1
|
Li X, Liu H, Sun C, Wang QC, Han J. Synergistic Effects of Fe 3O 4/N-Doped Porous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction. Chemistry 2025; 31:e202404339. [PMID: 39838502 DOI: 10.1002/chem.202404339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/23/2025]
Abstract
Designing transition metal oxide (TMO)/porous carbon composite materials for the oxygen reduction reaction (ORR) is a promising strategy in high-performance fuel cell technology. In this study, we used the isolation effect and pore-creating properties of Zn2+ to fabricate a composite material comprising ultrasmall Fe3O4 particles anchored on hierarchically N-doped porous carbon nanospheres. This material, referred to as CPZ1.0-Fe0.1, serves as an efficient ORR electrocatalyst in alkaline fuel cells. CPZ1.0-Fe0.1 exhibits outstanding ORR catalytic activity with a half-wave potential of 0.86 V in a 0.1 M KOH solution, surpassing that of the Pt/C catalyst (0.82 V). Furthermore, CPZ1.0-Fe0.1 exhibited excellent stability with minimal current degradation after 18 h of continuous testing. The superior ORR catalytic performance can be attributed to the synergistic effect between the catalytic sites and the high conductivity of porous carbon. The porous carbon nanospheres effectively address the low conductivity of Fe3O4 nanoparticles, while the ultra-small Fe3O4 nanoparticles anchored on the carbon surface provide efficient catalytic sites for the ORR.
Collapse
Affiliation(s)
- Xiaoge Li
- School of Chemistry and Chemical Engineering at Yangzhou University in, Jiangsu Province, China, 225100
| | - Huixian Liu
- School of Chemistry and Chemical Engineering at Yangzhou University in, Jiangsu Province, China, 225100
| | - Changxiao Sun
- School of Chemistry and Chemical Engineering at Yangzhou University in, Jiangsu Province, China, 225100
| | - Qin-Chao Wang
- School of Chemistry and Chemical Engineering at Yangzhou University in, Jiangsu Province, China, 225100
| | - Jie Han
- School of Chemistry and Chemical Engineering at Yangzhou University in, Jiangsu Province, China, 225100
| |
Collapse
|
2
|
Liu Y, Chen Y, Li Q, Shi J, Liu B. Electrocatalysis of Co/Co xO y nanofilms supported by synchronously nitrogen-doped Ketjenblack carbon towards oxygen reduction reaction. J Colloid Interface Sci 2025; 679:253-261. [PMID: 39362150 DOI: 10.1016/j.jcis.2024.09.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Developing a highly active and stable non-precious metal catalyst for oxygen reduction reaction (ORR) is of great practical significance for advancing fuel cell technology. In this work, a continuous two-step hydrothermal reaction followed by high temperature pyrolysis were employed to achieve in situ N-doping preferentially into Ketjenblack carbon (KB-N) and composite of KB-N and Co/CoxOy nanofilms (Co/CoxOy-NFs) as Co/CoxOy-NFs@KB-N. The N-doped state strongly affects the ORR activity of catalyst. All prepared Co/CoxOy-NFs@KB-N catalysts exhibit observably improved ORR activity compared with the basal KB-N and N-doped Co/CoxOy-NFs, in which the optimal Co/CoxOy-NFs@KB-N catalyst demonstrate the positive Eonset (0.864 V) and E1/2 (0.788 V) vs. RHE, the low Tafel slope (69.27 mV dec-1), implying quick ORR kinetics. And, the Co/CoxOy-NFs@KB-N catalyst exhibits highly electrochemical durability. The KB-N substrate can purify Co valence in CoO component, promote amorphization of CoO crystalline structure and enhance the interaction between Co/CoxOy-NFs and KB-N in Co/CoxOy-NFs@KB-N catalyst. Thus electronic effect, structural effect and synergistic effect can strengthen O2 adsorption, provide enough adsorbed sites and accelerate electron transfer, resulting in prominent ORR performance of Co/CoxOy-NFs@KB-N catalyst.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yumei Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Qing Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jianchao Shi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China; State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo 454003, PR China.
| |
Collapse
|
3
|
Kong Z, Wu J, Liu Z, Yan D, Wu Z, Zhong C. Advanced electrocatalysts for fuel cells: Evolution of active sites and synergistic properties of catalysts and carrier materials. EXPLORATION (BEIJING, CHINA) 2025; 5:20230052. [PMID: 40040831 PMCID: PMC11875453 DOI: 10.1002/exp.20230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/18/2024] [Indexed: 03/06/2025]
Abstract
Proton exchange-membrane fuel cell (PEMFC) is a clean and efficient type of energy storage device. However, the sluggish reaction rate of the cathode oxygen reduction reaction (ORR) has been a significant problem in its development. This review reports the recent progress of advanced electrocatalysts focusing on the interface/surface electronic structure and exploring the synergistic relationship of precious-based and non-precious metal-based catalysts and support materials. The support materials contain non-metal (C/N/Si, etc.) and metal-based structures, which have demonstrated a crucial role in the synergistic enhancement of electrocatalytic properties, especially for high-temperature fuel cell systems. To improve the strong interaction, some exciting synergistic strategies by doping and coating heterogeneous elements or connecting polymeric ligands containing carbon and nitrogen were also shown herein. Besides the typical role of the crystal surface, phase structure, lattice strain, etc., the evolution of structure-performance relations was also highlighted in real-time tests. The advanced in situ characterization techniques were also reviewed to emphasize the accurate structure-performance relations. Finally, the challenge and prospect for developing the ORR electrocatalysts were concluded for commercial applications in low- and high-temperature fuel cell systems.
Collapse
Affiliation(s)
- Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional MaterialsGreen Catalysis CenterCollege of ChemistryZhengzhou UniversityZhengzhouChina
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Jingcheng Wu
- Henan Key Laboratory of Crystalline Molecular Functional MaterialsGreen Catalysis CenterCollege of ChemistryZhengzhou UniversityZhengzhouChina
| | - Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional MaterialsGreen Catalysis CenterCollege of ChemistryZhengzhou UniversityZhengzhouChina
| | - Dafeng Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional MoleculesCollege of Chemistry and Chemical EngineeringHubei UniversityWuhanChina
| | - Zhi‐Peng Wu
- KAUST Catalysis CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Chuan‐Jian Zhong
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| |
Collapse
|
4
|
Lei H, Yang X, Chen Z, Rawach D, Du L, Liang Z, Li D, Zhang G, Tavares AC, Sun S. Multiscale Understanding of Anion Exchange Membrane Fuel Cells: Mechanisms, Electrocatalysts, Polymers, and Cell Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410106. [PMID: 39797443 PMCID: PMC11854883 DOI: 10.1002/adma.202410106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs. These significant advantages have made AEMFCs highly competitive in the future fuel cell market, particularly after advancements in developing non-platinum-group-metal anode electrocatalysts, anion exchange membranes and ionomers, and in understanding the relationships between cell operating conditions and mass transport in AEMFCs. This review aims to compile recent literature to provide a comprehensive understanding of AEMFCs in three key areas: i) the mechanisms of the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) in alkaline media; ii) recent advancements in the synthesis routes and structure-property relationships of cutting-edge HOR and ORR electrocatalysts, as well as anion exchange membranes and ionomers; and iii) fuel cell operating conditions, including water management and impact of CO2. Finally, based on these aspects, the future development and perspectives of AEMFCs are proposed.
