
Wang Z, Li J, Liu S, Shao G, Zhao X. A covalent organic framework/graphene aerogel electrocatalyst for enhanced overall water splitting. NANOSCALE 2022; 14:16944-16951. [PMID: 36346026 DOI: 10.1039/d2nr04378e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rational design of covalent organic framework (COF) based hybrid materials is of paramount importance to address the fundamental challenges of COFs with respect to their poor electron mobilization and the limited number of accessible active sites. Herein, we propose a new strategy for the fabrication of covalently bonded COF grafted graphene aerogel hybrid materials for electrocatalytic application. An in situ step-growth polymerization approach was developed to achieve the hybridization of COFs along the surface of amino-functionalized graphene nanosheets. By taking advantage of the three-dimensional conductive networks and highly accessible active sites, the cobalt-incorporated COF/graphene hybrid aerogel shows high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performances with an overpotential of 300 and 275 mV at 10 mA cm-2, respectively, under alkaline conditions. When applied to an electrochemical water-splitting electrolyzer, it is able to produce hydrogen and oxygen at competitive rates of 1.14 and 0.58 μL s-1, respectively, under ambient conditions, demonstrating its potential for practical applications.
Collapse
Affiliation(s)
- Zhiya Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jingfeng Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060 P.R. China
| | - Shiyin Liu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Gaofeng Shao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaojia Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
14
|
Zhu Z, Jiang T, Ali M, Meng Y, Jin Y, Cui Y, Chen W. Rechargeable Batteries for Grid Scale Energy Storage. Chem Rev 2022; 122:16610-16751. [PMID: 36150378 DOI: 10.1021/acs.chemrev.2c00289] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ever-increasing global energy consumption has driven the development of renewable energy technologies to reduce greenhouse gas emissions and air pollution. Battery energy storage systems (BESS) with high electrochemical performance are critical for enabling renewable yet intermittent sources of energy such as solar and wind. In recent years, numerous new battery technologies have been achieved and showed great potential for grid scale energy storage (GSES) applications. However, their practical applications have been greatly impeded due to the gap between the breakthroughs achieved in research laboratories and the industrial applications. In addition, various complex applications call for different battery performances. Matching of diverse batteries to various applications is required to promote practical energy storage research achievement. This review provides in-depth discussion and comprehensive consideration in the battery research field for GSES. The overall requirements of battery technologies for practical applications with key parameters are systematically analyzed by generating standards and measures for GSES. We also discuss recent progress and existing challenges for some representative battery technologies with great promise for GSES, including metal-ion batteries, lead-acid batteries, molten-salt batteries, alkaline batteries, redox-flow batteries, metal-air batteries, and hydrogen-gas batteries. Moreover, we emphasize the importance of bringing emerging battery technologies from academia to industry. Our perspectives on the future development of batteries for GSES applications are provided.
Collapse
Affiliation(s)
- Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mohsin Ali
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Jin
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Vanadium Nitride Supported on N-Doped Carbon as High-Performance ORR Catalysts for Zn–Air Batteries. Catalysts 2022. [DOI: 10.3390/catal12080877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is desirable to prepare low-cost non-noble metal catalysts using a simple and efficient method. Herein, we display for the first time that nitrogen-doped hierarchical porous carbon-supported vanadium nitride (VN/NC/C-x) catalysts can be regulated by dicyandiamide (DCDA). The introduction of DCDA not only effectively controls the pore structure, but also plays an important role in adjusting oxygen vacancies and d-electrons. In addition, DCDA is not only a significant raw material for the N-doped carbon, but also a nitrogen source for the preparation of vanadium nitride. The VN/NC/C-3 catalyst was prepared after optimization of the preparation parameters, and the macro/micro structure demonstrates a superior ORR performance in alkaline media with a positive onset potential of 0.85 V and a half-wave potential of 0.75 V, the limiting current density is as high as 4.52 mA·cm−2, and the Tafel slope is only 75.54 mV·dec−1. The VN/NC/C-3-based Zn–air battery exhibits a highest peak power density (161.82 mW∙cm−2) and an excellent energy density (702.28 mAh·kgZn−1 and 861.51 Wh·kgZn−1). This work provides a valuable synthetic approach for the preparation of other transition metal nitride catalysts with a relative economic value and high performance.
Collapse
|
16
|
He T, Chen Y, Liu Q, Lu B, Song X, Liu H, Liu M, Liu YN, Zhang Y, Ouyang X, Chen S. Theory-Guided Regulation of FeN 4 Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal-Air Batteries. Angew Chem Int Ed Engl 2022; 61:e202201007. [PMID: 35468253 DOI: 10.1002/anie.202201007] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 01/11/2023]
Abstract
Iron, nitrogen-codoped carbon (Fe-N-C) nanocomposites have emerged as viable electrocatalysts for the oxygen reduction reaction (ORR) due to the formation of FeNx Cy coordination moieties. In this study, results from first-principles calculations show a nearly linear correlation of the energy barriers of key reaction steps with the Fe magnetic moment. Experimentally, when single Cu sites are incorporated into Fe-N-C aerogels (denoted as NCAG/Fe-Cu), the Fe centers exhibit a reduced magnetic moment and markedly enhanced ORR activity within a wide pH range of 0-14. With the NCAG/Fe-Cu nanocomposites used as the cathode catalyst in a neutral/quasi-solid aluminum-air and alkaline/quasi-solid zinc-air battery, both achieve a remarkable performance with an ultrahigh open-circuit voltage of 2.00 and 1.51 V, large power density of 130 and 186 mW cm-2 , and good mechanical flexibility, all markedly better than those with commercial Pt/C or Pt/C-RuO2 catalysts at the cathode.
