1
|
Zhou D, Jin L, Ji Y, Li Y. Rational Design of Two-Dimensional MA 2Z 4 Monolayers as Effective Anchoring Materials for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62213-62221. [PMID: 39498610 DOI: 10.1021/acsami.4c15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Advances in lithium-sulfur batteries (LSBs) are impeded by the inefficiency of anchoring materials in facilitating long-term cycling and rate performance. To address this challenge, an exploration of two-dimensional MA2Z4 monolayers as potential anchoring materials for LSBs is proposed based on density functional theory calculations and machine learning (ML) techniques. Adsorption features, sulfur reduction reaction behaviors, and solvent interactions are assessed and analyzed; and MoGe2N4 and WGe2N4 are identified as the most promising candidates because they have optimal adsorption energies for lithium polysulfides to suppress the shuttle effect and exhibit enhanced catalytic activity. Meanwhile, ML analysis highlights the critical influence of the electronegativity of element Z in MA2Z4 on anchoring properties, providing valuable insights into future anchoring material design for high-performance LSBs.
Collapse
Affiliation(s)
- Dingyanyan Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lujie Jin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
2
|
Yao W, Liao K, Lai T, Sul H, Manthiram A. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms. Chem Rev 2024; 124:4935-5118. [PMID: 38598693 DOI: 10.1021/acs.chemrev.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rechargeable metal-sulfur batteries are considered promising candidates for energy storage due to their high energy density along with high natural abundance and low cost of raw materials. However, they could not yet be practically implemented due to several key challenges: (i) poor conductivity of sulfur and the discharge product metal sulfide, causing sluggish redox kinetics, (ii) polysulfide shuttling, and (iii) parasitic side reactions between the electrolyte and the metal anode. To overcome these obstacles, numerous strategies have been explored, including modifications to the cathode, anode, electrolyte, and binder. In this review, the fundamental principles and challenges of metal-sulfur batteries are first discussed. Second, the latest research on metal-sulfur batteries is presented and discussed, covering their material design, synthesis methods, and electrochemical performances. Third, emerging advanced characterization techniques that reveal the working mechanisms of metal-sulfur batteries are highlighted. Finally, the possible future research directions for the practical applications of metal-sulfur batteries are discussed. This comprehensive review aims to provide experimental strategies and theoretical guidance for designing and understanding the intricacies of metal-sulfur batteries; thus, it can illuminate promising pathways for progressing high-energy-density metal-sulfur battery systems.
Collapse
Affiliation(s)
- Weiqi Yao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kameron Liao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianxing Lai
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyunki Sul
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Gao R, Zhang M, Han Z, Xiao X, Wu X, Piao Z, Lao Z, Nie L, Wang S, Zhou G. Unraveling the Coupling Effect between Cathode and Anode toward Practical Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303610. [PMID: 37500064 DOI: 10.1002/adma.202303610] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Indexed: 07/29/2023]
Abstract
The localized reaction heterogeneity of the sulfur cathode and the uneven Li deposition on the Li anode are intractable issues for lithium-sulfur (Li-S) batteries under practical operation. Despite impressive progress in separately optimizing the sulfur cathode or Li anode, a comprehensive understanding of the highly coupled relationship between the cathode and anode is still lacking. In this work, inspired by the Butler-Volmer equation, a binary descriptor (IBD ) assisting the rational structural design of sulfur cathode by simultaneously considering the mass-transport index (Imass ) and the charge-transfer index (Icharge ) is identified, and subsequently the relationship between IBD and the morphological evolution of Li anode is established. Guided by the IBD , a scalable electrode providing interpenetrated flow channels for efficient mass/charge transfer, full utilization of active sulfur, and mechanically elastic support for aggressive electrochemical reactions under practical conditions is reported. These characteristics induce a homogenous distribution of local current densities and reduced reaction heterogeneity on both sides of the cathode and anode. Impressive energy density of 318 Wh kg-1 and 473 Wh L-1 in an Ah-level pouch cell can be achieved by the design concept. This work offers a promising paradigm for unlocking the interaction between cathode and anode and designing high-energy practical Li-S batteries.
Collapse
Affiliation(s)
- Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhiyuan Han
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhoujie Lao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Lu Nie
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shaogang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
4
|
Liu L, Yin X, Li W, Wang D, Duan J, Wang X, Zhang Y, Peng D, Zhang Y. Transition Metal Phosphides: The Rising Star of Lithium-Sulfur Battery Cathode Host. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308564. [PMID: 38049201 DOI: 10.1002/smll.202308564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Indexed: 12/06/2023]
Abstract
Lithium-sulfur batteries (LSBs) with ultra-high energy density (2600 W h kg-1 ) and readily available raw materials are emerging as a potential alternative device with low cost for lithium-ion batteries. However, the insulation of sulfur and the unavoidable shuttle effect leads to slow reaction kinetics of LSBs, which in turn cause various roadblocks including poor rate capability, inferior cycling stability, and low coulombic efficiency. The most effective way to solve the issues mentioned above is to rationally design and control the synthesis of the cathode host for LSBs. Transition metal phosphides (TMPs) with good electrical conductivity and dual adsorption-conversion capabilities for polysulfide (PS) are regarded as promising cathode hosts for new-generation LSBs. In this review, the main obstacles to commercializing the LSBs and the development processes of their cathode host are first elaborated. Then, the sulfur fixation principles, and synthesis methods of the TMPs are briefly summarized and the recent progress of TMPs in LSBs is reviewed in detail. Finally, a perspective on the future research directions of LSBs is provided.
Collapse
Affiliation(s)
- Luzhi Liu
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiangshao Yin
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Wenjiao Li
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Ding Wang
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jianguo Duan
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xianshu Wang
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yiyong Zhang
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Dong Peng
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yingjie Zhang
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
5
|
Hou R, Li Y, Wang Z, Shi Z, Li N, Miao F, Shao G, Zhang P. In Situ 1D Carbon Chain-Mail Catalyst Assembly for Stable Lithium-Sulfur Full Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300868. [PMID: 37098649 DOI: 10.1002/smll.202300868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The main obstacles for the commercial application of Lithium-Sulfur (Li-S) full batteries are the large volume change during charging/discharging process, the shuttle effect of lithium polysulfide (LiPS), sluggish redox kinetics, and the indisciplinable dendritic Li growth. Especially the overused of metal Li leads to the low utilization of active Li, which seriously drags down the actual energy density of Li-S batteries. Herein, an efficient design of dual-functional CoSe electrocatalyst encapsulated in carbon chain-mail (CoSe@CCM) is employed as the host both for the cathode and anode regulation simultaneously. The carbon chain-mail constituted by carbon encapsulated layer cross-linking with carbon nanofibers protects CoSe from the corrosion of chemical reaction environment, ensuring the high activity of CoSe during the long-term cycles. The Li-S full battery using this carbon chain-mail catalyst with a lower negative/positive electrode capacity ratio (N/P < 2) displays a high areal capacity of 9.68 mAh cm-2 over 150 cycles at a higher sulfur loading of 10.67 mg cm-2 . Additionally, a pouch cell is stable for 80 cycles at a sulfur loading of 77.6 mg, showing the practicality feasibility of this design.
Collapse
Affiliation(s)
- Ruohan Hou
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, 100 Kexue Avenue, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Zhengzhou Materials Genome Institute (ZMGI), Xingyang, Zhengzhou, 450100, P. R. China
| | - Yukun Li
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, 100 Kexue Avenue, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zheng Wang
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zuhao Shi
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Fujun Miao
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, 100 Kexue Avenue, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Zhengzhou Materials Genome Institute (ZMGI), Xingyang, Zhengzhou, 450100, P. R. China
| | - Guosheng Shao
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, 100 Kexue Avenue, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Zhengzhou Materials Genome Institute (ZMGI), Xingyang, Zhengzhou, 450100, P. R. China
| | - Peng Zhang
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, 100 Kexue Avenue, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Zhengzhou Materials Genome Institute (ZMGI), Xingyang, Zhengzhou, 450100, P. R. China
| |
Collapse
|
6
|
Cathode materials for lithium-sulfur battery: a review. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractLithium-sulfur batteries (LSBs) are considered to be one of the most promising candidates for becoming the post-lithium-ion battery technology, which would require a high level of energy density across a variety of applications. An increasing amount of research has been conducted on LSBs over the past decade to develop fundamental understanding, modelling, and application-based control. In this study, the advantages and disadvantages of LSB technology are discussed from a fundamental perspective. Then, the focus shifts to intermediate lithium polysulfide adsorption capacity and the challenges involved in improving LSBs by using alternative materials besides carbon for cathode construction. Attempted alternative materials include metal oxides, metal carbides, metal nitrides, MXenes, graphene, quantum dots, and metal organic frameworks. One critical issue is that polar material should be more favorable than non-polar carbonaceous materials in the aspect of intermediate lithium polysulfide species adsorption and suppress shuttle effect. It will be also presented that by preparing cathode with suitable materials and morphological structure, high-performance LSB can be obtained.