Collapse
Affiliation(s)
- Huiyu Lei
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Xiaohua Yang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Zhangsen Chen
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Diane Rawach
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Lei Du
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichang443002P. R. China
| | - Gaixia Zhang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Ana C. Tavares
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| |
Collapse
|
5
|
Hu H, Wang J, Liao K, Chen Z, Zhang S, Sun B, Wang X, Ren X, Lin J, Han X. Clarifying the Active Structure and Reaction Mechanism of Atomically Dispersed Metal and Nonmetal Sites with Enhanced Activity for Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416126. [PMID: 39718226 DOI: 10.1002/adma.202416126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Indexed: 12/25/2024]
Abstract
Atomically dispersed transition metal (ADTM) catalysts are widely implemented in energy conversion reactions, while the similar properties of TMs make it difficult to continuously improve the activity of ADTMs via tuning the composition of metals. Introducing nonmetal sites into ADTMs may help to effectively modulate the electronic structure of metals and significantly improve the activity. However, it is difficult to achieve the co-existence of ADTMs with nonmetal atoms and clarify their synergistic effect on the catalytic mechanism. Therefore, elucidating the active sites within atomically dispersed metal-nonmetal materials and unveiling catalytic mechanism is highly important. Herein, a novel hybrid catalyst, with coexistence of Co single-atoms and Co─Se dual-atom sites (Co─Se/Co/NC), is successfully synthesized and exhibits remarkable performance for oxygen reduction reaction (ORR). Theoretical results demonstrate that the Se sites can effectively modulate the charge redistribution at Co active sites. Furthermore, the synergistic effect between Co single-atom sites and Co─Se dual-atom sites can further adjust the d-band center, optimize the adsorption/desorption behavior of intermediates, and finally accelerate the ORR kinetics. This work has clearly clarified the reaction mechanism and shows the great potential of atomically dispersed metal-nonmetal nanomaterials for energy conversion and storage applications.
Collapse
Affiliation(s)
- Hui Hu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Kang Liao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Zanyu Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Buwei Sun
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Xixi Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Jianguo Lin
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
- National Innovation Platform for Industry-Education Integration of Energy Storage Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
6
|
Song Y, Zhen F, Qi Y, Zhan Y, Zhang L, Qu B. One-step annealing in situ synthesis of low tortuosity corn straw cellulose biochar/Fe 3C: Application for cathode catalyst in microbial fuel cell. Int J Biol Macromol 2025; 289:138750. [PMID: 39674480 DOI: 10.1016/j.ijbiomac.2024.138750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Synthesis of microbial fuel cell (MFC) cathode catalysts using corn straw with natural multi-channel structure is an useful measure for developing sustainable energy sources and making creative use of agricultural waste. The catalytic performance of nanomaterial catalysts in the oxygen reduction reaction (ORR) is clearly influenced by porosity and channel structure. Mesopores usually contribute to the enhancement of reaction kinetics and mass transfer. Therefore, in this paper, we have devised a method for the in situ synthesis of Fe3C/B (CIP) using cold isostatic pressure (CIP), which is inspired by the natural channel structures in plants that conduct water, salt and organic matter. The low tortuosity in materials due to this special structure can make it easier to create continuous electron channels and direct ion transfer channels. In addition, Fe3C/B (CIP) has amorphous characteristic defects (ID/IG = 0.82), high specific surface area (817.04 m2g-1), and mesoporous structure (3.240 nm). When Fe3C/B (CIP) was used as the cathode catalyst, the maximum power density of the MFC (1370.31 mW/m2) was 44.79 % higher than that of the commercial Pt/C catalyst (946.40 mW/m2). The present study offers an MFC cathode catalyst with a long cycling stability and high power density.
Collapse
Affiliation(s)
- Yu Song
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yu Qi
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| | - Yangyang Zhan
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| | - Lingling Zhang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| | - Bin Qu
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China.
| |
Collapse
|
7
|
Yuan B, Liu B, Liu J, Meng X, Xie J, Song Y, Gu P, Chen Y, Han C, Zou J. A(CoFe)(S 2) 2/CoFe heterostructure constructed in S, N co-doped carbon nanotubes as an efficient oxygen electrocatalyst for zinc-air battery. J Colloid Interface Sci 2025; 679:75-89. [PMID: 39357228 DOI: 10.1016/j.jcis.2024.09.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Transition metal alloys can exhibit synergistic intermetallic effects to obtain high activities for oxygen reduction/evolution reactions (ORR/OER). However, due to the insufficient stability of active sites in alkaline electrolytes, conventional alloy catalysts still do not meet practical needs. Herein, by using polypyrrole tubes and cobalt-iron (CoFe) Prussian blue analogs as precursors, CoFe sulfides is in-situ formed on CoFe alloys to construct (CoFe)(S2)2/CoFe heterostructure in sulfur (S) and nitrogen (N) co-doped carbon nanotubes (CoFe@NCNTs-nS) via a low-temperature sulfidation strategy. The as-marked CoFe@NCNTs-12.5S exhibits a comparable ORR activity (half-wave potential of 0.901 V) to Pt/C (0.903 V) and a superior OER activity (overpotential of 272 mV at 10 mA cm-2) to RuO2 (299 mV). CoFe@NCNTs-12.5S also exhibits ultralow charge transfer resistances (ORR-6.36 Ω and OER-0.21 Ω) and an excellent potential difference of 0.617 V. The sulfidation-induced (CoFe)(S2)2/CoFe heterojunctions can accelerate interfacial charge transfer process. Tubular structure not only disperses the (CoFe)(S2)2/CoFe heterostructure, but also reduces the corrosion of active-sites to enhance catalysis stability. Zinc-air battery with CoFe@NCNTs-12.5S achieves a high specific capacity (718.1 mAh g-1), maintaining a voltage gap of 0.957 V after 400 h. This work reveals the potential of interface engineering for boosting ORR/OER activities of alloys via in-situ heterogenization.
Collapse
Affiliation(s)
- Bowen Yuan
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Bin Liu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jin Liu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xin Meng
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jiahao Xie
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yidong Song
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Peng Gu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yanjie Chen
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Chunmiao Han
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Jinlong Zou
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
8
|
Wang TT, Meng Y, Huang HC, Zhang L, Cheng SB. Single-atom Pd directly anchored on biphenylene: a promising bifunctional electrocatalyst for overall water splitting. Phys Chem Chem Phys 2024; 27:291-300. [PMID: 39636027 DOI: 10.1039/d4cp03539a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The development of bifunctional single-atom catalysts (SACs) for overall water splitting is crucial for clean energy production in the context of sustainable development. Using first-principles calculations, the catalytic capability of different transition metal (TM) atoms supported on biphenylene (Bip) monolayers (TM@Bip, TM = V-Cu, Ru-Ag, and Ir-Au) is comprehensively investigated. Bip can directly anchor TM atoms without engineered vacancies or nitrogen defects. Among the screened SACs, Pd@Bip is found to be an excellent bifunctional catalyst for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). The overpotentials for the HER and the OER were calculated to be 0.05 and 0.50 V, respectively, which are even superior to the commercialized catalysts like Pt and IrO2. Furthermore, adjusting the d-band center of TM atoms effectively modulates the catalytic activity, and the optimal OER performance of TM-Bip can be achieved with a d-band center of -2.32 eV, which can serve as a principle to design Bip-based SACs. Our findings may serve as a practical theoretical guide for the exploration of effective bifunctional SACs for overall water splitting.
Collapse
Affiliation(s)
- Ting-Ting Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yanan Meng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Hai-Cai Huang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
9
|
Liu D, Wan X, Shui J. Tailoring Oxygen Reduction Reaction on M-N-C Catalysts via Axial Coordination Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406078. [PMID: 39314019 DOI: 10.1002/smll.202406078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Indexed: 09/25/2024]
Abstract
The development of fuel cells and metal-air batteries is an important link in realizing a sustainable energy supply and a green environment for the future. Oxygen reduction reaction (ORR) is the core reaction of such energy conversion devices. M-N-C catalysts exhibit encouraging ORR catalytic activity and are the most promising candidates for replacing Pt/C. The electrocatalytic performance of M-N-C catalysts is intimately related to the specific metal species and the coordination environment of the central metal atom. Axial coordination engineering presents an avenue for the development of highly active ORR catalysts and has seen considerable progress over the past decade. Nevertheless, the accurate control over the coordination environment and electronic structure of M-N-C catalysts at the atomic scale poses a big challenge. Herein, the diverse axial ligands, characterization techniques, and modulation mechanisms for axial coordination engineering are encompassed and discussed. Furthermore, some pressing matters to be solved and challenges that deserve to be explored and investigated in the future for axial coordination engineering are proposed.