Collapse
Affiliation(s)
- Ting He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China.,School of Materials Science and Engineering, Xiangtan University Yuhu District, Xiangtan, Hunan, 411105, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Min Liu
- School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China.,Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University Yuhu District, Xiangtan, Hunan, 411105, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
17
|
He T, Chen Y, Liu Q, Lu B, Song X, Liu H, Liu M, Liu Y, Zhang Y, Ouyang X, Chen S. Theory‐Guided Regulation of FeN
4
Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ting He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
- School of Materials Science and Engineering Xiangtan University Yuhu District Xiangtan Hunan 411105 China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Qiming Liu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Min Liu
- School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - You‐Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
- Key Laboratory of Materials Processing and Mold, Ministry of Education Zhengzhou University Zhengzhou, Henan 450002 China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering Xiangtan University Yuhu District Xiangtan Hunan 411105 China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
18
|
Gao C, Mu S, Yan R, Chen F, Ma T, Cao S, Li S, Ma L, Wang Y, Cheng C. Recent Advances in ZIF-Derived Atomic Metal-N-C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities. SMALL 2022; 18:e2105409. [PMID: 35023628 DOI: 10.1002/smll.202105409] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/13/2021] [Indexed: 02/05/2023]
Abstract
Exploring highly active, stable electrocatalysts with earth-abundant metal centers for the oxygen reduction reaction (ORR) is essential for sustainable energy conversion. Due to the high cost and scarcity of platinum, it is a general trend to develop metal-N-C (M-N-C) electrocatalysts, especially those prepared from the zeolite imidazolate framework (ZIF) to replace/minimize usage of noble metals in ORR electrocatalysis for their amazingly high catalytic efficiency, great stability, and readily-tuned electronic structure. In this review, the most pivotal advances in mechanisms leading to declined catalytic performance, synthetic strategies, and design principles in engineering ZIF-derived M-N-C for efficient ORR catalysis, are presented. Notably, this review focuses on how to improve intrinsic ORR activity, such as M-Nx -Cy coordination structures, doping metal-free heteroatoms in M-N-C, dual/multi-metal sites, hydrogen passivation, and edge-hosted M-Nx . Meanwhile, how to increase active sites density, including formation of M-N complex, spatial confinement effects, and porous structure design, are discussed. Thereafter, challenges and future perspectives of M-N-C are also proposed. The authors believe this instructive review will provide experimental and theoretical guidance for designing future, highly active ORR electrocatalysts, and facilitate their applications in diverse ORR-related energy technologies.
Collapse
Affiliation(s)
- Chen Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shengdong Mu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sujiao Cao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, 610041, China
| | - Yinghan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
19
|
Cao S, Zhao Z, Zheng Y, Wu Z, Ma T, Zhu B, Yang C, Xiang X, Ma L, Han X, Wang Y, Guo Q, Qiu L, Cheng C. A Library of ROS-Catalytic Metalloenzyme Mimics with Atomic Metal Centers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200255. [PMID: 35132711 DOI: 10.1002/adma.202200255] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Indexed: 02/05/2023]
Abstract
MetalN-coordinated centers supported by carbonaceous substrates have emerged as promising artificial metalloenzymes (AMEs) to mimic the biocatalytic effects of their natural counterparts. However, the synthesis of well-defined AMEs that contain different atomic metalN centers but present similar physicochemical and coordination structures remains a substantial challenge. Here, 20 different types of AMEs with similar geometries and well-defined atomic metalN-coordinated centers are synthesized to compare and disclose the catalytic activities, substrate selectivities, kinetics, and reactive oxygen species (ROS) products. Their oxidase (OXD)-, peroxidase (POD)-, and halogen peroxidase (HPO)-mimetic catalytic behaviors are systematically explored. The Fe-AME shows the highest OXD- and HPO-mimetic activities compared to the other AMEs due to its high vmax (0.927 × 10-6 m s-1 ) and low Km (1.070 × 10-3 m), while the Cu-AME displays the best POD-like performance. Furthermore, theoretical calculation reveals that the ROS-catalytic paths and activities are highly related to the electronic structures of the metal centers. Benefiting from its facile adsorption of H2 O2 molecule and lower energy barrier to generating •O2 - , the Fe-AME displays higher ROS-catalytic performances than the Mn-AME. The engineered AMEs show not only remarkably high ROS-catalytic performances but also provide new guidance toward developing metalN-coordinated biocatalysts for broad application fields.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Zhenyang Zhao
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Yijuan Zheng
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Zihe Wu
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Tian Ma
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Bihui Zhu
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Chengdong Yang
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Xi Xiang
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Lang Ma
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| | - Xianglong Han
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610065 China
| | - Yi Wang
- Center for Microscopy and Analysis Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
- Max Planck Institute for Solid State Research Heisenbergstraße 1 Stuttgart 70569 Germany
| | - Quanyi Guo
- Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics No. 28 Fuxing Road, Haidian District Beijing 100853 China
- Department of Orthopaedics The Affiliated Hospital of Guizhou Medical University Yunyan District Guiyang City Guizhou Province 550004 China
| | - Li Qiu
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Chong Cheng
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| |
Collapse
|
20
|
Cheng M, Yan R, Yang Z, Tao X, Ma T, Cao S, Ran F, Li S, Yang W, Cheng C. Polysulfide Catalytic Materials for Fast-Kinetic Metal-Sulfur Batteries: Principles and Active Centers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102217. [PMID: 34766470 PMCID: PMC8805578 DOI: 10.1002/advs.202102217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 05/05/2023]
Abstract
Benefiting from the merits of low cost, ultrahigh-energy densities, and environmentally friendliness, metal-sulfur batteries (M-S batteries) have drawn massive attention recently. However, their practical utilization is impeded by the shuttle effect and slow redox process of polysulfide. To solve these problems, enormous creative approaches have been employed to engineer new electrocatalytic materials to relieve the shuttle effect and promote the catalytic kinetics of polysulfides. In this review, recent advances on designing principles and active centers for polysulfide catalytic materials are systematically summarized. At first, the currently reported chemistries and mechanisms for the catalytic conversion of polysulfides are presented in detail. Subsequently, the rational design of polysulfide catalytic materials from catalytic polymers and frameworks to active sites loaded carbons for polysulfide catalysis to accelerate the reaction kinetics is comprehensively discussed. Current breakthroughs are highlighted and directions to guide future primary challenges, perspectives, and innovations are identified. Computational methods serve an ever-increasing part in pushing forward the active center design. In summary, a cutting-edge understanding to engineer different polysulfide catalysts is provided, and both experimental and theoretical guidance for optimizing future M-S batteries and many related battery systems are offered.