Graphical abstract
Collapse
|
7
|
Dong C, Zhou C, Li Y, Yu Y, Zhao T, Zhang G, Chen X, Yan K, Mai L, Xu X. Ni Single Atoms on MoS 2 Nanosheets Enabling Enhanced Kinetics of Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205855. [PMID: 36433843 DOI: 10.1002/smll.202205855] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The practical application of Li-S batteries is seriously hindered due to its shuttle effect and sluggish redox reaction, which requires a better functional separator to solve the problems. Herein, polypropylene separators modified by MoS2 nanosheets with atomically dispersed nickel (Ni-MoS2 ) are prepared to prevent the shuttle effect and facilitate the redox kinetics for Li-S batteries. Compared with pristine MoS2 nanosheets, Ni-MoS2 nanosheets exhibit both excellent adsorption and catalysis performance for overcoming the shuttle effect. Assembled with this novel separator, the Li-S batteries exhibit an admirable cycling stability at 2 C over 400 cycles with 0.01% per cycle decaying. In addition, even with a high sulfur loading of 7.5 mg cm-2 , the battery still provides an initial capacity of 6.9 mAh cm-2 and remains 5.9 mAh cm-2 after 50 cycles because of the fast convention of polysulfides catalyzed by Ni-MoS2 nanosheets, which is further confirmed by the density functional theory (DFT) calculations. Therefore, the proposed strategy is expected to offer a new thought for single atom catalyst applying in Li-S batteries.
Collapse
Affiliation(s)
- Chenxu Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Cheng Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Yan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Yongkun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Tianhao Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Ge Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xinhui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Kaijian Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xu Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| |
Collapse
|
8
|
Zhang L, Jiao Y, Wang F, Zhou M, Hu Y, Yan Y, Li F, Lei T, Chen B, Chen W. Tailoring Lithium Fluoride Interface for Dendrite-Free Lithium Anode to Prolong the Cyclic Stability of Lithium-Sulfur Pouch Cells. NANOSCALE RESEARCH LETTERS 2022; 17:112. [PMID: 36427166 PMCID: PMC9700540 DOI: 10.1186/s11671-022-03745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Lithium-sulfur (Li-S) cells have been regarded as attractive alternatives to achieve higher energy densities because of their theoretical specific energy far beyond the lithium-ion cells. However, the achieved results of Li-S cells are exaggerating the cycle performance in their pouch formats because the considerable works are based on the coin cells where flood electrolyte and endless Li supply ensure the Li metal with nature structure features, resulting in a negligible effect on cycle performance caused by the Li dendrites and electrolyte dissipation during cycles. Herein, we demonstrate a strategy to enable the Li metal with lithium fluoride (LiF)-rich solid electrolyte interface via integrating a reinforced interface (RI) embedded with nano-LiF particles on the surface of the Li metal anode. The RI interface enables the solvent molecules of the electrolyte to gain fewer electrons from Li anode, resulting in a lower leakage current of assembled RI||Li-S cell (~ 0 μA) than pristine Li anode (~ 1.15 µA). Moreover, these results show that suppressing lithium dendrite growth is more urgent than inhibiting the shuttle effect of polysulfides in the pouch cell format. As a result, the RI layer-engineered Li metal bears witness to the cyclic stability of Li anode over 800 h, thus achieving stable cycles of Ah-scale Li-S pouch cell with an energy density of 410 Wh/kg at a current of 200 mA per cell. Our study demonstrates that the suppression of lithium dendrites by the RI could be a promising method to prolong the cycle number of Li-S pouch cells.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Tianfu Co-Innovation Center, University of Electronic Science and Technology of China, Chengdu, 610213, China
| | - Yu Jiao
- College of Science, Xichang University, Xichang, 615000, China
| | - Fan Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingjie Zhou
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yin Hu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yichao Yan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Fei Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Tianyu Lei
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bo Chen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, China
| | - Wei Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
9
|
Lin Y, Li J, Xie W, Ouyang Z, Zhao J, Xiao Y, Lei S, Cheng B. FeCoNi Ternary Nano-Alloys Embedded in a Nitrogen-Doped Porous Carbon Matrix with Enhanced Electrocatalysis for Stable Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51001-51009. [PMID: 36318543 DOI: 10.1021/acsami.2c15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The application of composite materials that combine the advantages of carbonaceous material and metal alloy proves to be a valid method for improving the performance of lithium-sulfur batteries (LSBs). Herein iron-cobalt-nickel (FeCoNi) ternary alloy nanoparticles (FNC) that spread on nitrogen-doped carbon (NC) are obtained by a strategy of low-temperature sol-gel followed by annealing at 800 °C under an argon/hydrogen atmosphere. Benefiting from the synergistic effect of different components of FNC and the conductive network provided by the NC, not only can the "shuttle effect" of lithium polysulfides (LiPS) be suppressed, but also the conversion of LiPS, the diffusion of Li+, and the deposition of Li2S can be accelerated. Taking advantage of those merits, the batteries assembled with an FNC@NC-modified polypropylene (PP) separator (FNC@NC//PP) can deliver a high reversible specific capacity of 1325 mAh g-1 at 0.2 C and maintain 950 mAh g-1 after 200 cycles, and they can also achieve a low capacity fading rate of 0.06% per cycle over 500 cycles at 1 C. More impressively, even under harsh test conditions (the ratio of electrolyte to sulfur (E/S) = 6 μL mg-1 and sulfur loading = 4.7 mg cm-2 and E/S = 10 μL mg-1 and sulfur loading = 5.9 mg cm-2), the area capacity of batteries is still much higher than 4 mAh cm-2.
Collapse
Affiliation(s)
- Yang Lin
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jianchao Li
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Wenju Xie
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
- College of Ecology and Resources Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Fujian 354300, P. R. China
| | - Zhiyong Ouyang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Yanhe Xiao
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Shuijin Lei
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Baochang Cheng
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| |
Collapse
|
10
|
Post lithium-sulfur battery era: challenges and opportunities towards practical application. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Qi X, Huang L, Luo Y, Chen Q, Chen Y. Ni 3Sn 2/nitrogen-doped graphene composite with chemisorption and electrocatalysis as advanced separator modifying material for lithium sulfur batteries. J Colloid Interface Sci 2022; 628:896-910. [PMID: 36030715 DOI: 10.1016/j.jcis.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Lithium-sulfur batteries have been widely studied because of their advantages of abundant reserves, environmental friendliness, low cost andhighspecific capacity. However, the volume expansionand the low electrical conductivity of sulfur, and the shuttle effect of polysulfides limit their application. Herein,wesynthesizea two-dimensional layered Ni3Sn2/nitrogen-doped graphene (NG) composite asseparator modifying material for lithium-sulfur batteries. The Ni3Sn2formed by dual metal salts Ni(NO3)2·6H2O and SnCl2·2H2O can adsorb polysulfide and catalyze its transformation to improve the electrochemical reaction kinetics. Moreover, the layered NG can not only disperse the Ni3Sn2particles, but alsoensure rapid electron transfer. Therefore, the lithium-sulfur battery with the Ni3Sn2/NG modified separator shows excellent electrochemical performance. At a current rate of 1 C, the lithium-sulfur battery with the Ni3Sn2/NG modified separator can provide a high initial discharge capacity of 1022.1 mAh g-1and maintain a reversible specific capacity of 758.3 mAh g-1after 400 cycles.
Collapse
Affiliation(s)
- Xinmei Qi
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liwu Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, PR China.
| | - Yiteng Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qinghao Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, PR China
| |
Collapse
|
12
|
Liang J, Liu P, Li Q, Li T, Yue L, Luo Y, Liu Q, Li N, Tang B, Alshehri AA, Shakir I, Agboola PO, Sun C, Sun X. Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for High-Efficiency Electrocatalytic NO Reduction to NH 3. Angew Chem Int Ed Engl 2022; 61:e202202087. [PMID: 35212442 DOI: 10.1002/anie.202202087] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/17/2022]
Abstract
Electrocatalytic NO reduction is regarded as an attractive strategy to degrade the NO contaminant into useful NH3 , but the lack of efficient and stable electrocatalysts to facilitate such multiple proton-coupled electron-transfer processes impedes its applications. Here, we report on developing amorphous B2.6 C supported on a TiO2 nanoarray on a Ti plate (a-B2.6 C@TiO2 /Ti) as an NH3 -producing nanocatalyst with appreciable activity and durability toward the NO electroreduction. It shows a yield of 3678.6 μg h-1 cm-2 and a FE of 87.6 %, superior to TiO2 /Ti (563.5 μg h-1 cm-2 , 42.6 %) and a-B2.6 C/Ti (2499.2 μg h-1 cm-2 , 85.6 %). An a-B2.6 C@TiO2 /Ti-based Zn-NO battery achieves a power density of 1.7 mW cm-2 with an NH3 yield of 1125 μg h-1 cm-2 . An in-depth understanding of catalytic mechanisms is gained by theoretical calculations.