Collapse
Affiliation(s)
- Dandan Liu
- Tianmushan Laboratory, Hangzhou, 310023, China
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xin Wan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jianglan Shui
- Tianmushan Laboratory, Hangzhou, 310023, China
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
10
|
Guo Z, Wang T, Xu J, Cao A, Li H. Surface coverage and reconstruction analyses bridge the correlation between structure and activity for electrocatalysis. Chem Commun (Camb) 2024. [PMID: 39555896 DOI: 10.1039/d4cc03875d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Electrocatalysis is key to realizing a sustainable future for our society. However, the complex interface between electrocatalysts and electrolytes presents an ongoing challenge in electrocatalysis, hindering the accurate identification of effective/authentic structure-activity relationships and determination of favourable reaction mechanisms. Surface coverage and reconstruction analyses of electrocatalysts are important to address each conjecture and/or conflicting viewpoint on surface-active phases and their corresponding electrocatalytic origin, i.e., so-called structure-activity relationships. In this review, we emphasize the importance of surface states in electrocatalysis experimentally and theoretically, providing guidelines for research practices in discovering promising electrocatalysts. Then, we summarize some recent progress of how surface states determine the adsorption strengths and reaction mechanisms of occurring electrocatalytic reactions, exemplified in the electrochemical oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, CO2 reduction reaction, CO2 and N2 co-reductions, and hydrogen evolution reaction. Finally, the review proposes deep insights into the in situ study of surface states, their efficient building and the application of surface Pourbaix diagrams. This review will accelerate the development of electrocatalysts and electrocatalysis theory by arousing broad consensus on the significance of surface states.
Collapse
Affiliation(s)
- Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Tianyi Wang
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ang Cao
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
- Inner Mongolia Daqingshan Laboratory, Hohhot 017000, China
| | - Hao Li
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
11
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024; 53:11100-11164. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Yang Q, Zhang Y, Xiao P, Liu R, Liu H, Qu J, Kim JH, Sun M. Selective O 2-to-H 2O 2 Electrosynthesis by a High-Performance, Single-Pass Electrofiltration System Using Ibuprofen-Laden CNT Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19058-19069. [PMID: 39230246 DOI: 10.1021/acs.est.4c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Producing H2O2 through a selective, two-electron (2e) oxygen reduction reaction (ORR) is challenging, especially when it serves as an advanced oxidation process (AOP) for cost-effective water decontamination. Herein, we attain a 2e-selectivity H2O2 production using a carbon nanotube electrified membrane with ibuprofen (IBU) molecules laden (IBU@CNT-EM) in an ultrafast, single-pass electrofiltration process. The IBU@CNT-EM can generate H2O2 at a rate of 25.62 mol gCNT-1 h-1 L-1 in the permeate with a residence time of 1.81 s. We demonstrated that an interwoven, hydrophilic-hydrophobic membrane nanostructure offers an excellent air-to-water transport platform for ORR acceleration. The electron transfer number of the ORR for IBU@CNT at neutral pH was confirmed as 2.71, elucidating a near-2e selectivity to H2O2. Density functional theory (DFT) studies validated an exceptional charge distribution of the IBU@CNT for the O2 adsorption. The adsorption energies of the O2 and *OOH intermediates are proportional to the H2O2 selectivity (64.39%), higher than that of the CNT (37.81%). With the simple and durable production of H2O2 by IBU@CNT-EM electrofiltration, the permeate can actuate Fenton oxidation to efficiently decompose emerging pollutants and inactivate bacteria. Our study introduces a new paradigm for developing high-performance H2O2-production membranes for water treatment by reusing environmental functional materials.
Collapse
Affiliation(s)
- Qing Yang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuanzheng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Pengyu Xiao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Jiang T, Jiang H, Wang W, Mu H, Zhang Y, Li B. Atomically Dispersed High-Active Site Density Copper Electrocatalyst for the Reduction of Oxygen. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5030. [PMID: 39459735 PMCID: PMC11509251 DOI: 10.3390/ma17205030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Enlarging the M-Nx active-site density is an effective route to enhance the ORR performance of M-N-C catalysts. In this work, a single-atom catalyst Cu-N@Cu-N-C with enlarged Cu-N4 active site density was prepared by the second doping and pyrolysis (SDP) of Cu-N-C derived from Cu-doped zeolite imidazole frameworks. The half-wave potentials of Cu-N@Cu-N-C were measured as 0.85 V in alkaline electrolyte and 0.75 V in acidic media, which was 50 mV and 60 mV higher than that of Cu-N-C, respectively. N2 adsorption-desorption isotherm curves and corresponding pore distribution analysis were used to verify the successful filling of additional Cu and N in micropores of Cu-N-C after SDP. The obvious increase in Cu contents for Cu-N@Cu-N-C (1.92 wt%) compared with Cu-N-C (0.88 wt%) tested by ICP demonstrated the successful doping of Cu into Cu-N-C. XAFS analysis confirmed the presence of Cu-N4 single-atom active centers in Cu-N@Cu-N-C. The N 1 s high-resolution XPS results proved a great increase in Cu-N4 contents from 13.15% for Cu-N-C to 18.36% for Cu-N@Cu-N-C. The enhanced ORR performance of Cu-N@Cu-N-C was attributed to the enlargement of Cu-N4 active site density, providing an effective route for the preparation of efficient and low-cost ORR catalysts.
Collapse
Affiliation(s)
- Tao Jiang
- Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China; (H.M.); (Y.Z.); (B.L.)
| | - Hongli Jiang
- School of Intelligent Manufacturing, Zhejiang Dongfang Polytechnic, Wenzhou 325000, China;
| | - Weibin Wang
- School of Intelligent Manufacturing, Zhejiang Dongfang Polytechnic, Wenzhou 325000, China;
| | - Hao Mu
- Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China; (H.M.); (Y.Z.); (B.L.)
| | - Ying Zhang
- Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China; (H.M.); (Y.Z.); (B.L.)
| | - Bo Li
- Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China; (H.M.); (Y.Z.); (B.L.)
| |
Collapse
|
14
|
Gao Y, Liang G, Liang H, Wang L, Du H, Liu D, Lin L. Tuning the structure and properties of carbon cloth by FeCl 3intercalation for efficient two-electron oxygen reduction catalysis. NANOTECHNOLOGY 2024; 35:505403. [PMID: 39332441 DOI: 10.1088/1361-6528/ad8097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 09/29/2024]
Abstract
The advancement of various energy conversion and storage technologies hinges on the development of efficient and stable electrocatalysts for the oxygen reduction reaction (ORR). In this study, we report the enhancement of carbon cloth (CC) for robust ORR through an FeCl3intercalation reaction. Utilizing a thermal annealing method, FeCl3was intercalated into the graphite structure on the surface of CC, resulting in the creation of numerous defects and the incorporation of Fe species. These newly introduced defects play a pivotal role in activating the ORR via a two-electron pathway. The presence of Fe species further stabilizes the catalytic activity, leading to efficient and stable ORR performance. Our findings highlight the significance of defect engineering and Fe species incorporation in carbon-based materials for improved ORR catalysis and pave the way for the development of advanced electrocatalysts for energy-related applications.
Collapse
Affiliation(s)
- Yu Gao
- Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang 441000, People's Republic of China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| | - Guangyuan Liang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| | - Huanhuan Liang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| | - Lijing Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| | - Hongfang Du
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| | - Dezheng Liu
- Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang 441000, People's Republic of China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, People's Republic of China
| |
Collapse
|
15
|
Rajput SA, Antharjanam S, Chandiran AK. Direction Dependent Ferroelectricity and Conductivity in a Single Crystal 2D Halide Double Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403239. [PMID: 38881176 DOI: 10.1002/smll.202403239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Halide ferroelectric materials have garnered a lot of interest because of their distinctive electrical and structural characteristics. In this study, the design and development of a new non-centrosymmetric 2D layered halide double perovskite material, Cl1.14Br2.86PA4AgInBr8 (CPAIn) is reported. This material shows ferroelectric properties above room temperature, with a Curie temperature of 190 °C. This behavior is achieved through the substitution of the halogenated A-site organic linker, 3-chloropropylammonium. CPAIn exhibits anisotropic ferroelectric behavior with higher spontaneous polarization of 6.25 µC cm-2 along the perpendicular direction to the octahedral layers, whereas the value decreases to 0.174 µC cm-2 between sheets. While using bottom contact to study the nature of polarity within a sheet, the P-E loop displays capacitive loop. The nature and value of polarization is highly direction dependent, and to further understand the mechanism of conduction, a combination of temperature-dependent impedance studies and poling dependent conductivity techniques are employed. These directional dependent properties hold immense potential in memory devices, sensors and photovoltaics, piezoelectric devices and energy storage.