Collapse
Affiliation(s)
- Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhao Yang
- State Key Laboratory of Advanced Processing and Recycling of Non‐Ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Xuefeng Tao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Sujiao Cao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non‐Ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Shuang Li
- Department of ChemistryTechnische Universität BerlinHardenbergstraße 40Berlin10623Germany
| | - Wei Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 3Berlin14195Germany
| |
Collapse
|
21
|
Zhang S, Jiang K, Jiang H, Zhu J, Ji H, Lu C, Zhang L, Li J, Chen Z, Ke C, Zhuang X. Pt3Fe nanoparticles triggered high catalytic performance for oxygen reduction reaction in both alkaline and acidic media. ChemElectroChem 2021. [DOI: 10.1002/celc.202101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kaiyue Jiang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Jiang
- Chinese Academy of Sciences Shanghai institude of Microsystem and information Technology CHINA
| | - Jinhui Zhu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Huiping Ji
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Chenbao Lu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering dongchuan road 800 200240 Shanghai CHINA
| | - Longhai Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Jin Li
- Henan Engineering Technology Research Center of Fuel Cell and Hydrogen Energy Zhengzhou Yutong Bus Co.Ltd CHINA
| | - Zhenying Chen
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Changchun Ke
- Shanghai Jiao Tong University School of Mechanical Engineering CHINA
| | - Xiaodong Zhuang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
22
|
Shao W, Xiao M, Yang C, Cheng M, Cao S, He C, Zhou M, Ma T, Cheng C, Li S. Assembling and Regulating of Transition Metal-Based Heterophase Vanadates as Efficient Oxygen Evolution Catalysts. SMALL 2021; 18:e2105763. [PMID: 34866325 DOI: 10.1002/smll.202105763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Developing efficient, durable, and low-cost earth-abundant elements-based oxygen evolution reaction (OER) catalysts by rapid and scalable strategies is of great importance for future sustainable electrochemical hydrogen production. The earth-abundant high-valency metals, especially vanadium, can modulate the electronic structure of 3d metal oxides and oxyhydroxides and offer the active sites near-optimal adsorption energies for OER intermediates. Here, the authors propose a facile assembling and regulating strategy to controllably synthesize a serial of transition metal (CoFe, NiFe, and NiCo)-based vanadates for efficient OER catalysis. By tuning the reaction concentrations, NiFe-based vanadates with different crystallinities can be facilely regulated, where the catalyst with moderate heterophase (mixed crystalline and amorphous structures) shows the best OER catalytic activity in terms of low overpotential (267 mV at the current density of 10 mA cm-2 ), low Tafel slope (38 mV per decade), and excellent long-term durability in alkaline electrolyte, exceeding its noble metal-based counterparts (RuO2 ) and most current existing OER catalysts. This work not only reports a facile and controllable method to synthesize a series of vanadates-based catalysts with heterophase nanostructures for high-performance OER catalysis, but also may expand the scope of designing cost-effective transition metal-based electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingjun Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Menghao Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
23
|
Yang Z, Zhao Z, Zhou H, Cheng M, Yan R, Tao X, Li S, Liu X, Cheng C, Ran F. Cobalt-Based Double Catalytic Sites on Mesoporous Carbon as Reversible Polysulfide Catalysts for Fast-Kinetic Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51174-51185. [PMID: 34689545 DOI: 10.1021/acsami.1c17971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Li-S batteries are considered to be the most promising next-generation advanced energy-storage systems. However, the sluggish reaction kinetics and the "shuttle effect" of lithium polysulfides (LiPSs) severely limit their battery performances. To overcome the complex and multiphase sulfur redox chemistry of LiPSs, in this study, we propose a new type of cobalt-based double catalytic sites (DCSs) codoped mesoporous carbon to immobilize and reversibly catalyze the LiPS intermediates in the cycling process, thus eliminating the shuttle effect and improving the charge-discharge kinetics. The theoretical calculation shows that the well-designed DCS configuration endows LiPSs with both strong and weak binding capabilities, which will facilitate the synergistic and reversible catalytic conversion. Furthermore, the experimental results also confirm that the DCS structure shows significantly enhanced catalytic kinetics than the single catalytic sites. The Li-S battery equipped with the DCS structure displays an extremely high discharge capacity of 918 mA h g-1 at a current density of 0.2 C and can reach a capacity of 867 mA h g-1 after 200 cycles with an ultralow capacity attenuation rate of 0.028% for each cycle. This study opens new avenues to address the catalytic requirements both in discharging and charging processes.
Collapse
Affiliation(s)
- Zhao Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, P. R. China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Haoran Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Menghao Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xuefeng Tao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, Berlin 10623, Germany
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, P. R. China
| |
Collapse
|
24
|
Zhang F, Sherrell PC, Luo W, Chen J, Li W, Yang J, Zhu M. Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102859. [PMID: 34633752 PMCID: PMC8596128 DOI: 10.1002/advs.202102859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/28/2021] [Indexed: 05/29/2023]
Abstract
Organic/inorganic hybrid fibers (OIHFs) are intriguing materials, possessing an intrinsic high specific surface area and flexibility coupled to unique anisotropic properties, diverse chemical compositions, and controllable hybrid architectures. During the last decade, advanced OIHFs with exceptional properties for electrochemical energy applications, including possessing interconnected networks, abundant active sites, and short ion diffusion length have emerged. Here, a comprehensive overview of the controllable architectures and electrochemical energy applications of OIHFs is presented. After a brief introduction, the controllable construction of OIHFs is described in detail through precise tailoring of the overall, interior, and interface structures. Additionally, several important electrochemical energy applications including rechargeable batteries (lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries), supercapacitors (sandwich-shaped supercapacitors and fiber-shaped supercapacitors), and electrocatalysts (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction) are presented. The current state of the field and challenges are discussed, and a vision of the future directions to exploit OIHFs for electrochemical energy devices is provided.