Collapse
Affiliation(s)
- Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Pengyu Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qinye Li
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Luchao Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Imran Shakir
- College of Engineering Al-Muzahmia Branch, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Philips O Agboola
- College of Engineering Al-Muzahmia Branch, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| |
Collapse
|
13
|
Sun X. Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for High‐Efficiency Electrocatalytic NO Reduction to NH3. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuping Sun
- University of Electronic Science and Technology of China Institute of Fundamental and Frontier Science No.4, Section 2, North Jianshe Road, 610054 610054 Chengdu CHINA
| |
Collapse
|
14
|
Zhao BS, Wang L, Liu S, Li GR, Gao XP. High-Efficiency Hybrid Sulfur Cathode Based on Electroactive Niobium Tungsten Oxide and Conductive Carbon Nanotubes for All-Solid-State Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1212-1221. [PMID: 34967595 DOI: 10.1021/acsami.1c21573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
All-solid-state lithium-sulfur batteries (ASSLSBs) have become a promising candidate because of their high energy density and safety. To ensure the high utilization and electrochemical capacity of sulfur in all-solid-state batteries, both the electronic and ionic conductivities of the sulfur cathode should be as high as possible. In this work, an intercalation-conversion hybrid cathode is proposed by distributing sulfur evenly on electroactive niobium tungsten oxide (Nb18W16O93) and conductive carbon nanotubes (CNTs) for achieving high performance ASSLSBs. Herein, Nb18W16O93 shows good electrochemical lithium storage in the hybrid cathode, which could serve as an effective Li-ion/electron conductor for the conversion of sulfur in the discharge/charge processes to achieve a high utilization of sulfur. However, CNTs could further increase the electronic conductivity of the hybrid cathode by constructing good conductive frameworks and suppress the volumetric fluctuation during the interconversion of sulfur and Li2S. With this strategy, the S/Nb18W16O93/CNT cathode achieves a high sulfur utilization of 91% after one cycle activation with a high gravimetric capacity of 1526 mA h g-1. In addition, excellent rate performance is also obtained at 0.5 C with a reversible capacity of 1262 mA h g-1 after 1000 cycles. This work offers a new perspective to develop ASSLSBs.
Collapse
Affiliation(s)
- Bo-Sheng Zhao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| | - Lu Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong Province, China
| | - Sheng Liu
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| | - Guo-Ran Li
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| | - Xue-Ping Gao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
Shen C, Li Y, Gong M, Zhou C, An Q, Xu X, Mai L. Ultrathin Cobalt Phthalocyanine@Graphene Oxide Layer-Modified Separator for Stable Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60046-60053. [PMID: 34881884 DOI: 10.1021/acsami.1c19859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rechargeable lithium-sulfur (Li-S) batteries have aroused great attention due to their high energy density and low cost. However, Li-S batteries suffer from rapid capacity decay owing to the shuttle effect of the intermediate polysulfides. To tackle this issue, functional separators with the ability to absorb polysulfides play a vital role to block them from passing through the separator. Herein, an ultrathin and lightweight layer of graphene oxide (GO) loaded with Co phthalocyanine (CoPc) is fabricated on a polypropylene (PP) separator. The thickness of CoPc@GO is about 200 nm with a low areal mass of 22 μg cm-2. CoPc is uniformly dispersed on GO sheets through π-π interactions, which inhibits the shuttle effect and facilitates the conversion of the intermediate polysulfides. In consequence, the battery with a CoPc@GO-PP separator exhibits good cycling stability with a low-capacity decay rate of 0.076% per cycle at 1 C over 400 cycles and a high specific capacity of 919 mA h g-1 after 250 cycles at 0.5 C.
Collapse
Affiliation(s)
- Chunli Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Minjian Gong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Cheng Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xu Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| |
Collapse
|
16
|
Zhang B, Lu R, Cheng Y, Amin K, Mao L, Wei Z. Sulfur Compensation: A Promising Strategy against Capacity Decay in Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58771-58780. [PMID: 34846844 DOI: 10.1021/acsami.1c19598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drastic capacity decay as a result of active sulfur loss caused by the severe shuttle effect of dissolved polysulfides is the main obstacle in the commercial application of Li-S batteries. Various methods have been developed to suppress the active sulfur loss, but the results are far from ideal. Herein, we propose a facile sulfur compensation strategy to improve the cyclic stability of Li-S batteries. The strategy is to compensate sulfur to the cathode by chemical reactions between additional sulfur and lithium polysulfides diffusing away from the cathode. The compensatory sulfur can effectively mitigate the loss of active sulfur in the cathode side caused by the shuttle effect and thus maintain the high capacity of the battery during charging and discharging for long life cycle assessments. Using this strategy, the specific capacity of the assembled Li-S batteries was maintained at >700 mA h g-1 for more than 500 cycles at 1 C and >1000 mA h g-1 for ∼100 cycles at 0.1 C, while the capacity of control batteries rapidly decreased to <200 mA h g-1 under the same conditions.
Collapse
Affiliation(s)
- Binbin Zhang
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, Beiyitiao Zhongguancun, Beijing 100190, P. R. China
| | - Ruichao Lu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, Beiyitiao Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueli Cheng
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, Beiyitiao Zhongguancun, Beijing 100190, P. R. China
| | - Kamran Amin
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, Beiyitiao Zhongguancun, Beijing 100190, P. R. China
| | - Lijuan Mao
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, Beiyitiao Zhongguancun, Beijing 100190, P. R. China
| | - Zhixiang Wei
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, Beiyitiao Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Yang M, Guo D, Zhang T, Liu G, Wu N, Qin A, Liu X, Mi H. Controlled Synthesis of Ultrafine β-Mo 2C Nanoparticles Encapsulated in N-Doped Porous Carbon for Boosting Lithium Storage Kinetics. ACS OMEGA 2021; 6:29609-29617. [PMID: 34778632 PMCID: PMC8582065 DOI: 10.1021/acsomega.1c03888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Rational construction of anode material architecture to afford excellent cycling stability, fast rate capacity, and large specific capacity is essential to promote further development of lithium-ion batteries in commercial applications. In this work, we propose a facile strategy to anchor ultrafine β-Mo2C nanoparticles in N-doped porous carbon skeleton (β-Mo2C@NC) using a scalable salt-template method. The well-defined and abundant hierarchical porous structure of β-Mo2C@NC can not only significantly enhance the electron/ion transfer but also markedly increase the specific surface area to effectively expose the electrochemically accessible active sites. Besides, the N-doped carbon matrix can turn the d-orbital electrons of the Mo to boost the electron transportation as well as distribute active sites to buffer the volume change of Mo2C and provide conductive pathways during discharge/charge cycles. As a result, the as-prepared β-Mo2C@NC displays excellent lithium storage performance in terms of 1701.6 mA h g-1 at 0.1 A g-1 after 100 cycles and a large capacity of 816.47 mA h g-1 at 2.0 A g-1 after 500 cycles. The above results distinctly demonstrate that the β-Mo2C@NC composite has potential application as anode materials in high-performance energy storage devices.
Collapse
Affiliation(s)
- Mengke Yang
- School
of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Donglei Guo
- Key
Laboratory of Function-Oriented Porous Materials, College of Chemistry
and Chemical Engineering, Luoyang Normal
University, Luoyang 471934, China
| | - Ting Zhang
- School
of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Guilong Liu
- Key
Laboratory of Function-Oriented Porous Materials, College of Chemistry
and Chemical Engineering, Luoyang Normal
University, Luoyang 471934, China
| | - Naiteng Wu
- Key
Laboratory of Function-Oriented Porous Materials, College of Chemistry
and Chemical Engineering, Luoyang Normal
University, Luoyang 471934, China
| | - Aimiao Qin
- Key
Laboratory of New Processing Technology for Nonferrous Metal &
Materials, Ministry of Education/Guangxi Key Laboratory of Optical
and Electronic Materials and Devices, Guilin
University of Technology, Guilin 541004, China
| | - Xianming Liu
- Key
Laboratory of Function-Oriented Porous Materials, College of Chemistry
and Chemical Engineering, Luoyang Normal
University, Luoyang 471934, China
| | - Hongyu Mi
- School
of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
18
|
Synergistic Adsorption-Catalytic Sites TiN/Ta 2O 5 with Multidimensional Carbon Structure to Enable High-Performance Li-S Batteries. NANOMATERIALS 2021; 11:nano11112882. [PMID: 34835649 PMCID: PMC8623583 DOI: 10.3390/nano11112882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Lithium-sulfur (Li-S) batteries are deemed to be one of the most optimal solutions for the next generation of high-energy-density and low-cost energy storage systems. However, the low volumetric energy density and short cycle life are a bottleneck for their commercial application. To achieve high energy density for lithium-sulfur batteries, the concept of synergistic adsorptive-catalytic sites is proposed. Base on this concept, the TiN@C/S/Ta2O5 sulfur electrode with about 90 wt% sulfur content is prepared. TiN contributes its high intrinsic electron conductivity to improve the redox reaction of polysulfides, while Ta2O5 provides strong adsorption capability toward lithium polysulfides (LiPSs). Moreover, the multidimensional carbon structure facilitates the infiltration of electrolytes and the motion of ions and electrons throughout the framework. As a result, the coin Li-S cells with TiN@C/S/Ta2O5 cathode exhibit superior cycle stability with a decent capacity retention of 56.1% over 300 cycles and low capacity fading rate of 0.192% per cycle at 0.5 C. Furthermore, the pouch cells at sulfur loading of 5.3 mg cm-2 deliver a high areal capacity of 5.8 mAh cm-2 at low electrolyte/sulfur ratio (E/S, 3.3 μL mg-1), implying a high sulfur utilization even under high sulfur loading and lean electrolyte operation.