Collapse
Affiliation(s)
- Shubham Ajaykumar Rajput
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036, India
| | - Sudhadevi Antharjanam
- Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036, India
| | - Aravind Kumar Chandiran
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
16
|
Cheng J, Zhang Z, Shao J, Wang T, Li R, Zhang W. Construction of an Axial Charge Transfer Channel Between Single-Atom Fe Sites and Nitrogen-Doped Carbon Supports for Boosting Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402583. [PMID: 38804883 DOI: 10.1002/smll.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The introduction of axial-coordinated heteroatoms in Fe─N─C single-atom catalysts enables the significant enhancement of their oxygen reduction reaction (ORR) performance. However, the interaction relationship between the axial-coordinated heteroatoms and their carbon supports is still unclear. In this work, a gas phase surface treatment method is proposed to prepare a series of X─Fe─N─C (X = O, P, and S) single-atom catalysts with axial X-coordination on graphitic-N-rich carbon supports. Synchrotron-based X-ray absorption near-edge structure spectra and X-ray photoelectron spectroscopy indicate the formation of an axial charge transfer channel between the graphitic-N-rich carbon supports and single-atom Fe sites by axial O atoms in O─Fe─N─C. As a result, the O─Fe─N─C exhibits excellent ORR performance with a half-wave potential of 0.905 V versus RHE and a high specific capacity of 884 mAh g-1 for zinc-air battery, which is superior to other X─Fe─N─C catalysts without axial charge transfer and the commercial Pt/C catalyst. This work not only demonstrates a general synthesis strategy for the preparation of single-atom catalysts with axial-coordinated heteroatoms, but also presents insights into the interaction between single-atom active sites and doped carbon supports.
Collapse
Affiliation(s)
- Jiahao Cheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zheng Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jibin Shao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tang Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Rui Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
17
|
Zhang T, Lu Z, Pan H, Tian L, Dou J, Wang T, Wu D, Yu J, Wang L, Chen X. Coal-based carbon nanosheets contained carbon microfibers modified with grown carbon nanotubes as efficient air electrode material for rechargeable zinc-air batteries. J Colloid Interface Sci 2024; 671:589-600. [PMID: 38820843 DOI: 10.1016/j.jcis.2024.05.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Coal-based oxygen electrocatalysts hold immense promise for cost-effective applications in rechargeable Zn-air batteries (ZABs) and the value-added, clean utilization of traditional coal resources. Herein, an electrospun membrane electrode comprising coal-derived carbon nanosheets and directly grown carbon nanotubes (CNS/CMF@CNT) was successfully synthesized. The hierarchical porous structure of the electrode, composed of multiple components, significantly facilitates mass and ion transportation, resulting in exceptional electrochemical performance. Employing Fe as the catalyst for CNT growth, the CNS/CMF@CNT electrode exhibits a remarkable onset potential of 0.96 V and a half-wave potential of 0.87 V in the oxygen reduction reaction (ORR). In-situ surface-enhanced Raman spectroscopy reveals that hydroxyl radical desorption on the surface of CNS/CMF@CNT(Fe) is the rate-determining step of the ORR. Notably, the aqueous ZAB featuring the CNS/CMF@CNT(Fe) electrode achieved a peak power density of 216.0 mW cm-2 at a current density of 414 mA cm-2 and maintained a voltage efficiency of 65.1 % after 2000 charge/discharge cycles at 5 mA cm-2. Furthermore, the all-solid-state ZAB incorporating this electrode displayed an open-circuit voltage of 1.43 V, a peak power density of 70.1 mW cm-2 at a current density of 110 mA cm-2, and a voltage efficiency of 66.5 % after 150 charge/discharge cycles. The utilization of abundant coal as the raw material for electrode fabrication not only brings conceivable economic benefits in ZAB construction, but also commendably advances the effective application of traditional coal resources in a more sustainable manner.
Collapse
Affiliation(s)
- Teng Zhang
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China; Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China
| | - Zhenjie Lu
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China
| | - Haoran Pan
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China; Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China
| | - Lu Tian
- Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China
| | - Jinxiao Dou
- Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China.
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, China
| | - Jianglong Yu
- Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, China.
| | - Xingxing Chen
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China; Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China.
| |
Collapse
|
18
|
Zhang Y, Wang Z, Wang L, Zong L. Ultra-Small High-Entropy Alloy as Multi-Functional Catalyst for Ammonia Based Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400892. [PMID: 38953333 DOI: 10.1002/smll.202400892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Ammonia fuel cells using carbon-neutral ammonia as fuel are regarded as a fast, furious, and flexible next-generation carbon-free energy conversion technology, but it is limited by the kinetically sluggish ammonia oxidation reaction (AOR), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). Platinum can efficiently drive these three types of reactions, but its scale-up application is limited by its susceptibility to poisoning and high cost. In order to reduce the cost and alleviate poisoning, incorporating Pt with various metals proves to be an efficient and feasible strategy. Herein, PtFeCoNiIr/C trifunctional high-entropy alloy (HEA) catalysts are prepared with uniform mixing and ultra-small size of 2 ± 0.5 nm by Joule heating method. PtFeCoNiIr/C exhibits efficient performance in AOR (Jpeak = 139.8 A g-1 PGM), ORR (E1/2 = 0.87 V), and HER (E10 = 20.3 mV), outperforming the benchmark Pt/C, and no loss in HER performance at 100 mA cm-2 for 200 h. The almost unchanged E1/2 in the anti-poisoning test indicates its promising application in real fuel cells powered by ammonia. This work opens up a new path for the development of multi-functional electrocatalysts and also makes a big leap toward the exploration of cost-effective device configurations for novel fuel cells.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zumin Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lingbo Zong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
19
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
20
|
He J, Hu H, Xue H, Tang Y, Li X, Xue R, Chi L, Zhang H. Unveiling the Role of Pyridinic Nitrogen and Diacetylene in the Hydrogen Evolution Reaction through Model Catalysts Prepared by On-Surface Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51301-51308. [PMID: 39279490 DOI: 10.1021/acsami.4c09256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Metal-free carbon materials (MFCMs) have extensive applications in electrocatalysis because of their comparable catalytic activity to that of Pt/C in some cases. Understanding the structure-property relationship is crucial for the reasonable design of more efficient catalysts. To reveal the structure-property relationship of the hydrogen evolution reaction (HER), we prepared nanowire model catalysts on single-crystalline Au(111) electrodes through state-of-the-art on-surface synthesis. Temperature-dependent experiments were conducted to evaluate the HER activity of the nanoribbons functionalized with pyridinic nitrogen and diacetylene. According to our electrochemical results (overpotential, current density j0, and apparent activation energy), we demonstrate that the participation of diacetylene can promote the catalytic reaction for the HER through a synergistic effect. Based on the analysis of the activation entropy for the model catalysts, we attribute the synergistic effect of diacetylene groups to the large area of π···H-O bonding in the electric double layer, thus providing direct insight into the structural-property relationship of polymerized nanoribbons for the HER through the rational design of precursor structures. The nanoribbons prepared by on-surface synthesis can serve as prototype systems for model catalytic research on MFCMs.
Collapse
Affiliation(s)
- Jing He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Hao Hu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Huimin Xue
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yanning Tang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xuechao Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Renjie Xue
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Haiming Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
21
|
Martínez-Fernández M, Segura JL. Exploring Advanced Oxygen Reduction Reaction Electrocatalysts: The Potential of Metal-Free and Non-Pyrolyzed Covalent Organic Frameworks. CHEMSUSCHEM 2024; 17:e202400558. [PMID: 38631681 DOI: 10.1002/cssc.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Oxygen reduction reaction (ORR) electrocatalysis is an area of increasing interest for the in-situ production of H2O2 or the development of energy-related devices such as hydrogen fuel cells. Although pyrolyzed catalysts still offer the best performances to date with reference to the organic-based catalysts, metal-free and non-pyrolyzed covalent organic frameworks (COFs) stands out as promising alternatives candidates due to their favourable characteristics such as crystallinity, porosity, and organic composition, allowing the study of structural-property relationships. Herein, we present the design principles and recent advances in COFs-based ORR electrocatalysts, demonstrating how composition influences the activity and electronic pathway of the oxygen reduction process.