Collapse
Affiliation(s)
- Fangzhou Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Peter C. Sherrell
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research Institute (IPRI)Australian Institute of Innovative Materials (AIIM)University of WollongongWollongongNSW2522Australia
| | - Wei Li
- Department of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsiChEM and State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
25
|
Long Y, Li L, Xu T, Wu X, Gao Y, Huang J, He C, Ma T, Ma L, Cheng C, Zhao C. Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria. Nat Commun 2021; 12:6143. [PMID: 34686676 PMCID: PMC8536674 DOI: 10.1038/s41467-021-26456-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
Pathogenic drug-resistant bacteria represent a threat to human health, for instance, the methicillin-resistant Staphylococcus aureus (MRSA). There is an ever-growing need to develop non-antibiotic strategies to fight bacteria without triggering drug resistance. Here, we design a hedgehog artificial macrophage with atomic-catalytic centers to combat MRSA by mimicking the “capture and killing” process of macrophages. The experimental studies and theoretical calculations reveal that the synthesized materials can efficiently capture and kill MRSA by the hedgehog topography and substantial generation of •O2− and HClO with its Fe2N6O catalytic centers. The synthesized artificial macrophage exhibits a low minimal inhibition concentration (8 μg/mL Fe-Art M with H2O2 (100 μM)) to combat MRSA and rapidly promote the healing of bacteria-infected wounds on rabbit skin. We suggest that the application of this hedgehog artificial macrophage with “capture and killing” capability and high ROS-catalytic activity will open up a promising pathway to develop antibacterial materials for bionic and non-antibiotic disinfection strategies. The increase in drug-resistant bacteria is a world-wide health issue that demands the development of alternatives to standard antibiotic treatments. In this study, the authors synthesise a hedgehog artificial macrophage with heme-mimetic catalytic centres, and peroxidase- and haloperoxidase-mimicking activities, for the treatment of methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Yanping Long
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Ling Li
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Yun Gao
- College of Biomass Science and Engineering, Textile Institute, Sichuan University, 610065, Chengdu, China
| | - Jianbo Huang
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China. .,College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, China. .,College of Chemical Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
26
|
Wagh NK, Kim DH, Kim SH, Shinde SS, Lee JH. Heuristic Iron-Cobalt-Mediated Robust pH-Universal Oxygen Bifunctional Lusters for Reversible Aqueous and Flexible Solid-State Zn-Air Cells. ACS NANO 2021; 15:14683-14696. [PMID: 34412470 DOI: 10.1021/acsnano.1c04471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rechargeable aqueous zinc-air cells (ZACs) promise an extremely safe and high energy technology. However, they are still significantly limited by sluggish electrochemical kinetics and irreversibility originating from the parasitic reactions of the bifunctional catalysts and electrolytes. Here, we report the preferential in situ building of interfacial structures featuring the edge sites constituted by FeCo single/dual atoms with the integration of Co sites in the nitrogenized graphitic carbon frameworks (FeCo SAs@Co/N-GC) by electronic structure modulation approach. Compared to commercial Pt/C and RuO2, FeCo SAs@Co/N-GC reveals exceptional electrochemical performance, reversible redox kinetics, and durability toward oxygen reduction and evolution reactions under universal pH environments, i.e., alkaline, neutral, and acidic, due to synergistic effect at interfaces and preferred charge/mass transfer. The aqueous (alkaline, nonalkaline, and acidic electrolytes) ZACs constructed with a FeCo SAs@Co/N-GC cathode tolerate stable operations, have significant reversibility, and have the highest energy densities, outperforming those of noble metal counterparts and state-of-the-art ZACs in the ambient atmosphere. Additionally, flexible solid-state ZACs demonstrate excellent mechanical and electrochemical performances with a highest power density of 186 mW cm-2, specific capacity of 817 mAh gZn-1, energy density of 1017 Wh kgZn-1, and cycle life >680 cycles with extremely harsh operating conditions, which illustrates the great potential of triphasic catalyst for green energy storage technologies.
Collapse
Affiliation(s)
- Nayantara K Wagh
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Dong-Hyung Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sung-Hae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sambhaji S Shinde
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jung-Ho Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
27
|
Fan F, Zhou H, Yan R, Yang C, Zhu H, Gao Y, Ma L, Cao S, Cheng C, Wang Y. Anchoring Fe-N-C Sites on Hierarchically Porous Carbon Sphere and CNT Interpenetrated Nanostructures as Efficient Cathodes for Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41609-41618. [PMID: 34428013 DOI: 10.1021/acsami.1c10510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Engineering efficient zinc-air batteries have attracted tremendous attention because of their essential role in the field of renewable energy systems. However, the sluggish reaction kinetics of the oxygen reduction reaction (ORR) at the air cathode impair the battery performance significantly. Recently, metal-N-C-based porous carbon nanoarchitectures have emerged as promising ORR electrocatalysts in zinc-air batteries. Herein, taking advantage of metal-organic complexation and mesoporous silica templates, we successfully anchor Fe-N-C sites on hierarchically porous carbon sphere and carbon nanotube interpenetrated nanostructures (Fe-N-C/HPCS@CNT) to serve as efficient cathodes for zinc-air batteries. Benefiting from its synergistic effects between the highly active Fe-N-C sites, ultrahigh surface areas, and unique hierarchically porous nanostructures, Fe-N-C/HPCS@CNT exhibits preferable ORR performance (E1/2 = 0.873 V) compared to commercial Pt/C (E1/2 = 0.841 V). Most importantly, when used as a cathode catalyst for homemade zinc-air batteries, Fe-N-C/HPCS@CNT exhibits gratifying peak power density (164.0 mW cm-2), large specific capacity (762.0 mAh g-1), superior long-term stability, extraordinary rate capability, and excellent charge/discharge performance. We believe that this report will not only offer new insights into the design of Fe-N-C-based catalysts but also promote the practical utilization of Fe-N-C-based cathodes for a wide range of energy applications.
Collapse
Affiliation(s)
- Fei Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Haoran Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Huang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yun Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.,National Clinical Research Center for Geriatrics, Sichuan University, Chengdu 610041, China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Yinghan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
28
|
Gao Y, Wu T, Yang C, Ma C, Zhao Z, Wu Z, Cao S, Geng W, Wang Y, Yao Y, Zhang Y, Cheng C. Activity Trends and Mechanisms in Peroxymonosulfate‐Assisted Catalytic Production of Singlet Oxygen over Atomic Metal‐N‐C Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yun Gao
- College of Biomass Science and Engineering College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
- State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Chengdong Yang
- College of Biomass Science and Engineering College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chao Ma
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Zhenyang Zhao
- College of Biomass Science and Engineering College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zihe Wu
- College of Biomass Science and Engineering College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Biomass Science and Engineering College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Wei Geng
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Yi Wang
- College of Materials Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Yongyi Yao
- College of Biomass Science and Engineering College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Chong Cheng
- College of Biomass Science and Engineering College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| |
Collapse
|
29
|
Gao Y, Wu T, Yang C, Ma C, Zhao Z, Wu Z, Cao S, Geng W, Wang Y, Yao Y, Zhang Y, Cheng C. Activity Trends and Mechanisms in Peroxymonosulfate-Assisted Catalytic Production of Singlet Oxygen over Atomic Metal-N-C Catalysts. Angew Chem Int Ed Engl 2021; 60:22513-22521. [PMID: 34387407 DOI: 10.1002/anie.202109530] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/11/2022]
Abstract
We synthesized a series of carbon-supported atomic metal-N-C catalysts (M-SACs: M=Mn, Fe, Co, Ni, Cu) with similar structural and physicochemical properties to uncover their catalytic activity trends and mechanisms. The peroxymonosulfate (PMS) catalytic activity trends are Fe-SAC>Co-SAC>Mn-SAC>Ni-SAC>Cu-SAC, and Fe-SAC displays the best single-site kinetic value (1.65×105 min-1 mol-1 ) compared to the other metal-N-C species. First-principles calculations indicate that the most reasonable reaction pathway for 1 O2 production is PMS→OH*→O*→1 O2 ; M-SACs that exhibit moderate and near-average Gibbs free energies in each reaction step have a better catalytic activity, which is the key for the outstanding performance of Fe-SACs. This study gives the atomic-scale understanding of fundamental catalytic trends and mechanisms of PMS-assisted reactive oxygen species production via M-SACs, thus providing guidance for developing M-SACs for catalytic organic pollutant degradation.