Collapse
|
19
|
Feng T, Zhao T, Zhu S, Zhang N, Wei Z, Wang K, Li L, Wu F, Chen R. Anion-Doped Cobalt Selenide with Porous Architecture for High-Rate and Flexible Lithium-Sulfur Batteries. SMALL METHODS 2021; 5:e2100649. [PMID: 34928050 DOI: 10.1002/smtd.202100649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Indexed: 06/14/2023]
Abstract
Emerging catalytic host for sulfur is an effective approach to breaking the limits of lithium-sulfur batteries for practical applications. Herein, the hydrangea-shaped Co0.85 Se electrocatalyst with macroporous architecture is synthesized. Besides, to improve the electronic conductivity of Co0.85 Se, some defects (S-doped) are introduced into the structure of crystals. The S-doped Co0.85 Se exhibited an outstanding electrocatalytic effect on lithium polysulfides conversion and can induce and regulate uniform growth of insoluble Li2 S on its surface due to the synergistic adsorption by Se and S. As a result, the S/C cathode achieved a high initial capacity of 1340.6 mAh g-1 at 0.5 C and a stable cycling capacity of 666.6 mAh g-1 at 1 C after 500 cycles by 5 wt% Co0.85 SeS additions. Moreover, high S loading cathodes are designed through in situ synthesis of Co0.85 SeS on flexible carbon cloth (Co0.85 SeS@CC). The porous and open framework of Co0.85 SeS@CC facilitated electrolyte infiltration and accommodated the volume change of sulfur during the charge/discharge process. Taking by these advantages, a high areal capacity of 9.663 mAh cm-2 is achieved at a high sulfur loading of 9.98 mg cm-2 . Even at a high current density of 15 mA cm-2 , a reversible capacity of 603.7 mAh g-1 is maintained at a sulfur loading of 6.52 mg cm-2 . This proposed work provides a feasible approach to high-rate and flexible Li-S batteries.
Collapse
Affiliation(s)
- Tao Feng
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Teng Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuangfei Zhu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Nanxiang Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhuangzhuang Wei
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ke Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, P. R. China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, P. R. China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, P. R. China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, P. R. China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, P. R. China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, P. R. China
| |
Collapse
|
20
|
Qin B, Cai Y, Si X, Li C, Cao J, Fei W, Xie H, Qi J. All-in-One Sulfur Host: Smart Controls of Architecture and Composition for Accelerated Liquid-Solid Redox Conversion in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39424-39434. [PMID: 34382761 DOI: 10.1021/acsami.1c10612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of Li-S batteries (LSBs) is largely impeded by sluggish redox kinetics and notorious polysulfide shuttling. Herein, hierarchical MoC@Ni-NCNT arrays are reported as a multifunctional sulfur host in Li-S batteries, which comprised a flexible carbon fiber cloth substrate decorated with vertical MoC porous nanorods rooted by interconnected nitrogen-doped carbon nanotubes (NCNTs). In the designed host, the inner MoC porous backbone (composed of nanoparticles) along with the in situ-grafted interwoven NCNT shell can greatly maximize the host-guest interactive surface for homogeneous sulfur dispersion, thus realizing decent high-sulfur-loading performance. Ni nanoparticles, encapsulated within NCNTs in the outer shell, act as strong chemical-anchoring centers effectively trap-escaped polysulfides and propel the bidirectional sulfur transformation kinetics. In merit of sufficient adsorption and catalytic sites, the cell configured with the MoC@Ni-NCNT cathode delivers not only high capacity (1421 mA h g-1 at 0.1 C) but also superior rate performance and ultralong lifespan. The cell can still achieve a superb areal capacity of 6.1 mA h cm2 under an increased sulfur loading up to 6 mg cm-2. This work could open a new avenue for the construction of a multifunctional cathode for high-performance LSBs.
Collapse
Affiliation(s)
- Bin Qin
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yifei Cai
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoqing Si
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Chun Li
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Jian Cao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Weidong Fei
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou 310003, China
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
21
|
Yamamoto M, Goto S, Tang R, Nomura K, Hayasaka Y, Yoshioka Y, Ito M, Morooka M, Nishihara H, Kyotani T. Nano-Confinement of Insulating Sulfur in the Cathode Composite of All-Solid-State Li-S Batteries Using Flexible Carbon Materials with Large Pore Volumes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38613-38622. [PMID: 34370442 DOI: 10.1021/acsami.1c10275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Durable nanostructured cathode materials for efficient all-solid-state Li-S batteries were prepared using a conductive single-walled 3D graphene with a large pore volume as the cathode support material. At high loadings of the active material (50-60 wt %), microscale phase segregation was observed with a conventional cathode support material during the charging/discharging processes but this was suppressed by the confinement of insulating sulfur into the mesopores of the elastic and flexible nanoporous graphene with a large pore volume of 5.3 mL g-1. As such, durable three-phase contact was achieved among the solid electrolyte, insulating sulfur, and the electrically conductive carbon. Consequently, the electrochemical performances of the assembled all-solid-state batteries were significantly improved and feasible under the harsh conditions of operation at 353 K, and improved cycling stability as well as the highest specific capacity of 716 mA h per gram of cathode (4.6 mA h cm-2, 0.2 C) was achieved with high sulfur loading (50 wt %).
Collapse
Affiliation(s)
- Masanori Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Rui Tang
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Keita Nomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Yuichiro Hayasaka
- The Electron Microscopy Center, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Youichi Yoshioka
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., Natsushima-cho 1, Yokosuka, Kanagawa 237-8523, Japan
| | - Masashi Ito
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., Natsushima-cho 1, Yokosuka, Kanagawa 237-8523, Japan
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Masahiro Morooka
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., Natsushima-cho 1, Yokosuka, Kanagawa 237-8523, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Takashi Kyotani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
22
|
Zhao BS, Wang L, Chen P, Liu S, Li GR, Xu N, Wu MT, Gao XP. Congener Substitution Reinforced Li 7P 2.9Sb 0.1S 10.75O 0.25 Glass-Ceramic Electrolytes for All-Solid-State Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34477-34485. [PMID: 34275286 DOI: 10.1021/acsami.1c10238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Glass-ceramic sulfide solid electrolytes like Li7P3S11 are practicable propellants for safe and high-performance all-solid-state lithium-sulfur batteries (ASSLSBs); however, the stability and conductivity issues remain unsatisfactory. Herein, we propose a congener substitution strategy to optimize Li7P3S11 as Li7P2.9Sb0.1S10.75O0.25 via chemical bond and structure regulation. Specifically, Li7P2.9Sb0.1S10.75O0.25 is obtained by a Sb2O5 dopant to achieve partial Sb/P and O/S substitution. Benefiting from the strengthened oxysulfide structural unit of POS33- and P2OS64- with bridging oxygen atoms and a distorted lattice configuration of the Sb-S tetrahedron, the Li7P2.9Sb0.1S10.75O0.25 electrolyte exhibits prominent chemical stability and high ionic conductivity. Besides the improved air stability, the ionic conductivity of Li7P2.9Sb0.1S10.75O0.25 could reach 1.61 × 10-3 S cm-1 at room temperature with a wide electrochemical window of up to 5 V (vs Li/Li+), as well as good stability against Li and Li-In alloy anodes. Consequently, the ASSLSB with the Li7P2.9Sb0.1S10.75O0.25 electrolyte shows high discharge capacities of 1374.4 mAh g-1 (0.05C, 50th cycle) at room temperature and 1365.4 mAh g-1 (0.1C, 100th cycle) at 60 °C. The battery also presents remarkable rate performance (1158.3 mAh g-1 at 1C) and high Coulombic efficiency (>99.8%). This work provides a feasible technical route for fabricating ASSLSBs.
Collapse
Affiliation(s)
- Bo-Sheng Zhao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lu Wang
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Chen
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sheng Liu
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guo-Ran Li
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ning Xu
- Tianjin Bamo Tech Co., Ltd., Tianjin 300384, China
| | - Meng-Tao Wu
- Tianjin Bamo Tech Co., Ltd., Tianjin 300384, China
| | - Xue-Ping Gao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
23
|
Chen Y, Wang T, Tian H, Su D, Zhang Q, Wang G. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003666. [PMID: 34096100 DOI: 10.1002/adma.202003666] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Lithium-ion batteries, which have revolutionized portable electronics over the past three decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy density of current lithium-ion batteries is approaching its limit, developing new battery technologies beyond lithium-ion chemistry is significant for next-generation high energy storage. Lithium-sulfur (Li-S) batteries, which rely on the reversible redox reactions between lithium and sulfur, appears to be a promising energy storage system to take over from the conventional lithium-ion batteries for next-generation energy storage owing to their overwhelming energy density compared to the existing lithium-ion batteries today. Over the past 60 years, especially the past decade, significant academic and commercial progress has been made on Li-S batteries. From the concept of the sulfur cathode first proposed in the 1960s to the current commercial Li-S batteries used in unmanned aircraft, the story of Li-S batteries is full of breakthroughs and back tracing steps. Herein, the development and advancement of Li-S batteries in terms of sulfur-based composite cathode design, separator modification, binder improvement, electrolyte optimization, and lithium metal protection is summarized. An outlook on the future directions and prospects for Li-S batteries is also offered.