Collapse
Affiliation(s)
- Marcos Martínez-Fernández
- Organic chemistry department Science faculty, Complutense University of Madrid, Av. Complutense s/n, Madrid, Spain, 28040
| | - José L Segura
- Organic chemistry department Science faculty, Complutense University of Madrid, Av. Complutense s/n, Madrid, Spain, 28040
| |
Collapse
|
22
|
Xu Z, Mapstone G, Coady Z, Wang M, Spreng TL, Liu X, Molino D, Forse AC. Enhancing electrochemical carbon dioxide capture with supercapacitors. Nat Commun 2024; 15:7851. [PMID: 39245729 PMCID: PMC11381529 DOI: 10.1038/s41467-024-52219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Supercapacitors are emerging as energy-efficient and robust devices for electrochemical CO2 capture. However, the impacts of electrode structure and charging protocols on CO2 capture performance remain unclear. Therefore, this study develops structure-property-performance correlations for supercapacitor electrodes at different charging conditions. We find that electrodes with large surface areas and low oxygen functionalization generally perform best, while a combination of micro- and mesopores is important to achieve fast CO2 capture rates. With these structural features and tunable charging protocols, YP80F activated carbon electrodes show the best CO2 capture performance with a capture rate of 350 mmolCO2 kg-1 h-1 and a low electrical energy consumption of 18 kJ molCO2-1 at 300 mA g-1 under CO2, together with a long lifetime over 12000 cycles at 150 mA g-1 under CO2 and excellent CO2 selectivity over N2 and O2. Operated in a "positive charging mode", the system achieves excellent electrochemical reversibility with Coulombic efficiencies over 99.8% in the presence of approximately 15% O2, alongside stable cycling performance over 1000 cycles. This study paves the way for improved supercapacitor electrodes and charging protocols for electrochemical CO2 capture.
Collapse
Affiliation(s)
- Zhen Xu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Grace Mapstone
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Zeke Coady
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mengnan Wang
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Tristan L Spreng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Xinyu Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Davide Molino
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca degli Abruzzi, 24, Torino, Italy
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
23
|
Li X, Ye G, Zhu W, Tian M, Wang R, Liu S, He Z. Directional Construction of Low-Coordination Fe-N 3 Coupled with Intrinsic Carbon Defects for High-Efficiency Oxygen Reduction. ACS NANO 2024; 18:24505-24514. [PMID: 39167730 DOI: 10.1021/acsnano.4c08695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Regulating the coordination environment of Fe-Nx sites is an efficient but challenging approach for promoting the intrinsic catalytic activity of single-atom Fe/N-codoped carbon (Fe-N-C) toward the oxygen reduction reaction (ORR). Herein, low-coordination Fe-N3 sites coupled with carbon vacancies (Fe-N3/CV) are directionally constructed in Fe-N-C via pyrolysis of a metal-organic framework (MOF) precursor with N3-Zn-O-Fe moieties, which are delicately prefabricated by chemically anchoring Fe3+ onto a H2O-etching induced linker-missing Zn-N3 site in the MOF precursor. The optimized Fe-N-C with the Fe-N3/CV sites displays a high ORR half-wave potential of 0.92 V (vs RHE), which is attributed to the optimized electronic structure and binding strengths of the active Fe center toward the ORR intermediates stemming from the synergy of the asymmetric configuration of Fe-N3 as well as the adjacent carbon vacancies. This work could be enlightening for the design and construction of high-activity coupling sites in metal and nitrogen-codoped carbon catalysts.
Collapse
Affiliation(s)
- Xinrui Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Guanying Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Weiwei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Min Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ruiting Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Zhen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
24
|
Jiménez-Duro M, Martínez-Periñán E, Martínez-Fernández M, Martínez JI, Lorenzo E, Segura JL. Robust Amide-Linked Fluorinated Covalent Organic Framework for Long-Term Oxygen Reduction Reaction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402082. [PMID: 38773891 DOI: 10.1002/smll.202402082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/14/2024] [Indexed: 05/24/2024]
Abstract
The high energy demand of the evolving world opens the door to develop more sustainable and environmentally friendly energy sources. Oxygen reduction reaction (ORR) is a promising candidate, being the 2e- pathway of great interest for the green production of hydrogen peroxide. Metal-free covalent organic frameworks (COFs) electrocatalysts present a suitable alternative to substitute the noble-metals more commonly employed in this application. However, the lability of the linkages building up the framework raises an issue for their long-term use and application in aggressive media. Herein, a stable amide-linked COF is reported through post-synthetic modification of a previously reported imine-linked COF proven to be effective as an electrocatalyst, enhancing its chemical stability and electrochemical response. It is found that after the linkage transformation, the new electrocatalyst displays a higher selectivity toward the H2O2 production (98.5%) and an enhanced turnover frequency of 0.155 s-1, which is among the bests reported to date for metal-free and COF based electrocatalysts. The results represent a promising step forward for metal-free non pyrolyzed electrocatalysts, improving their properties through post-synthetic linkage modification for long-term operation.
Collapse
Affiliation(s)
- Miguel Jiménez-Duro
- Facultad de CC. Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| | - Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco-Crta. Colmenar, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Campus de Cantoblanco, Madrid, 28049, Spain
| | - Marcos Martínez-Fernández
- Facultad de CC. Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| | - José I Martínez
- Departamento de Nanoestructuras, Superficies, Recubrimientos y Astrofísica Molecular, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, 28049, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco-Crta. Colmenar, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Campus de Cantoblanco, Madrid, 28049, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia) Cantoblanco, Madrid, 28049, Spain
| | - José L Segura
- Facultad de CC. Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| |
Collapse
|
25
|
Zhang L, Wang X, Gong C, Sun W, Lu Z. ZIF-Co 3O 4@ZIF-Derived Urchin-Like Hierarchically Porous Carbon as Efficient Bifunctional Oxygen Electrocatalysts. ChemistryOpen 2024; 13:e202400057. [PMID: 38856973 PMCID: PMC11467739 DOI: 10.1002/open.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Co3O4 nanoparticles were sandwiched into interlayers between ZIF-8 and ZIF-67 to form ZIF-Co3O4@ZIF precursors. Pyrolysis of ZIF-Co3O4@ZIF yielded an urchin-like hierarchically porous carbon (Co@CNT/NC), the thorns of which were carbon nanotubes embedded Co nanoparticles. With large specific surface area and hierarchically porous structure, as-prepared Co@CNT/NC exhibited excellent bifunctional oxygen electrocatalytic performances. It has good ORR performance with E1/2 of 0.85 V, which exceeds the Pt/C half-wave potential (E1/2=0.83 V). In addition, Co@CNT/NC has an OER performance close to that of RuO2. To further demonstrate the effect of Co modifying on the properties, the samples were subjected to acid washing treatment. Co-based nanoparticles were proved to After acid washing, there was obvious loss of Co particles in Co@CNT/NC, resulting in poor oxygen electrocatalysis. So, the pyrolysis products of ZIF-8-Co3O4@ZIF-67 retained large specific surface area and porous structure can be retained, and on the other hand, the carbon tube structure and original polyhedron framework. Besides, existence of Co nanoparticle@carbon nanotube provided more active sites and improved the ORR and OER performances.