Collapse
Affiliation(s)
- Yun Gao
- College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.,State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Chengdong Yang
- College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Ma
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenyang Zhao
- College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yi Wang
- College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yongyi Yao
- College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chong Cheng
- College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
30
|
Guo L, Wan K, Liu B, Wang Y, Wei G. Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices. NANOTECHNOLOGY 2021; 32:442001. [PMID: 34325413 DOI: 10.1088/1361-6528/ac18d5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanofibers (CNFs) exhibit the advantages of high mechanical strength, good conductivity, easy production, and low cost, which have shown wide applications in the fields of materials science, nanotechnology, biomedicine, tissue engineering, sensors, wearable electronics, and other aspects. To promote the applications of CNF-based nanomaterials in wearable devices, the flexibility, electronic conductivity, thickness, weight, and bio-safety of CNF-based films/membranes are crucial. In this review, we present recent advances in the fabrication of CNF-based composite nanomaterials for flexible wearable devices. For this aim, firstly we introduce the synthesis and functionalization of CNFs, which promote the optimization of physical, chemical, and biological properties of CNFs. Then, the fabrication of two-dimensional and three-dimensional CNF-based materials are demonstrated. In addition, enhanced electric, mechanical, optical, magnetic, and biological properties of CNFs through the hybridization with other functional nanomaterials by synergistic effects are presented and discussed. Finally, wearable applications of CNF-based materials for flexible batteries, supercapacitors, strain/piezoresistive sensors, bio-signal detectors, and electromagnetic interference shielding devices are introduced and discussed in detail. We believe that this work will be beneficial for readers and researchers to understand both structural and functional tailoring of CNFs, and to design and fabricate novel CNF-based flexible and wearable devices for advanced applications.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
31
|
Wang Y, Cui X, Peng L, Li L, Qiao J, Huang H, Shi J. Metal-Nitrogen-Carbon Catalysts of Specifically Coordinated Configurations toward Typical Electrochemical Redox Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100997. [PMID: 34218474 DOI: 10.1002/adma.202100997] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/02/2021] [Indexed: 06/13/2023]
Abstract
Metal-nitrogen-carbon (M-N-C) material with specifically coordinated configurations is a promising alternative to costly Pt-based catalysts. In the past few years, great progress is made in the studies of M-N-C materials, including the structure modulation and local coordination environment identification via advanced synthetic strategies and characterization techniques, which boost the electrocatalytic performances and deepen the understanding of the underlying fundamentals. In this review, the most recent advances of M-N-C catalysts with specifically coordinated configurations of M-Nx (x = 1-6) are summarized as comprehensively as possible, with an emphasis on the synthetic strategy, characterization techniques, and applications in typical electrocatalytic reactions of the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, CO2 reduction reaction, etc., along with mechanistic exploration by experiments and theoretical calculations. Furthermore, the challenges and potential perspectives for the future development of M-N-C catalysts are discussed.
Collapse
Affiliation(s)
- Yongxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Xiangzhi Cui
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Luwei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Road, Shanghai, 200092, China
| | - Haitao Huang
- Department of Applied Physics, Hong Kong Polytechnic University, 11 Yucai road, Kowloon, Hong Kong, 999077, China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| |
Collapse
|
32
|
Li L, Chen H, He E, Wang L, Ye T, Lu J, Jiao Y, Wang J, Gao R, Peng H, Zhang Y. High‐Energy‐Density Magnesium‐Air Battery Based on Dual‐Layer Gel Electrolyte. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Luhe Li
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| | - Hao Chen
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| | - Er He
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| | - Lie Wang
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| | - Jiang Lu
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| | - Rui Gao
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China
| |
Collapse
|
33
|
Du F, Liu L, Wu Z, Zhao Z, Geng W, Zhu B, Ma T, Xiang X, Ma L, Cheng C, Qiu L. Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101095. [PMID: 34096109 DOI: 10.1002/adma.202101095] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Indexed: 02/05/2023]
Abstract
The diversity, complexity, and heterogeneity of malignant tumor seriously undermine the efficiency of mono-modal treatment. Recently, multi-modal therapeutics with enhanced antitumor efficiencies have attracted increasing attention. However, designing a nanotherapeutic platform with uniform morphology in nanoscale that integrates with efficient chem-/sono-/photo-trimodal tumor therapies is still a great challenge. Here, new and facile Pd-single-atom coordinated porphyrin-based polymeric networks as biocatalysts, namely, Pd-Pta/Por, for chem-/sono-/photo-trimodal tumor therapies are designed. The atomic morphology and chemical structure analysis prove that the biocatalyst consists of atomic Pd-N coordination networks with a Pd-N2 -Cl2 catalytic center. The characterization of peroxidase-like catalytic activities displays that the Pd-Pta/Por can generate abundant •OH radicals for chemodynamic therapies. The ultrasound irradiation or laser excitation can significantly boost the catalytic production of 1 O2 by the porphyrin-based sono-/photosensitizers to achieve combined sono-/photodynamic therapies. The superior catalytic production of •OH is further verified by density functional theory calculation. Finally, the corresponding in vitro and in vivo experiments have demonstrated their synergistic chem-/sono-/photo-trimodal antitumor efficacies. It is believed that this study provides new promising single-atom-coordinated polymeric networks with highly efficient biocatalytic sites and synergistic trimodal therapeutic effects, which may inspire many new findings in reactive oxygen species-related biological applications across broad therapeutics and biomedical fields.
Collapse
Affiliation(s)
- Fangxue Du
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Luchang Liu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Zhenyang Zhao
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bihui Zhu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Tian Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Xi Xiang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Chong Cheng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
34
|
Yan R, Ma T, Cheng M, Tao X, Yang Z, Ran F, Li S, Yin B, Cheng C, Yang W. Metal-Organic-Framework-Derived Nanostructures as Multifaceted Electrodes in Metal-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008784. [PMID: 34031929 PMCID: PMC11468141 DOI: 10.1002/adma.202008784] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/10/2021] [Indexed: 02/05/2023]
Abstract
Metal-sulfur batteries (MSBs) are considered up-and-coming future-generation energy storage systems because of their prominent theoretical energy density. However, the practical applications of MSBs are still hampered by several critical challenges, i.e., the shuttle effects, sluggish redox kinetics, and low conductivity of sulfur species. Recently, benefiting from the high surface area, regulated networks, molecular/atomic-level reactive sites, the metal-organic frameworks (MOFs)-derived nanostructures have emerged as efficient and durable multifaceted electrodes in MSBs. Herein, a timely review is presented on recent advancements in designing MOF-derived electrodes, including fabricating strategies, composition management, topography control, and electrochemical performance assessment. Particularly, the inherent charge transfer, intrinsic polysulfide immobilization, and catalytic conversion on designing and engineering of MOF nanostructures for efficient MSBs are systematically discussed. In the end, the essence of how MOFs' nanostructures influence their electrochemical properties in MSBs and conclude the future tendencies regarding the construction of MOF-derived electrodes in MSBs is exposed. It is believed that this progress review will provide significant experimental/theoretical guidance in designing and understanding the MOF-derived nanostructures as multifaceted electrodes, thus offering promising orientations for the future development of fast-kinetic and robust MSBs in broad energy fields.