Collapse
Affiliation(s)
- Yi Chen
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Tianyi Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Huajun Tian
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Dawei Su
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| |
Collapse
|
24
|
Liu Y, Barnscheidt Y, Peng M, Bettels F, Li T, He T, Ding F, Zhang L. A Biomass-Based Integral Approach Enables Li-S Full Pouch Cells with Exceptional Power Density and Energy Density. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101182. [PMID: 34032382 PMCID: PMC8292852 DOI: 10.1002/advs.202101182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries, as part of the post-lithium-ion batteries (post-LIBs), are expected to deliver significantly higher energy densities. Their power densities, however, are today considerably worse than that of the LIBs, limiting the Li-S batteries to very few specific applications that need low power and long working time. With the rapid development of single cell components (cathode, anode, or electrolyte) in the last few years, it is expected that an integrated approach can maximize the power density without compromising the energy density in a Li-S full cell. Here, this goal is achieved by using a novel biomass porous carbon matrix (PCM) in the anode, as well as N-Co9 S8 nanoparticles and carbon nanotubes (CNTs) in the cathode. The authors' approach unlocks the potential of the electrodes and enables the Li-S full pouch cells with unprecedented power densities and energy densities (325 Wh kg-1 and 1412 W kg-1 , respectively). This work addresses the problem of low power densities in the current Li-S technology, thus making the Li-S batteries a strong candidate in more application scenarios.
Collapse
Affiliation(s)
- Yuping Liu
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Yvo Barnscheidt
- Institute of Electronic Materials and DevicesLeibniz University HannoverSchneiderberg 32Hannover30167Germany
| | - Manhua Peng
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Frederik Bettels
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Taoran Li
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Tao He
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Fei Ding
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| | - Lin Zhang
- Institute of Solid State PhysicsLeibniz University HannoverAppelstrasse 2Hannover30167Germany
- Laboratory of Nano and Quantum Engineering (LNQE)Leibniz University HannoverSchneiderberg 39Hannover30167Germany
| |
Collapse
|
25
|
Huang KX, Hua J, Chang GG, Li Z, Tian G, Chen MJ, Li JX, Ke SC, Yang XY, Chen B. Confined Thermolysis for Oriented N-Doped Carbon Supported Pd toward Stable Catalytic and Energy Storage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2002811. [PMID: 32734686 DOI: 10.1002/smll.202002811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Carbon-based nanomaterials have been widely utilized in catalysis and energy-related fields due to their fascinating properties. However, the controllable synthesis of porous carbon with refined morphology is still a formidable challenge due to inevitable aggregation/fusion of resulted carbon particles during the high-temperature synthetic process. Herein, a hierarchically oriented carbon-structured (fiber-like) composite is fabricated by simultaneously taking advantage of a confined pyrolysis strategy and disparate bond environments within metal-organic frameworks (MOFs). In the resultant composite, the oriented carbon provides a fast mass (molecule/ion/electron) transfer efficiency; the doping-N atoms can anchor or act as active sites; the mesoporous SiO2 (mSiO2 ) shell not only effectively prevents the derived carbon or active metal nanoparticles (NPs) from aggregation or leaching, but also acts as a "polysulfide reservoir" in the Li-S batteries to suppress the "shuttle" effect. Benefiting from these advantages, the synthesized composite Pd@NDHPC@mSiO2 (NDHPC means N-doped hierarchically porous carbon) exhibits extremely high catalytic activity and stability toward the one-pot Knoevenagel condensation-hydrogenation reaction. Furthermore, the oriented NDHPC@mSiO2 manifests a boosted capacity and cycling stability in Li-S batteries compared to the counterpart that directly pyrolyzes without silica protection. This report provides an effective strategy of fabricating hierarchically oriented carbon composites for catalysis and energy storage applications.
Collapse
Affiliation(s)
- Ke-Xin Huang
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Junhui Hua
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Gang-Gang Chang
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Zhaohuai Li
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Ge Tian
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Min-Jie Chen
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Jia-Xin Li
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Shan-Chao Ke
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Xiao-Yu Yang
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698, USA
| |
Collapse
|
26
|
Jiang YC, Arshad HMU, Li HJ, Liu S, Li GR, Gao XP. Crystalline Multi-Metallic Compounds as Host Materials in Cathode for Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005332. [PMID: 33690966 DOI: 10.1002/smll.202005332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur (Li-S) battery is one of the most promising next-generation rechargeable batteries. Lots of fundamental research has been done for the problems during cycling like capacity fading and columbic efficiency reducing owing to severe diffusion and migration of polysulfide intermediates. In the early stage, a wide variety of carbon materials are used as host materials for sulfur to enhance electrical conductivity and adsorb soluble polysulfides. Beyond carbon materials, metal based polar compounds are introduced as host materials for sulfur because of their strong catalytic activity and adsorption ability to suppress the shuttle effect. In addition, relatively high density of metal compounds is helpful for increasing volumetric energy density of Li-S batteries. This review focuses on crystalline multi-metal compounds as host materials in sulfur cathodes. The multi-metal compounds involve not only transition metal composite oxides with specific crystalline structures, binary metal chalcogenides, double or complex salts, but also the metal compounds doped or partially substituted by other metal ions. Generally, for the multi-metal compounds, microstructure and morphologies in micro-nano scale are very significant for mass transfer in electrodes; moreover, adsorption and catalytic ability for polysulfides make fast kinetics in the electrode processes.
Collapse
Affiliation(s)
- Yi-Cheng Jiang
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hafiz Muhammad Umair Arshad
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hao-Jie Li
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Sheng Liu
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Guo-Ran Li
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xue-Ping Gao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
27
|
An Y, Luo C, Yao D, Wen S, Zheng P, Chi S, Yang Y, Chang J, Deng Y, Wang C. Natural Cocoons Enabling Flexible and Stable Fabric Lithium-Sulfur Full Batteries. NANO-MICRO LETTERS 2021; 13:84. [PMID: 34138323 PMCID: PMC8006205 DOI: 10.1007/s40820-021-00609-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/18/2021] [Indexed: 05/03/2023]
Abstract
Highlights A creative cooperative strategy involving silk fibroin/sericin is proposed for stabilizing high-performance flexible Li–S full batteries with a limited Li excess of 90% by simultaneously inhibiting lithium dendrites, adsorbing liquid polysulfides, and anchoring solid lithium sulfides. Such fabric Li–S full batteries offer high volumetric energy density (457.2 Wh L−1), high-capacity retention (99.8% per cycle), and remarkable bending capability (6000 flexing cycles at a small radius of 5 mm). Abstract Lithium–sulfur batteries are highly appealing as high-energy power systems and hold great application prospects for flexible and wearable electronics. However, the easy formation of lithium dendrites, shuttle effect of dissolved polysulfides, random deposition of insulating lithium sulfides, and poor mechanical flexibility of both electrodes seriously restrict the utilization of lithium and stabilities of lithium and sulfur for practical applications. Herein, we present a cooperative strategy employing silk fibroin/sericin to stabilize flexible lithium–sulfur full batteries by simultaneously inhibiting lithium dendrites, adsorbing liquid polysulfides, and anchoring solid lithium sulfides. Benefiting from the abundant nitrogen- and oxygen-containing functional groups, the carbonized fibroin fabric serves as a lithiophilic fabric host for stabilizing the lithium anode, while the carbonized fibroin fabric and the extracted sericin are used as sulfiphilic hosts and adhesive binders, respectively, for stabilizing the sulfur cathode. Consequently, the assembled Li–S full battery provided a high areal capacity (5.6 mAh cm−2), limited lithium excess (90%), a high volumetric energy density (457.2 Wh L−1), high-capacity retention (99.8% per cycle), and remarkable bending capability (6000 flexing cycles at a small radius of 5 mm). Supplementary Information The online version contains supplementary material available at 10.1007/s40820-021-00609-3.
Collapse
Affiliation(s)
- Yanan An
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Chao Luo
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dahua Yao
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Shujing Wen
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peitao Zheng
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shangsen Chi
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Yang
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Chang
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yonghong Deng
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
28
|
Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries. J Colloid Interface Sci 2021; 591:264-272. [PMID: 33607400 DOI: 10.1016/j.jcis.2021.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Covalent organic frameworks (COFs) with pre-designed structure and customized properties have been employed as sulfur storage materials for lithium-sulfur (Li-S) batteries. In this work, a cationic mesoporous COF (COF-NI) was synthesized by grafting a quaternary ammonium salt group onto the pore channel of COFs via a one-pot three components tandem reaction strategy. The post-functionalized COFs were utilized as the matrix framework to successfully construct the Li-S battery with high-speed capacity and long-term stability. The experimental results showed that, after loading active material sulfur, cationic COF-NI effectively suppressed the shuttle effect of the intermediate lithium polysulfide species in Li-S batteries, and exhibited better cycle stability than the as-obtained neutral COF (COF-Bu). For example, compared with COF-Bu based sulfur cathode (521 mA h g-1), the cationic COF-NI based sulfur cathode maintained a discharge capacity of 758 mA h g-1 after 100 cycles. These results clearly showed that appropriate pore environment of COFs can be prepared by rational design, which can reduce the shuttle effect of lithium polysulfide species and improve the performance of Li-S battery.