Collapse
Affiliation(s)
- Lingling Zhang
- Haidu collegeQingdao Agriculture UniversityYantai265200China
| | - Xia Wang
- Haidu collegeQingdao Agriculture UniversityYantai265200China
| | - Chong Gong
- College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Weiyan Sun
- Haidu collegeQingdao Agriculture UniversityYantai265200China
| | - Zihan Lu
- Haidu collegeQingdao Agriculture UniversityYantai265200China
| |
Collapse
|
26
|
Chen X, Cai W, Wang L, Wang B. Pore-Specific Anisotropic Etching of Zeolitic Imidazolate Frameworks by Carboxylic Acid Vapors. J Am Chem Soc 2024; 146:23138-23145. [PMID: 39018420 DOI: 10.1021/jacs.4c05044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Anisotropic etching is a powerful way to customize metal-organic frameworks with advanced nanostructures, but it is still in its infancy. Herein, we proposed an unprecedented etching strategy that created anisotropic hollow structures in various zeolitic imidazolate framework (ZIF) nano/single crystals via pore-specific carving. The etching occurred through a newly discovered gas-solid reaction where carboxylic acid vapors bind with ligands in ZIFs at room temperature to form ionic liquid (IL). A series of experiments were conducted to decode the origin of anisotropy and the "hollowing out" effect. We found that large pore openings on {111} facets provide access for the entry of carboxylic acid vapors and the outflow of the IL, resulting in pore-dependent anisotropy features. The unique "etching after adsorption" mechanism and the adsorption capacity of the IL enable acid vapors to hollow out nanocrystals and even single crystals. By altering carboxylic acids and ligands in ZIFs, the etching process can be precisely tuned from the inside out or the outside in. This new method demonstrates broad universality and brings unprecedented morphologies and complexities. It may offer great opportunities for achieving purposeful modification of ZIFs and the rational construction of intricate architectures.
Collapse
Affiliation(s)
- Xianchun Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenjun Cai
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
27
|
Xu J, Xie Y, Yao Q, Lv L, Chu H. Advances in sustainable nano-biochar: precursors, synthesis methods and applications. NANOSCALE 2024; 16:15009-15032. [PMID: 39041285 DOI: 10.1039/d4nr01694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Nano-biochar, characterized by its environmentally friendly nature and unique nanostructure, offers a promising avenue for sustainable carbon materials. With its small particle size, large specific surface area, abundant functional groups and tunable pore structure, nano-biochar stands out due to its distinct physical and chemical properties compared to conventional biochar. This paper aims to provide an in-depth exploration of nano-biochar, covering its sources, transformation mechanisms, properties, applications, and areas requiring further research. The discussion begins with an overview of biomass sources for nano-biochar production and the conversion processes involved. Subsequently, primary synthesis methods and strategies for functionalization enhancement are examined. Furthermore, the applications of nano-biochar in catalysis, energy storage, and pollutant adsorption and degradation are explored and enhanced in various fields.
Collapse
Affiliation(s)
- Junchao Xu
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| | - Yiming Xie
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| | - Qingdong Yao
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| | - Li Lv
- College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, Zhejiang Province, PR China
| | - Huaqiang Chu
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| |
Collapse
|
28
|
Kundu J, Kwon T, Lee K, Choi S. Exploration of metal-free 2D electrocatalysts toward the oxygen electroreduction. EXPLORATION (BEIJING, CHINA) 2024; 4:20220174. [PMID: 39175883 PMCID: PMC11335471 DOI: 10.1002/exp.20220174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 08/24/2024]
Abstract
The advancement of economical and readily available electrocatalysts for the oxygen reduction reaction (ORR) holds paramount importance in the advancement of fuel cells and metal-air batteries. Recently, 2D non-metallic materials have obtained substantial attention as viable alternatives for ORR catalysts due to their manifold advantages, encompassing low cost, ample availability, substantial surface-to-volume ratio, high conductivity, exceptional durability, and competitive activity. The augmented ORR performances observed in metal-free 2D materials typically arise from heteroatom doping, defects, or the formation of heterostructures. Here, the authors delve into the realm of electrocatalysts for the ORR, pivoting around metal-free 2D materials. Initially, the merits of metal-free 2D materials are explored and the reaction mechanism of the ORR is dissected. Subsequently, a comprehensive survey of diverse metal-free 2D materials is presented, tracing their evolutionary journey from fundamental concepts to pragmatic applications in the context of ORR. Substantial importance is given on the exploration of various strategies for enhancing metal-free 2D materials and assessing their impact on inherent material performance, including electronic properties. Finally, the challenges and future prospects that lie ahead for metal-free 2D materials are underscored, as they aspire to serve as efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Joyjit Kundu
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoulRepublic of Korea
| | - Sang‐Il Choi
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
29
|
Zhang W, van Dijk B, Wu L, Maheu C, Tudor V, Hofmann JP, Jiang L, Hetterscheid D, Schneider GF. Role of Vacancy Defects and Nitrogen Dopants for the Reduction of Oxygen on Graphene. ACS Catal 2024; 14:11065-11075. [PMID: 39050903 PMCID: PMC11264207 DOI: 10.1021/acscatal.4c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Disentangling the roles of nitrogen dopants and vacancy defects (VG) in metal-free carbon catalysts for the oxygen reduction reaction (ORR) ideally requires studying both the dopants and defects separately. Here, we systematically introduced nitrogen dopants and VGs via plasma treatment into the basal plane of monolayer graphene as a model carbon catalyst to investigate their specific roles in ORR catalysis. An increased defect density including dopants is positively associated with boosted ORR activity. Nitrogen dopants are responsible for an improved current via a 2e- pathway generating hydroperoxide, while VGs result in enhanced kinetics and water production. We therefore infer that VGs in graphene are responsible for the improved ORR kinetics, while nitrogen dopants majorly influence the selectivity of ORR reaction products. The nitrogen dopants without VGs lead to a higher overpotential compared with the pristine graphene. Instead of the attribution of the ORR active site to only nitrogen species in carbon materials, the improved ORR activity in nitrogen-doped carbon materials should be attributed to the active sites constituted of VGs, oxygen dopants, and nitrogen dopants. Through this work, we provide important insights into the intertwined roles of nitrogen and VGs as well as oxygen dopants in nitrogen-doped metal-free catalysts for a more efficient ORR.
Collapse
Affiliation(s)
- Weizhe Zhang
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Bas van Dijk
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Longfei Wu
- Department
of Chemical Engineering and Chemistry, Inorganic Materials & Catalysis, Eindhoven University of Technology, Groene Loper 5, 5612AE Eindhoven, The Netherlands
| | - Clément Maheu
- Surface
Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße
4, 64287 Darmstadt, Germany
| | - Viorica Tudor
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Jan Philipp Hofmann
- Department
of Chemical Engineering and Chemistry, Inorganic Materials & Catalysis, Eindhoven University of Technology, Groene Loper 5, 5612AE Eindhoven, The Netherlands
- Surface
Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße
4, 64287 Darmstadt, Germany
| | - Lin Jiang
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- School
of Microelectronics, Shanghai University, Chengzhong Road 20, 201800 Shanghai, China
| | - Dennis Hetterscheid
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Grégory F. Schneider
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
30
|
Wang P, Xia W, Liu N, Pei W, Zhou S, Tu Y, Zhao J. p-block germanenes as a promising electrocatalysts for the oxygen reduction reaction. J Chem Phys 2024; 160:234705. [PMID: 38884409 DOI: 10.1063/5.0211907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
The oxygen reduction reaction (ORR), a pivotal process in hydrogen fuel cells crucial for enhancing fuel cell performance through suitable catalysts, remains a challenging aspect of development. This study explores the catalytic potential of germanene on Al (111), taking advantage of the successful preparation of stable reconstructed germanene layers on Al (111) and the excellent catalytic performance exhibited by germanium-based nanomaterials. Through first-principles calculations, we demonstrate that the O2 molecule can be effectively activated on both freestanding and supported germanene nanosheets, featuring kinetic barriers of 0.40 and 0.04 eV, respectively. The presence of the Al substrate not only significantly enhances the stability of the reconstructed germanene but also preserves its exceptional ORR catalytic performance. These theoretical findings offer crucial insights into the substrate-mediated modulation of germanene stability and catalytic efficiency, paving the way for the design of stable and efficient ORR catalysts for future applications.
Collapse
Affiliation(s)
| | - Weizhi Xia
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Nanshu Liu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Si Zhou
- School of Physics, South China Normal University, Guangzhou 510631, China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006 China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jijun Zhao
- School of Physics, South China Normal University, Guangzhou 510631, China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006 China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
31
|
Deng Z, Liu W, Zhang J, Bai S, Liu C, Zhang M, Peng C, Xu X, Jia J. Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn-Air Batteries. Molecules 2024; 29:2349. [PMID: 38792210 PMCID: PMC11123740 DOI: 10.3390/molecules29102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
A Fe-Co dual-metal co-doped N containing the carbon composite (FeCo-HNC) was prepared by adjusting the ratio of iron to cobalt as well as the pyrolysis temperature with the assistance of functionalized silica template. Fe1Co-HNC, which was formed with 1D carbon nanotubes and 2D carbon nanosheets including a rich mesoporous structure, exhibited outstanding oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities. The ORR half-wave potential is 0.86 V (vs. reversible hydrogen electrode, RHE), and the OER overpotential is 0.76 V at 10 mA cm-2 with the Fe1Co-HNC catalyst. It also displayed superior performance in zinc-air batteries. This method provides a promising strategy for the fabrication of efficient transition metal-based carbon catalysts.