Collapse
Affiliation(s)
- Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xuefeng Tao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Zhao Yang
- State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Shuang Li
- Functional MaterialsDepartment of ChemistryTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Bo Yin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Wei Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| |
Collapse
|
35
|
Li L, Chen H, He E, Wang L, Ye T, Lu J, Jiao Y, Wang J, Gao R, Peng H, Zhang Y. High-Energy-Density Magnesium-Air Battery Based on Dual-Layer Gel Electrolyte. Angew Chem Int Ed Engl 2021; 60:15317-15322. [PMID: 33928737 DOI: 10.1002/anie.202104536] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/09/2021] [Indexed: 01/28/2023]
Abstract
Mg-air batteries are explored as the next-generation power systems for wearable and implantable electronics as they could work stably in neutral electrolytes and are also biocompatible. However, high corrosion rate and low utilization of Mg anode largely impair the performance of Mg-air battery with low discharge voltage, poor specific capacity and low energy density. Here, to the best of our knowledge, we first report a dual-layer gel electrolyte to simultaneously solve the above two problems by preventing the corrosion of Mg anode and the production of dense passive layer, respectively. The resulting Mg-air batteries produced an average specific capacity of 2190 mAh g-1 based on the total Mg anode (99.3 % utilization rate of Mg anode) and energy density of 2282 Wh kg-1 based on the total anode and air electrode, both of which are the highest among the reported Mg-air batteries. Besides, our Mg-air batteries could be made into a fiber shape, and they were flexible to work stably under various deformations such as bending and twisting.
Collapse
Affiliation(s)
- Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Hao Chen
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiang Lu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Rui Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
36
|
Zhu G, Qi Y, Liu F, Ma S, Xiang G, Jin F, Liu Z, Wang W. Reconstructing 1D Fe Single-atom Catalytic Structure on 2D Graphene Film for High-Efficiency Oxygen Reduction Reaction. CHEMSUSCHEM 2021; 14:866-875. [PMID: 33236522 DOI: 10.1002/cssc.202002359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The ordinary intrinsic activity and disordered distribution of metal sites in zero/one-dimensional (0D/1D) single-atom catalysts (SACs) lead to inferior catalytic efficiency and short-term endurance in the oxygen reduction reaction (ORR), which restricts the large-scale application of hydrogen-oxygen fuel cells and metal-air batteries. To improve the activity of SACs, a mild synthesis method was chosen to conjugate 1D Fe SACs with 2D graphene film (Fe SAC@G) that realized a composite structure with well-ordered atomic-Fe coordination configuration. The product exhibits outstanding ORR electrocatalytic efficiency and stability in 0.1 M KOH aqueous solution. DFT-D computational results manifest the intrinsic ORR activity of Fe SAC@G originated from the newly-formed FeN4 -O-FeN4 bridge structure with moderate adsorption ability towards ORR intermediates. These findings provide new ways for designing SACs with high activity and long-term stability.
Collapse
Affiliation(s)
- Guangqi Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yanling Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Fan Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shenqian Ma
- State Key Laboratory of Chemical Resource Engineering College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guolei Xiang
- State Key Laboratory of Chemical Resource Engineering College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fengmin Jin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zigeng Liu
- Institut für Energie und Klimaforschung (IEK-9), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Wei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Key Laboratory of Metal Fuel Cell of Sichuan Province, Deyang, 618019, Sichuan, P. R. China
| |
Collapse
|
37
|
Yang Y, Wu X, Ma L, He C, Cao S, Long Y, Huang J, Rodriguez RD, Cheng C, Zhao C, Qiu L. Bioinspired Spiky Peroxidase-Mimics for Localized Bacterial Capture and Synergistic Catalytic Sterilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005477. [PMID: 33475193 DOI: 10.1002/adma.202005477] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/18/2020] [Indexed: 02/05/2023]
Abstract
Besides the pandemic caused by the coronavirus outbreak, many other pathogenic microbes also pose a devastating threat to human health, for instance, pathogenic bacteria. Due to the lack of broad-spectrum antibiotics, it is urgent to develop nonantibiotic strategies to fight bacteria. Herein, inspired by the localized "capture and killing" action of bacteriophages, a virus-like peroxidase-mimic (V-POD-M) is synthesized for efficient bacterial capture (mesoporous spiky structures) and synergistic catalytic sterilization (metal-organic-framework-derived catalytic core). Experimental and theoretical calculations show that the active compound, MoO3 , can serve as a peroxo-complex-intermediate to reduce the free energy for catalyzing H2 O2 , which mainly benefits the generation of •OH radicals. The unique virus-like spikes endow the V-POD-M with fast bacterial capture and killing abilities (nearly 100% at 16 µg mL-1 ). Furthermore, the in vivo experiments show that V-POD-M possesses similar disinfection treatment and wound skin recovery efficiencies to vancomycin. It is suggested that this inexpensive, durable, and highly reactive oxygen species (ROS) catalytic active V-POD-M provides a promising broad-spectrum therapy for nonantibiotic disinfection.
Collapse
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Xizheng Wu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Lang Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Chao He
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Yanping Long
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Jianbo Huang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | | | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- College of Biomedical Engineering National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
- College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Li Qiu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| |
Collapse
|
38
|
Xiao M, Xing Z, Jin Z, Liu C, Ge J, Zhu J, Wang Y, Zhao X, Chen Z. Preferentially Engineering FeN 4 Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004900. [PMID: 33150623 DOI: 10.1002/adma.202004900] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/02/2020] [Indexed: 05/27/2023]
Abstract
Single-atom FeN4 sites at the edges of carbon substrates are considered more active for oxygen electrocatalysis than those in plane; however, the conventional high-temperature pyrolysis process does not allow for precisely engineering the location of the active site down to atomic level. Enlightened by theoretical prediction, herein, a self-sacrificed templating approach is developed to obtain edge-enriched FeN4 sites integrated in the highly graphitic nanosheet architecture. The in situ formed Fe clusters are intentionally introduced to catalyze the growth of graphitic carbon, induce porous structure formation, and most importantly, facilitate the preferential anchoring of FeN4 to its close approximation. Due to these attributes, the as-resulted catalyst (denoted as Fe/N-G-SAC) demonstrates unprecedented catalytic activity and stability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) by showing an impressive half-wave potential of 0.89 V for the ORR and a small overpotential of 370 mV at 10 mA cm-2 for the OER. Moreover, the Fe/N-G-SAC cathode displays encouraging performance in a rechargeable Zn-air battery prototype with a low charge-discharge voltage gap of 0.78 V and long-term cyclability for over 240 cycles, outperforming the noble metal benchmarks.