Collapse
|
29
|
Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium–sulfur batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Yang L, Li H, Li Q, Wang Y, Chen Y, Wu Z, Liu Y, Wang G, Zhong B, Xiang W, Zhong Y, Guo X. Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in Lithium–Sulfur Batteries. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liwen Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Hongtai Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Qian Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Yang Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Yanxiao Chen
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Yuxia Liu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Gongke Wang
- School of Materials Science and Engineering, Henan Normal University, XinXiang, 453007, P. R. China
| | - Benhe Zhong
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Wei Xiang
- College of Materials and Chemistry &Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Yanjun Zhong
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| |
Collapse
|
31
|
Song Z, Lu X, Hu Q, Lin D, Zheng Q. Construction of reduced graphene oxide wrapped yolk-shell vanadium dioxide sphere hybrid host for high-performance lithium-sulfur batteries. Dalton Trans 2020; 49:14921-14930. [PMID: 33078788 DOI: 10.1039/d0dt02275f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Owing to the considerable theoretical energy density, lithium-sulfur batteries have been deemed as a competitive candidate for the next-generation energy storage devices. However, its commercialization still depends on the moderation of the shuttle effect and the conductivity improvement of the sulfur cathode. Herein, a novel reduced graphene oxide (rGO) wrapped yolk-shell vanadium dioxide (VO2) sphere hybrid host (rGO/VO2) is reported to simultaneously tackle these barriers. In particular, the polar VO2 sphere can chemically anchor and catalyze the conversion of polysulfides effectively both on the yolk and the shell surfaces. Meanwhile, the highly conductive 3D porous rGO network not only allows sufficient penetration of electrolyte and provides efficient transport pathways for lithium ions and electrons, but also buffers the volume variation during the lithiation process. Besides, the dissolution of the polysulfides can also be alleviated by physical confinement via the interconnected carbon network. Benefiting from these synergistic features, such designed rGO/VO2/S cathode delivers outstanding cycle stability (718.6 mA h g-1 initially, and 516.1 mA h g-1 over 400 cycles at 1C) with a fading rate of 0.07% per cycle. Even at 3C, a capacity of 639.7 mA h g-1 is reached. This proposed unique structure could provide novel insights into high-energy batteries.
Collapse
Affiliation(s)
- Zhicui Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The lithium-sulfur (Li-S) redox battery system is considered to be the most promising next-generation energy storage technology due to its high theoretical specific capacity (1673 mAh g−1), high energy density (2600 Wh kg−1), low cost, and the environmentally friendly nature of sulfur. Though this system is deemed to be the next-generation energy storage device for portable electronics and electric vehicles, its poor cycle life, low coulombic efficiency and low rate capability limit it from practical applications. These performance barriers were linked to several issues like polysulfide (LiPS) shuttle, inherent low conductivity of charge/discharge end products, and poor redox kinetics. Here, we review the recent developments made to alleviate these problems through an electrocatalysis approach, which is considered to be an effective strategy not only to trap the LiPS but also to accelerate their conversion reactions kinetics. Herein, the influence of different chemical interactions between the LiPS and the catalyst surfaces and their effect on the conversion of liquid LiPS to solid end products are reviewed. Finally, we also discussed the challenges and perspectives for designing cathode architectures to enable high sulfur loading along with the capability to rapidly convert the LiPS.
Collapse
|
33
|
Mao L, Mao J. Ultralow-decay lithium-sulfur batteries: Modified separator with graphene/ZnS(en)0.5 exfoliation nanosheets. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Shen Z, Zhang Z, Li M, Yuan Y, Zhao Y, Zhang S, Zhong C, Zhu J, Lu J, Zhang H. Rational Design of a Ni 3N 0.85 Electrocatalyst to Accelerate Polysulfide Conversion in Lithium-Sulfur Batteries. ACS NANO 2020; 14:6673-6682. [PMID: 32463691 DOI: 10.1021/acsnano.9b09371] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Slow kinetics of polysulfide conversion reactions lead to severe issues for lithium-sulfur (Li-S) batteries, for example, low rate capability, polysulfide migration, and low Coulombic efficiencies. These challenges hinder the practical applications of Li-S batteries. In this study, we proposed a rational strategy of tuning the d-band of catalysts to accelerate the conversion of polysulfides. Nitrogen vacancies were engineered in hexagonal Ni3N (space group P6322) to tune its d-band center, leading to the strong interaction between polysulfides and Ni3N. Because of the greater electron population in the lowest occupied molecular orbital of Li2S4, the terminal S-S bonds were weakened for breaking. Temperature-dependent experiments confirm that Ni3N0.85 demonstrates a much low activation energy, thereby accelerating the conversion of polysulfides. A Li-S cell using Ni3N0.85 can deliver a high initial discharge capacity of 1445.9 mAh g-1 (at 0.02 C) and low decay per cycle (0.039%). The Ni3N0.85 cell can also demonstrate an initial capacity of 1200.4 mAh g-1 for up to 100 cycles at a high loading of 5.2 mg cm-2. The high efficiency of rationally designed Ni3N0.85 demonstrates the effectiveness of the d-band tuning strategy to develop low-activation-energy catalysts and to promote the atomic understanding of polysulfide conversion in Li-S batteries.
Collapse
Affiliation(s)
- Zihan Shen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Jiangsu, 210093, People's Republic of China
| | - Zili Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Jiangsu, 210093, People's Republic of China
| | - Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Yifei Yuan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Yue Zhao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Jiangsu, 210093, People's Republic of China
| | - Shuo Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Jiangsu, 210093, People's Republic of China
| | - Chenglin Zhong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Jiangsu, 210093, People's Republic of China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Jiangsu, 210093, People's Republic of China
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Huigang Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Jiangsu, 210093, People's Republic of China
| |
Collapse
|
35
|
Wu P, Jia Q, He J, Lu L, Chen L, Zhu J, Peng C, He M, Xiong J, Zhu W, Li H. Mechanical exfoliation of boron carbide: A metal-free catalyst for aerobic oxidative desulfurization in fuel. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122183. [PMID: 32036308 DOI: 10.1016/j.jhazmat.2020.122183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Metal-free catalysts have been proved to be a low-cost and environmentally friendly species in aerobic oxidative desulfurization (ODS). In this work, exfoliated metal-free boron carbide with few-layered structure, small size, and abundant defects, was first employed in an aerobic ODS system for ultra-deep desulfurization. The exfoliation process was realized by employing a planetary ball mill strategy. Detailed characterizations showed that the ball milling process not only induces thinner layers and small sizes but also introduces numerous defects into the boron carbide catalysts, which is vital in metal-free catalysis. Furthermore, the exfoliated boron carbide catalyst was applied in aerobic ODS system, and 99.5 % of sulfur removal was obtained. Moreover, the catalyst can be recycled 17 times without a significant decrease in catalytic activity. In particular, it was found that ∼90 % of the sulfur compounds in real diesel oil could be removed by the current aerobic ODS system.
Collapse
Affiliation(s)
- Peiwen Wu
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qingdong Jia
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing He
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Linjie Lu
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Linlin Chen
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jie Zhu
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chong Peng
- Schoolof Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minqiang He
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jun Xiong
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenshuai Zhu
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Huaming Li
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
36
|
Hu J, Yuan X, Wang C, Shao X, Yang B, Abdul Razzaq A, Zhao X, Lian Y, Deng Z, Chen M, Peng Y. Self-Phosphorization of MOF-Armored Microbes for Advanced Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000755. [PMID: 32374506 DOI: 10.1002/smll.202000755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Utilization of microbes as the carbon source and structural template to fabricate porous carbon has incentivized great interests owing to their diverse micromorphology and intricate intracellular structure, apart from the obvious benefit of "turning waste into wealth." Challenges remain to preserve the biological structure through the harsh and laborious post-synthetic treatments, and tailor the functionality as desired. Herein, Escherichia coli is directly coated with metal-organic frameworks (MOFs) through in situ assembly to fabricate N, P co-doped porous carbon capsules expressing self-phosphorized metal phosphides. While the MOF coating serves as an armoring layer for facilitating the morphology inheritance from the bio-templates and provides metal sources for generating extra porosity and electrochemically active sites, the P-rich phospholipids and N-rich proteins from the plasma membrane enable carbon matrix doping and further yield metal phosphides. These unique structural and compositional features endow the carbon capsules with great capabilities in suppressing polysulfide shuttling and catalyzing reversible oxygen conversion, ultimately leading to the superb performance of lithium-sulfur batteries and zinc-air batteries. Combining the bio-templating strategy with hierarchical MOF assembly, this work opens a new avenue for the fabrication of highly porous and functional carbon for advanced energy applications.