Collapse
Affiliation(s)
- Ziwei Deng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, China; (Z.D.); (J.Z.); (S.B.); (C.L.); (M.Z.); (C.P.)
| | - Wei Liu
- Jiangmen Customs District Technology Center, Jiangmen 529020, China;
| | - Junyuan Zhang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, China; (Z.D.); (J.Z.); (S.B.); (C.L.); (M.Z.); (C.P.)
| | - Shuli Bai
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, China; (Z.D.); (J.Z.); (S.B.); (C.L.); (M.Z.); (C.P.)
| | - Changyu Liu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, China; (Z.D.); (J.Z.); (S.B.); (C.L.); (M.Z.); (C.P.)
| | - Mengchen Zhang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, China; (Z.D.); (J.Z.); (S.B.); (C.L.); (M.Z.); (C.P.)
| | - Chao Peng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, China; (Z.D.); (J.Z.); (S.B.); (C.L.); (M.Z.); (C.P.)
| | - Xiaolong Xu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, China; (Z.D.); (J.Z.); (S.B.); (C.L.); (M.Z.); (C.P.)
| | - Jianbo Jia
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, China; (Z.D.); (J.Z.); (S.B.); (C.L.); (M.Z.); (C.P.)
| |
Collapse
|
32
|
Jia S, Yu H, Na J, Liu Z, Lv K, Ren Z, Sun S, Shao Z. Efficient Electrosynthesis of Hydrogen Peroxide Using Oxygen-Doped Porous Carbon Catalysts at Industrial Current Densities. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659341 DOI: 10.1021/acsami.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metal-free carbon catalysts (MFCCs) are one of the commonly used catalysts for electrocatalytic two-electron oxygen reduction (2e- ORR) synthesis of hydrogen peroxide (H2O2). Oxygen doping is an effective means to improve the performance of MFCCs, but the performance of oxygen-doped carbon catalysts is still not high enough, and the contribution of different oxygen functional groups (OFGs) to the catalytic performance is still inconclusive. In this paper, carbon-based catalysts with different oxygen contents and ratios of OFGs were prepared, and the high 2e- ORR activity of COOH + C-OH was demonstrated by combining the results of experiments and theoretical calculations. The prepared oxygen-doped carbon-based catalyst C-0.1M80 achieved an onset potential of 0.795 V (vs RHE), a selectivity of up to 98.2% (0.6 V vs RHE), and a H2O2 oxidation current of 1.33 mA cm-2 (0.5 V vs RHE) in a rotating ring-disk electrode test (0.1 M KOH solution), which was an outstanding performance in MFCCs. In a solid electrolyte flow cell, C-0.1M80 achieved a Faraday efficiency of 97.5% at 200 mA cm-2 with a corresponding H2O2 production rate of 123.7 mg cm-2 h-1. In addition, a flow cell stability test was performed at an industrial current density (100 mA cm-2) with an astounding 200 h of uninterrupted operation, also achieving an outstanding average Faradaic efficiency (95.8%).
Collapse
Affiliation(s)
- Senyuan Jia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingchen Na
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicheng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiqiu Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Ren
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shucheng Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhigang Shao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
33
|
Qu X, Yan Y, Zhang Z, Tian B, Yin S, Cheng X, Huang R, Jiang Y, Sun S. Regulation Strategies for Fe-N-C and Co-N-C Catalysts for the Oxygen Reduction Reaction. Chemistry 2024:e202304003. [PMID: 38573800 DOI: 10.1002/chem.202304003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs) and alkaline membrane fuel cells (AEMFCs) have received great attention as energy devices of the next generation. Accelerating oxygen reduction reaction (ORR) kinetics is the key to improve PEMFC and AEMFC performance. Platinum-based catalysts are the most widely used catalysts for the ORR, but their high price and low abundance limit the commercialization of fuel cells. Non-noble metal-nitrogen-carbon (M-N-C) is considered to be the most likely material class to replace Pt-based catalysts, among which Fe-N-C and Co-N-C have been widely studied due to their excellent intrinsic ORR performance and have made great progress in the past decades. With the improvement of synthesis technology and a deeper understanding of the ORR mechanism, some reported Fe-N-C and Co-N-C catalysts have shown excellent ORR activity close to that of commercial Pt/C catalysts. Inspired by the progress, regulation strategies for Fe-N-C and Co-N-C catalysts are summarized in this Review from 5 perspectives: (1) coordinated atoms, (2) environmental heteroatoms and defects, (3) dual-metal active sites, (4) metal-based particle promoters, and (5) curved carbon layers. We also make suggestions on some challenges facing Fe-N-C and Co-N-C research.
Collapse
Affiliation(s)
- Ximing Qu
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, 361000, Xiamen, China
| | - Yani Yan
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, 361000, Xiamen, China
| | - Zeling Zhang
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, 361000, Xiamen, China
| | - Benjun Tian
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, 361000, Xiamen, China
| | - Shuhu Yin
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| | - Xiaoyang Cheng
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| | - Rui Huang
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| | - Yanxia Jiang
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| | - Shigang Sun
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| |
Collapse
|
34
|
Onajah S, Sarkar R, Islam MS, Lalley M, Khan K, Demir M, Abdelhamid HN, Farghaly AA. Silica-Derived Nanostructured Electrode Materials for ORR, OER, HER, CO 2RR Electrocatalysis, and Energy Storage Applications: A Review. CHEM REC 2024; 24:e202300234. [PMID: 38530060 DOI: 10.1002/tcr.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords "silica", "electrocatalysts", "ORR", "OER", "HER", "HOR", "CO2RR", "batteries", and "supercapacitors". The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.
Collapse
Affiliation(s)
- Sammy Onajah
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Rajib Sarkar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, 23284-2006, United States
| | - Md Shafiul Islam
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
| | - Marja Lalley
- Department of Chemistry, University of Chicago, Chicago, Illinois, 60637, United States
| | - Kishwar Khan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- TUBITAK Marmara Research Center, Material Institute, Gebze, 41470, Turkey
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71516, Egypt
- Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Ahmed A Farghaly
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
35
|
Li JR, Liu MX, Liu X, Yu XH, Li QZ, Sun Q, Sun T, Cao S, Hou CC. The Recent Progress of Oxygen Reduction Electrocatalysts Used at Fuel Cell Level. SMALL METHODS 2024; 8:e2301249. [PMID: 38012517 DOI: 10.1002/smtd.202301249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) are gaining significant interest as an attractive substitute for traditional fuel cells, with higher energy density, lower environmental pollution, and better operation efficiency. However, the cathode reaction, i.e., the oxygen reduction reaction (ORR), is widely proved to be inefficient, and therefore an obstacle to the widespread development of PEMFCs. The requirement for affordable highly-efficient ORR catalysts is extremely urgent to be met, especially at fuel cell level. Unfortunately, most previous reports focus on the ORR performance at rotating disk electrodes (RDE) level instead of membrane electrode assembly (MEA) level, making it harder to evaluate ORR catalysts operating under real vehicle conditions. Obviously, it is extremely necessary to develop an in-depth understanding of the structure-activity relationship of highly-efficient ORR catalysts applied at MEA level. In this work, an overview of the latest advances in ORR catalysts is provided with an emphasis on their performance at MEA level, hoping to cover the novel and systemic insights for innovative and efficient ORR catalyst design and applications in PEMFCs.