Collapse
Affiliation(s)
- Meiling Xiao
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zihao Xing
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Fachgebiet Angewante Nanophysik, Institut für Physik & IMN MacroNano@ (ZIK), Technische Universität Imenau, Ilmenau, 98693, Germany
| | - Zhao Jin
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junjie Ge
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianbing Zhu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiao Zhao
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
39
|
Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, Li S, Luo H, Cheng C, Qiu L. Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003065. [PMID: 33124725 DOI: 10.1002/adma.202003065] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Indexed: 02/05/2023]
Abstract
Nanomaterial-based enzyme-mimetic catalysts (Enz-Cats) have received considerable attention because of their optimized and enhanced catalytic performances and selectivities in diverse physiological environments compared with natural enzymes. Recently, owing to their molecular/atomic-level catalytic centers, high porosity, large surface area, high loading capacity, and homogeneous structure, metal-organic frameworks (MOFs) have emerged as one of the most promising materials in engineering Enz-Cats. Here, the recent advances in the design of MOF-engineered Enz-Cats, including their preparation methods, composite constructions, structural characterizations, and biomedical applications, are highlighted and commented upon. In particular, the performance, selectivities, essential mechanisms, and potential structure-property relations of these MOF-engineered Enz-Cats in accelerating catalytic reactions are discussed. Some potential biomedical applications of these MOF-engineered Enz-Cats are also breifly proposed. These applications include, for example, tumor therapies, bacterial disinfection, tissue regeneration, and biosensors. Finally, the future opportunities and challenges in emerging research frontiers are thoroughly discussed. Thereby, potential pathways and perspectives for designing future state-of-the-art Enz-Cats in biomedical sciences are offered.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Fuben Jiang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Fan
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Liyun Wang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, Berlin, 10623, Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chong Cheng
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Li Qiu
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
40
|
Li X, Cao CS, Hung SF, Lu YR, Cai W, Rykov AI, Miao S, Xi S, Yang H, Hu Z, Wang J, Zhao J, Alp EE, Xu W, Chan TS, Chen H, Xiong Q, Xiao H, Huang Y, Li J, Zhang T, Liu B. Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. Chem 2020. [DOI: 10.1016/j.chempr.2020.10.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Gao Y, Yang C, Zhou M, He C, Cao S, Long Y, Li S, Lin Y, Zhu P, Cheng C. Transition Metal and Metal–N
x
Codoped MOF‐Derived Fenton‐Like Catalysts: A Comparative Study on Single Atoms and Nanoparticles. SMALL 2020; 16:e2005060. [PMID: 33230912 DOI: 10.1002/smll.202005060] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Yun Gao
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Chengdong Yang
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Mi Zhou
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
- Textile Institute Sichuan University Chengdu 610065 China
| | - Chao He
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Yanping Long
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Shuang Li
- Functional Materials Department of Chemistry Technische Universität Berlin Hardenbergstraße 40 Berlin 10623 Germany
| | - Yi Lin
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
- Textile Institute Sichuan University Chengdu 610065 China
| | - Puxin Zhu
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
- Textile Institute Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610041 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| |
Collapse
|
42
|
Tang Q, Cao S, Ma T, Xiang X, Luo H, Borovskikh P, Rodriguez RD, Guo Q, Qiu L, Cheng C. Engineering Biofunctional Enzyme‐Mimics for Catalytic Therapeutics and Diagnostics. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202007475] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qing Tang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Tian Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Xi Xiang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Pavel Borovskikh
- Martin‐Luther‐University Halle‐Wittenberg Universitätsplatz 10 Halle (Saale) 06108 Germany
| | | | - Quanyi Guo
- Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Li Qiu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| |
Collapse
|
43
|
Wu D, Chen J, Zhang W, Liu W, Li J, Cao K, Gao Z, Xu F, Jiang K. Sealed pre-carbonization to regulate the porosity and heteroatom sites of biomass derived carbons for lithium-sulfur batteries. J Colloid Interface Sci 2020; 579:667-679. [DOI: 10.1016/j.jcis.2020.06.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022]
|
44
|
Niu WJ, He JZ, Wang YP, Sun QQ, Liu WW, Zhang LY, Liu MC, Liu MJ, Chueh YL. A hybrid transition metal nanocrystal-embedded graphitic carbon nitride nanosheet system as a superior oxygen electrocatalyst for rechargeable Zn-air batteries. NANOSCALE 2020; 12:19644-19654. [PMID: 32966500 DOI: 10.1039/d0nr03987j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we, for the first time, demonstrate a general solid-phase pyrolysis method to synthesize hybrid transition metal nanocrystal-embedded graphitic carbon nitride nanosheets, namely M-CNNs, as a highly efficient oxygen electrocatalyst for rechargeable Zn-air batteries (ZABs). The ratios between metallic acetylacetonates and the g-C3N4 precursor can be controlled where Fe-CNNs-0.7, Ni-CNNs-0.7 and Co-NNs-0.7 composites have been optimized to exhibit superior ORR/OER bifunctional electrocatalytic activities. Specifically, Co-CNNs-0.7 exhibited not only a comparable half-wave potential (0.803 V vs. RHE) to that of the commercial Pt/C catalyst (0.832 V) with a larger current density for the ORR but also a lower overpotential (440 mV) toward the OER compared with the commercial IrO2 catalyst (460 mV), revealing impressive application in rechargeable ZABs. As a result, ZABs using Co-CNNs-0.7 as the cathode exhibited an excellent peak power density of 85.3 mW cm-2 with a specific capacity of 675.7 mA h g-1 and remarkable cycling stability of 1000 cycles, outperforming the commercially available Pt/C + IrO2 catalysts. This study highlights the synergy from heterointerfaces in oxygen electrocatalysis, thus providing a promising approach for advanced metal-air cathode materials.