Collapse
Affiliation(s)
- Jiapeng Hu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Xietao Yuan
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215006, China
| | - Xixi Shao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215006, China
| | - Baiyu Yang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Amir Abdul Razzaq
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Xiaohui Zhao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Yuebin Lian
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Muzi Chen
- Analysis and Testing Center, Soochow University, Suzhou, 215123, China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| |
Collapse
|
37
|
Wang WP, Zhang J, Yin YX, Duan H, Chou J, Li SY, Yan M, Xin S, Guo YG. A Rational Reconfiguration of Electrolyte for High-Energy and Long-Life Lithium-Chalcogen Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000302. [PMID: 32363631 DOI: 10.1002/adma.202000302] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lithium-chalcogen batteries are an appealing choice for high-energy-storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+ -conductive polymer electrolytes to mitigate the shuttle problem are hindered by incomplete discharge of sulfur/selenium. To address the trade-off between energy and cycle life, a new electrolyte is proposed that reconciles the merits of liquid and polymer electrolytes while resolving each of their inferiorities. An in situ interfacial polymerization strategy is developed to create a liquid/polymer hybrid electrolyte between a LiPF6 -coated separator and the cathode. A polymer-gel electrolyte in situ formed on the separator shows high Li+ transfer number to serve as a chemical barrier against the shuttle effect. Between the gel electrolyte and the cathode surface is a thin gradient solidification layer that enables transformation from gel to liquid so that the liquid electrolyte is maintained inside the cathode for rapid Li+ transport and high utilization of active materials. By addressing the dilemma between the shuttle chemistry and incomplete discharge of S/Se, the new electrolyte configuration demonstrates its feasibility to trigger higher capacity retention of the cathodes. As a result, Li-S and Li-Se cells with high energy and long cycle lives are realized, showing promise for practical use.
Collapse
Affiliation(s)
- Wen-Peng Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Juan Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Ya-Xia Yin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Hui Duan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jia Chou
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Sheng-Yi Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Min Yan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Sen Xin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
38
|
Li Z, Zhou C, Hua J, Hong X, Sun C, Li HW, Xu X, Mai L. Engineering Oxygen Vacancies in a Polysulfide-Blocking Layer with Enhanced Catalytic Ability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907444. [PMID: 31995271 DOI: 10.1002/adma.201907444] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The practical application of the lithium-sulfur (Li-S) battery is seriously restricted by its shuttle effect, low conductivity, and low sulfur loading. Herein, first-principles calculations are conducted to verify that the introduction of oxygen vacancies in TiO2 not only enhances polysulfide adsorption but also greatly improves the catalytic ability and both the ion and electron conductivities. A commercial polypropylene (PP) separator decorated with TiO2 nanosheets with oxygen vacancies (OVs-TiO2 @PP) is fabricated as a strong polysulfide barrier for the Li-S battery. The thickness of the OVs-TiO2 modification layer is only 500 nm with a low areal mass of around 0.12 mg cm-2 , which enhances the fast lithium-ion penetration and the high energy density of the whole cell. As a result, the cell with the OVs-TiO2 @PP separator exhibits a stable electrochemical behavior at 2.0 C over 500 cycles, even under a high sulfur loading of 7.1 mg cm-2 , and an areal capacity of 5.83 mAh cm-2 remains after 100 cycles. The proposed strategy of engineering oxygen vacancies is expected to have wide applications in Li-S batteries.
Collapse
Affiliation(s)
- Zhaohuai Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Cheng Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Junhui Hua
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Xufeng Hong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Congli Sun
- International School of Materials Science and Engineering, Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Hai-Wen Li
- Platform of Inter/Transdisciplinary Energy Research, International Research Center for Hydrogen Energy, International Institute for Carbon-Neutral Energy Research, Kyushu University, Fukuoka, 819-0395, Japan
| | - Xu Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| |
Collapse
|
39
|
Shao AH, Zhang Z, Xiong DG, Yu J, Cai JX, Yang ZY. Facile Synthesis of a "Two-in-One" Sulfur Host Featuring Metallic-Cobalt-Embedded N-Doped Carbon Nanotubes for Efficient Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5968-5978. [PMID: 31927941 DOI: 10.1021/acsami.9b20943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The exploration of efficient host materials of sulfur is significant for the practical lithium-sulfur (Li-S) batteries, and the hosts are expected to be highly conductive for high sulfur utilization and exhibit strong interaction toward polysulfides to suppress the shuttle effect for long-lasting cycle stability. Herein, we propose a simple synthesis of metallic cobalt-embedded N-doping carbon nanotubes (Co@NCNT) as a "two-in-one" host of sulfur for efficient Li-S batteries. In the binary host, the N-doped CNTs, cooperating with metallic Co nanoparticles, can serve as 3D conductive networks for fast electron transportation, while the synergetic effect of metallic Co and doping N heteroatoms helps to chemically confine polysulfides, acting as active sites to accelerate electrochemical kinetics. With these advantages, the S/Co@NCNT composite delivers an excellent cycling stability with a capacity decay of 0.08% per cycle averaged within 500 cycles at a current density of 1 A g-1 and a high rate performance of 530 mA h g-1 at 5 A g-1. Further, the superior electrochemical performance of the S/Co@NCNT electrode can be maintained under a high sulfur loading up to 4 mg cm-2. Our work demonstrates a feasible strategy to design promising host materials simultaneously featuring high conductivity and strong confinement toward polysulfides for high-performance Li-S batteries.
Collapse
Affiliation(s)
- A-Hu Shao
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Ze Zhang
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Dong-Gen Xiong
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Ji Yu
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Jian-Xin Cai
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Zhen-Yu Yang
- College of Chemistry, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis , Nanchang University , Nanchang , Jiangxi 330031 , China
| |
Collapse
|
40
|
Li H, Jin Q, Zhao J, Wang B, Guo X. Rational synthesis of a ZIF-67@Co–Ni LDH heterostructure and derived heterogeneous carbon-based framework as a highly efficient multifunctional sulfur host. Dalton Trans 2020; 49:12686-12694. [DOI: 10.1039/d0dt02442b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A core-shelled heterogeneous carbon-based framework induced a smooth “immobilization–diffusion–conversion–deposition” process of polysulfides and significantly improved the performance of Li–S batteries.
Collapse
Affiliation(s)
- Hongtai Li
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Quan Jin
- Key Laboratory of Automobile Materials (Ministry of Education)
- School of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Jie Zhao
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Bao Wang
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Xiaodong Guo
- School of Chemical Engineering
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
41
|
Huang C, Zhou Y, Shu H, Chen M, Liang Q, Jiang S, Li X, Sun T, Han M, Zhou Y, Jian J, Wang X. Synergetic restriction to polysulfides by hollow FePO4 nanospheres wrapped by reduced graphene oxide for lithium–sulfur battery. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Luo L, Li J, Yaghoobnejad Asl H, Manthiram A. A 3D Lithiophilic Mo 2 N-Modified Carbon Nanofiber Architecture for Dendrite-Free Lithium-Metal Anodes in a Full Cell. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904537. [PMID: 31588633 DOI: 10.1002/adma.201904537] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/12/2019] [Indexed: 05/19/2023]
Abstract
The pursuit for high-energy-density batteries has inspired the resurgence of metallic lithium (Li) as a promising anode, yet its practical viability is restricted by the uncontrollable Li dendrite growth and huge volume changes during repeated cycling. Herein, a new 3D framework configured with Mo2 N-mofidied carbon nanofiber (CNF) architecture is established as a Li host via a facile fabrication method. The lithiophilic Mo2 N acts as a homogeneously pre-planted seed with ultralow Li nucleation overpotential, thus spatially guiding a uniform Li nucleation and deposition in the matrix. The conductive CNF skeleton effectively homogenizes the current distribution and Li-ion flux, further suppressing Li-dendrite formation. As a result, the 3D hybrid Mo2 N@CNF structure facilitates a dendrite-free morphology with greatly alleviated volume expansion, delivering a significantly improved Coulombic efficiency of ≈99.2% over 150 cycles at 4 mA cm-2 . Symmetric cells with Mo2 N@CNF substrates stably operate over 1500 h at 6 mA cm-2 for 6 mA h cm-2 . Furthermore, full cells paired with LiNi0.8 Co0.1 Mn0.1 O2 (NMC811) cathodes in conventional carbonate electrolytes achieve a remarkable capacity retention of 90% over 150 cycles. This work sheds new light on the facile design of 3D lithiophilic hosts for dendrite-free lithium-metal anodes.
Collapse
Affiliation(s)
- Liu Luo
- McKetta Department of Chemical Engineering & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jianyu Li
- McKetta Department of Chemical Engineering & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hooman Yaghoobnejad Asl
- McKetta Department of Chemical Engineering & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Arumugam Manthiram
- McKetta Department of Chemical Engineering & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
43
|
Affiliation(s)
- Guangmin Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Lin Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Guangwu Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
44
|
Yuan H, Liu T, Liu Y, Nai J, Wang Y, Zhang W, Tao X. A review of biomass materials for advanced lithium-sulfur batteries. Chem Sci 2019; 10:7484-7495. [PMID: 31768234 PMCID: PMC6837064 DOI: 10.1039/c9sc02743b] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
High energy density and low cost make lithium-sulfur (Li-S) batteries famous in the field of energy storage systems. However, the advancement of Li-S batteries is evidently hindered by the notorious shuttle effect and other issues that occur in sulfur cathodes during cycles. Among various strategies applied in Li-S batteries, using biomass-derived materials is more promising due to their outstanding advantages including strong physical and chemical adsorptions as well as abundant sources, low cost, and environmental friendliness. This review summarizes the recent progress of biomass-derived materials in Li-S batteries. By focusing on the aspects of carbon hosts, separator materials, bio-polymer binders, and all-solid-state electrolytes, the authors aim to shed light on the rational design and utilization of biomass-derived materials in Li-S batteries with high energy density and long cycle lifespan. Perspectives regarding future research opportunities in biomass-derived materials for Li-S batteries are also discussed.
Collapse
Affiliation(s)
- Huadong Yuan
- Department of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , China .
| | - Tiefeng Liu
- Department of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , China .
| | - Yujing Liu
- Department of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , China .
| | - Jianwei Nai
- Department of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , China .
| | - Yao Wang
- Department of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , China .
| | - Wenkui Zhang
- Department of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , China .
| | - Xinyong Tao
- Department of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , China .
| |
Collapse
|
45
|
Kwack H, Lee J, Jo W, Kim YJ, Noh H, Chu H, Kim HT. Rational Design of Highly Packed, Crack-Free Sulfur Electrodes by Scaffold-Supported Drying for Ultrahigh-Sulfur-Loaded Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29849-29857. [PMID: 31335112 DOI: 10.1021/acsami.9b08006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the notable progress in the development of rechargeable lithium-sulfur batteries over the last decade, achieving high performance with high-sulfur-loaded sulfur cathodes remains a key challenge on the path to the commercialization of practical lithium-sulfur batteries. This paper presents a novel method by which to fabricate a crack-free sulfur electrode with an ultrahigh sulfur loading (16 mg cm-2) and a high sulfur content (64%). By introducing a porous scaffold on the top of a cast of sulfur cathode slurry, the formation of cracks during the drying of the cast can be prevented due to the lower volume shrinkage of the skin. The scaffold-supported sulfur cathode delivers a notably high capacities of 10.3 mAh cm-2 and 473 mAh cm-3 after a prolonged cycle, demonstrating that the crack-free structure renders more uniform redox reactions at such high sulfur loading. The highly packed, crack-free feature of the sulfur cathode is advantageous, given that it reduces the electrolyte uptake to as low as an E/S ratio of 4 μL mg-1, which additionally contributes to the high energy density. Therefore, the scaffold-supported drying fabrication method as presented here provides an effective route by which to design practically viable, energy-dense lithium-sulfur batteries.
Collapse
Affiliation(s)
- Hobeom Kwack
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Jinhong Lee
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Wonhee Jo
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Yun-Jung Kim
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Hyungjun Noh
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Hyunwon Chu
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
- Advanced Battery Center, KAIST Institute for the NanoCentury , Korea Advanced Institute of Science and Technology , 335 Gwahangno , Yuseong-gu, Daejeon 34141 , Republic of Korea
| |
Collapse
|
46
|
Chung SH, Manthiram A. Current Status and Future Prospects of Metal-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901125. [PMID: 31081272 DOI: 10.1002/adma.201901125] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/20/2019] [Indexed: 05/18/2023]
Abstract
Lithium-sulfur batteries are a major focus of academic and industrial energy-storage research due to their high theoretical energy density and the use of low-cost materials. The high energy density results from the conversion mechanism that lithium-sulfur cells utilize. The sulfur cathode, being naturally abundant and environmentally friendly, makes lithium-sulfur batteries a potential next-generation energy-storage technology. The current state of the research indicates that lithium-sulfur cells are now at the point of transitioning from laboratory-scale devices to a more practical energy-storage application. Based on similar electrochemical conversion reactions, the low-cost sulfur cathode can be coupled with a wide range of metallic anodes, such as sodium, potassium, magnesium, calcium, and aluminum. These new "metal-sulfur" systems exhibit great potential in either lowering the production cost or producing high energy density. Inspired by the rapid development of lithium-sulfur batteries and the prospect of metal-sulfur cells, here, over 450 research articles are summarized to analyze the research progress and explore the electrochemical characteristics, cell-assembly parameters, cell-testing conditions, and materials design. In addition to highlighting the current research progress, the possible future areas of research which are needed to bring conversion-type lithium-sulfur and other metal-sulfur batteries into the market are also discussed.
Collapse
Affiliation(s)
- Sheng-Heng Chung
- Materials Science and Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Arumugam Manthiram
- Materials Science and Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
47
|
Ren W, Ma W, Jin X, Zhang S, Tang B. Polysulfide Trapping in Carbon Nanofiber Cloth/S Cathode with a Bifunctional Separator for High-Performance Li-S Batteries. CHEMSUSCHEM 2019; 12:2447-2456. [PMID: 30901155 DOI: 10.1002/cssc.201900484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The development of carbon nanofiber (CNF) cloth-based cathodes is essential for the fabrication of high energy density and flexible Li-S batteries. Surface modification is generally used to improve the electrochemical performance of CNF cloth/S cathodes. However, this strategy creates some problems such as structure collapse, complex fabrication steps, and poor consistency. Herein, a β-MnO2 nanowire/graphene-modified separator is used to improve the performance of CNF cloth/S cathodes without changing their structure. β-MnO2 can facilitate chemical bonding with polysulfides, whereas graphene can decrease the inner resistance and trap polysulfide by physical shielding. The cathode with the bifunctional separator displayed a high discharge capacity of 529.9 mAh g-1 with a low capacity decay of 0.051 % per cycle after 500 cycles at 1 C, which is 3 times higher compared with a bare separator. Even with a high sulfur loading of 9.0 mg cm-2 , a high areal capacity of 3.8 mAh cm-2 was delivered over 100 cycles.
Collapse
Affiliation(s)
- Wenchen Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, PR China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, PR China
| | - Xin Jin
- College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao, PR China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, PR China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, PR China
- Eco-chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao, PR China
| |
Collapse
|
48
|
Chen Y, Zhang W, Zhou D, Tian H, Su D, Wang C, Stockdale D, Kang F, Li B, Wang G. Co-Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium-Sulfur Batteries. ACS NANO 2019; 13:4731-4741. [PMID: 30924635 DOI: 10.1021/acsnano.9b01079] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lithium-sulfur (Li-S) batteries have been regarded as one of the most promising candidates for next-generation energy storage owing to their high energy density and low cost. However, the practical deployment of Li-S batteries has been largely impeded by the low conductivity of sulfur, the shuttle effect of polysulfides, and the low areal sulfur loading. Herein, we report the synthesis of uniform Co-Fe mixed metal phosphide (Co-Fe-P) nanocubes with highly interconnected-pore architecture to overcome the main bottlenecks of Li-S batteries. With the highly interconnected-pore architecture, inherently metallic conductivity, and polar characteristic, the Co-Fe-P nanocubes not only offer sufficient electrical contact to the insulating sulfur for high sulfur utilization and fast redox reaction kinetics but also provide abundant adsorption sites for trapping and catalyzing the conversion of lithium polysulfides to suppress the shuttle effect, which is verified by both the comprehensive experiments and density functional theory calculations. As a result, the sulfur-loaded Co-Fe-P (S@Co-Fe-P) nanocubes delivered a high discharge capacity of 1243 mAh g-1 at 0.1 C and excellent cycling stability for 500 cycles with an average capacity decay rate of only 0.043% per cycle at 1 C. Furthermore, the S@Co-Fe-P electrode showed a high areal capacity of 4.6 mAh cm-2 with superior stability when the sulfur loading was increased to 5.5 mg cm-2. More impressively, the prototype soft-package Li-S batteries based on S@Co-Fe-P cathodes also exhibited superior cycling stability with great flexibility, demonstrating their great potential for practical applications.
Collapse
Affiliation(s)
- Yi Chen
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales 2007 , Australia
| | - Wenxue Zhang
- School of Materials Science and Engineering , Chang'an University , Xi'an 710064 , China
| | - Dong Zhou
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales 2007 , Australia
| | - Huajun Tian
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales 2007 , Australia
| | - Dawei Su
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales 2007 , Australia
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou 225002 , China
| | - Declan Stockdale
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales 2007 , Australia
| | - Feiyu Kang
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China
| | - Baohua Li
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales 2007 , Australia
| |
Collapse
|
49
|
Zhao M, Peng H, Zhang Z, Li B, Chen X, Xie J, Chen X, Wei J, Zhang Q, Huang J. Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angew Chem Int Ed Engl 2019; 58:3779-3783. [DOI: 10.1002/anie.201812062] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/28/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Meng Zhao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hong‐Jie Peng
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Ze‐Wen Zhang
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Bo‐Quan Li
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Xiao Chen
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jin Xie
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Xiang Chen
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jun‐Yu Wei
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Qiang Zhang
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Huang
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
50
|
Zhao M, Peng H, Zhang Z, Li B, Chen X, Xie J, Chen X, Wei J, Zhang Q, Huang J. Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812062] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meng Zhao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hong‐Jie Peng
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Ze‐Wen Zhang
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Bo‐Quan Li
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Xiao Chen
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jin Xie
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Xiang Chen
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jun‐Yu Wei
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Qiang Zhang
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Huang
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|