Collapse
Affiliation(s)
- Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shang H, Zhou X, Dong J, Li A, Zhao X, Liu Q, Lin Y, Pei J, Li Z, Jiang Z, Zhou D, Zheng L, Wang Y, Zhou J, Yang Z, Cao R, Sarangi R, Sun T, Yang X, Zheng X, Yan W, Zhuang Z, Li J, Chen W, Wang D, Zhang J, Li Y. Engineering unsymmetrically coordinated Cu-S 1N 3 single atom sites with enhanced oxygen reduction activity. Nat Commun 2020; 11:3049. [PMID: 32546781 PMCID: PMC7297793 DOI: 10.1038/s41467-020-16848-8] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/28/2020] [Indexed: 11/17/2022] Open
Abstract
Atomic interface regulation is thought to be an efficient method to adjust the performance of single atom catalysts. Herein, a practical strategy was reported to rationally design single copper atoms coordinated with both sulfur and nitrogen atoms in metal-organic framework derived hierarchically porous carbon (S-Cu-ISA/SNC). The atomic interface configuration of the copper site in S-Cu-ISA/SNC is detected to be an unsymmetrically arranged Cu-S1N3 moiety. The catalyst exhibits excellent oxygen reduction reaction activity with a half-wave potential of 0.918 V vs. RHE. Additionally, through in situ X-ray absorption fine structure tests, we discover that the low-valent Cuprous-S1N3 moiety acts as an active center during the oxygen reduction process. Our discovery provides a universal scheme for the controllable synthesis and performance regulation of single metal atom catalysts toward energy applications.
Collapse
Affiliation(s)
- Huishan Shang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiangyi Zhou
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ang Li
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100029, China
| | - Xu Zhao
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, 230029, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, 230029, China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jiajing Pei
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhuoli Jiang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Danni Zhou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Jing Zhou
- Shanghai Synchrotron Radiation Facilities (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Zhengkun Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Rui Cao
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Tingting Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Yang
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, 230029, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, 230029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jia Li
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
46
|
Tu K, Zou L, Yang C, Su Y, Lu C, Zhu J, Zhang F, Ke C, Zhuang X. Ionic Polyimide Derived Porous Carbon Nanosheets as High-Efficiency Oxygen Reduction Catalysts for Zn-Air Batteries. Chemistry 2020; 26:6525-6534. [PMID: 31788872 DOI: 10.1002/chem.201904769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/28/2019] [Indexed: 11/11/2022]
Abstract
Two-dimensional (2D) porous carbon nanosheets (2DPCs) have attracted great attention for their good porosity and long-distance conductivity. Factors such as templates, precursors, and carbonization-activation methods, directly determine their performance. However, rational design and preparation of porous carbon materials with controlled 2D morphology and heteroatom dopants remains a challenge. Therefore, an ionic polyimide with both sp2 - and sp3 -hybridized nitrogen atoms was prepared as a precursor for fabricating N-doped hexagonal porous carbon nanosheets through a hard-template approach. Because of the large surface area and efficient charge-mass transport, the resulting activated 2D porous carbon nanosheets (2DPCs-a) displayed promising electrocatalytic properties for oxygen reduction reaction (ORR) in alkaline and acidic media, such as ultralow half-wave potential (0.83 vs. 0.84 V of Pt/C) and superior limiting current density (5.42 vs. 5.14 mA cm-2 of Pt/C). As air cathodes in Zn-air batteries, the as-developed 2DPCs-a exhibited long stability and high capacity (up to 614 mA h g-1 ), which are both higher than those of commercial Pt/C. This work provides a convenient method for controllable and scalable 2DPCs fabrication as well as new opportunities to develop high-efficiency electrocatalysts for ORR and Zn-air batteries.
Collapse
Affiliation(s)
- Kejun Tu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lingyi Zou
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chongqing Yang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chenbao Lu
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jinhui Zhu
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fan Zhang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Changchun Ke
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Zhuang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
47
|
Shang H, Jiang Z, Zhou D, Pei J, Wang Y, Dong J, Zheng X, Zhang J, Chen W. Engineering a metal-organic framework derived Mn-N 4-C x S y atomic interface for highly efficient oxygen reduction reaction. Chem Sci 2020; 11:5994-5999. [PMID: 34094090 PMCID: PMC8159393 DOI: 10.1039/d0sc02343d] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022] Open
Abstract
Atomic interface engineering is an effective pathway to regulate the performance of single metal atom catalysts for electrochemical reactions in energy applications. Herein, we construct a sulfur modified Mn-N-C single atom catalyst through a metal-organic framework derived atomic interface strategy, which exhibits outstanding ORR activity with a half-wave potential of 0.916 V vs. RHE in alkaline media. Moreover, operando X-ray absorption spectroscopy analysis indicates that the isolated bond-length extending the low-valence Mn-N4-C x S y moiety serves as an active site during the ORR process. These findings suggest a promising method for the advancement of single atom catalysis.
Collapse
Affiliation(s)
- Huishan Shang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Zhuoli Jiang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Danni Zhou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jiajing Pei
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science Shanghai 201800 China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China Hefei 230029 China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
48
|
Wang G, Zhang T, Yu W, Si R, Liu Y, Zhao Z. Modulating Location of Single Copper Atoms in Polymeric Carbon Nitride for Enhanced Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01099] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Guanchao Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ting Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Weiwei Yu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
49
|
Yang Y, Wu X, He C, Huang J, Yin S, Zhou M, Ma L, Zhao W, Qiu L, Cheng C, Zhao C. Metal–Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13698-13708. [PMID: 32129070 DOI: 10.1021/acsami.0c01666] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqi Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
50
|
Ye MY, Li S, Zhao X, Tarakina NV, Teutloff C, Chow WY, Bittl R, Thomas A. Cobalt-Exchanged Poly(Heptazine Imides) as Transition Metal-N x Electrocatalysts for the Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903942. [PMID: 31984551 DOI: 10.1002/adma.201903942] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Poly(heptazine imides) hosting cobalt ions as countercations are presented as promising electrocatalysts for the oxygen evolution reaction (OER). A facile mixed-salt melt-assisted condensation is developed to prepare such cobalt poly(heptazine imides) (PHI-Co). The Co ions can be introduced in well-controlled amounts using this method, and are shown to be atomically dispersed within the imide-linked heptazine matrix. When applied to electrocatalytic OER, PHI-Co shows a remarkable activity with an overpotential of 324 mV and Tafel slope of 44 mV dec-1 in 1 m KOH.
Collapse
Affiliation(s)
- Meng-Yang Ye
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstr. 40, 10623, Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstr. 40, 10623, Berlin, Germany
| | - Xiaojia Zhao
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstr. 40, 10623, Berlin, Germany
| | - Nadezda V Tarakina
- Max Planck Institute of Colloids & Interfaces, Department of Colloid Chemistry, D-14476, Potsdam, Germany
| | - Christian Teutloff
- Freie Universität Berlin, Fachbereich Physik, Berlin Joint EPR Lab, Arnimallee 14, D-14195, Berlin, Germany
| | - Wing Ying Chow
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Robert Bittl
- Freie Universität Berlin, Fachbereich Physik, Berlin Joint EPR Lab, Arnimallee 14, D-14195, Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstr. 40, 10623, Berlin, Germany
| |
Collapse
|