Collapse
Affiliation(s)
- Jin-Rong Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Ming-Xu Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiang-Hui Yu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qin-Zhu Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qi Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shuang Cao
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Chun-Chao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
36
|
Tian Z, Zhang Q, Liu T, Chen Y, Antonietti M. Emerging Two-Dimensional Carbonaceous Materials for Electrocatalytic Energy Conversions: Rational Design of Active Structures through High-Temperature Chemistry. ACS NANO 2024; 18:6111-6129. [PMID: 38368617 DOI: 10.1021/acsnano.3c12198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Electrochemical energy conversion and storage technologies involving controlled catalysis provide a sustainable way to handle the intermittency of renewable energy sources, as well as to produce green chemicals/fuels in an ecofriendly manner. Core to such technology is the development of efficient electrocatalysts with high activity, selectivity, long-term stability, and low costs. Here, two-dimensional (2D) carbonaceous materials have emerged as promising contenders for advancing the chemistry in electrocatalysis. We review the emerging 2D carbonaceous materials for electrocatalysis, focusing primarily on the fine engineering of active structures through thermal condensation, where the design, fabrication, and mechanism investigations over different types of active moieties are summarized. Interestingly, all the recipes creating two-dimensionality on the carbon products also give specific electrocatalytic functionality, where the special mechanisms favoring 2D growth and their consequences on materials functionality are analyzed. Particularly, the structure-activity relationship between specific heteroatoms/defects and catalytic performance within 2D metal-free electrocatalysts is highlighted. Further, major challenges and opportunities for the practical implementation of 2D carbonaceous materials in electrocatalysis are summarized with the purpose to give future material design guidelines for attaining desirable catalytic structures.
Collapse
Affiliation(s)
- Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
37
|
Tang Z, Li Y, Shi L, Zhang K, Ji Y, Wang X, Yao Y, Liu X, Wang D, Nie K, Xie J, Yang Z, Yan YM. Cu-Modified Palladium Catalysts: Boosting Formate Electrooxidation via Interfacially OH ad-Driven H ad Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8742-8750. [PMID: 38340053 DOI: 10.1021/acsami.3c16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Direct formate fuel cells have gained traction due to their eco-friendly credentials and inherent safety. However, their potential is hampered by the kinetic challenges of the formate oxidation reaction (FOR) on Pd-based catalysts, chiefly due to the unfavorable adsorption of hydrogen species (Had). These species clog the active sites, hindering efficient catalysis. Here, we introduce a straightforward strategy to remedy this bottleneck by incorporating Pd with Cu to expedite the removal of Pd-Had in alkaline media. Notably, Cu plays a pivotal role in bolstering the concentration of hydroxyl adsorbates (OHad) on the surface of catalyst. These OHad species can react with Had, effectively unblocking the active sites for FOR. The as-synthesized catalyst of PdCu/C exhibits a superior FOR performance, boasting a remarkable mass activity of 3.62 A mg-1. Through CO-stripping voltammetry, we discern that the presence of Cu in Pd markedly speeds up the formation of adsorbed hydroxyl species (OHad) at diminished potentials. This, in turn, aids the oxidative removal of Pd-Had, leveraging a synergistic mechanism during FOR. Density functional theory computations further reveal intensified interactions between adsorbed oxygen species and intermediates, underscoring that the Cu-Pd interface exhibits greater oxyphilicity compared to pristine Pd. In this study, we present both experimental and theoretical corroborations, unequivocally highlighting that the integrated copper species markedly amplify the generation of OHad, ensuring efficient removal of Had. This work paves the way, shedding light on the strategic design of high-performing FOR catalysts.
Collapse
Affiliation(s)
- Zheng Tang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yongjia Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaixin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoxuan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yebo Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dewei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
38
|
Yao Y, Zhuo H, Xu J, Yang X, Huang Y. Tunable internal structure carbon sphere synthesis driven by water-solubility and its application in gas separation. RSC Adv 2024; 14:5479-5491. [PMID: 38352683 PMCID: PMC10862231 DOI: 10.1039/d3ra08430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
A method for synthesizing carbon spheres with a tunable particle size and internal structure from polyfurfuryl alcohol (PFA) was developed. By tuning the concentration of a structure directing agent (polypropylene glycol, PPG), we found a mechanism to tune the inner architecture of carbon spheres driven by water-solubility. A mixture of PFA and PPG transferred from the "water-in-oil" phase to an "oil-in-water" phase with an increasing content of PPG because of a difference in water-solubility between furfuryl alcohol (FA), PFA, and PPG. As a result, the internal morphology of the carbon sphere evolved from a "cheese-like" to a "pomegranate-like" structure, which was accompanied by an increasing specific surface area and pore volume. Furthermore, the separation of C2H2 and C2H3Cl was tested on the 25%-FACS (furfuryl alcohol-based carbon sphere) sample under different activation treatments with CO2 or CO2-NH3, with the coexisting "cheese-like" and "pomegranate-like" inner structures, owing to its moderate pore volume and mechanical strength. The maximum adsorption capacity of C2H3Cl reached 0.77 mmol g-1, while C2H2 was adsorbed in significantly lower quantities. It is believed that the high polarizability and high dipole moment of the C2H3Cl molecule primarily contribute to the excellent performance of C2H2 and C2H3Cl separation, and the introduction of polar N-containing groups on the carbon skeleton further promotes C2H3Cl adsorption.
Collapse
Affiliation(s)
- Yaqi Yao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences No. 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongying Zhuo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences No. 457 Zhongshan Road Dalian 116023 China
| | - Jinming Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences No. 457 Zhongshan Road Dalian 116023 China
| | - Xiaofeng Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences No. 457 Zhongshan Road Dalian 116023 China
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences No. 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
39
|
Jiang W, Zhuo Z, Zhang X, Luo H, He L, Yang Y, Wen Y, Huang Z, Wang P. Smartphone-based electrochemical sensor for cost-effective, rapid and on site detection of chlorogenic acid in herbs using biomass-derived hierarchically porous carbon synthesized by a soft-hard dual template method. Food Chem 2024; 431:137165. [PMID: 37598652 DOI: 10.1016/j.foodchem.2023.137165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
To achieve excellent germplasm resource screening and ensure the quality control of herbal tea raw material, it is important to establish a cost-effective, rapid, and on site quantitative detection method for their bioactive constituents. We developed a smartphone-operated sensor for electrochemical detection of chlorogenic acid (CGA) using hierarchically porous carbon (DSiFPC), synthesized through a soft-hard dual template strategy with tannin acid as a carbon source, silica colloid as a hard template, and Pluronic F127 as a soft template. The DSiFPC modified glassy carbon electrode sensor showed excellent electrocatalytic ability towards CGA, with a wide linear range of 0.03-1 μM and a low limit of detection of 6.2 nM. It was successfully applied for detecting CGA in dried flowers of Lonicera japonica. Furthermore, a portable sensor utilizing a DSiFPC modified screen-printed electrode was employed for on site detection of CGA in fresh Eucommia ulmoides leaves, yielding satisfactory recoveries.
Collapse
Affiliation(s)
- Wanjun Jiang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, PR China
| | - Zhonghui Zhuo
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, PR China
| | - Xiaohua Zhang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hai Luo
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, PR China
| | - Lu He
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, PR China
| | - Yuling Yang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, PR China
| | - Yangping Wen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Zhong Huang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Peng Wang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, PR China.
| |
Collapse
|
40
|
Feng X, Chen G, Cui Z, Qin R, Jiao W, Huang Z, Shang Z, Ma C, Zheng X, Han Y, Huang W. Engineering Electronic Structure of Nitrogen-Carbon Sites by sp 3 -Hybridized Carbon and Incorporating Chlorine to Boost Oxygen Reduction Activity. Angew Chem Int Ed Engl 2024; 63:e202316314. [PMID: 38032121 DOI: 10.1002/anie.202316314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Development of efficient and easy-to-prepare low-cost oxygen reaction electrocatalysts is essential for widespread application of rechargeable Zn-air batteries (ZABs). Herein, we mixed NaCl and ZIF-8 by simple physical milling and pyrolysis to obtain a metal-free porous electrocatalyst doped with Cl (mf-pClNC). The mf-pClNC electrocatalyst exhibits a good oxygen reduction reaction (ORR) activity (E1/2 =0.91 V vs. RHE) and high stability in alkaline electrolyte, exceeding most of the reported transition metal carbon-based electrocatalysts and being comparable to commercial Pt/C electrocatalysts. Likewise, the mf-pClNC electrocatalyst also shows state-of-the-art ORR activity and stability in acidic electrolyte. From experimental and theoretical calculations, the better ORR activity is most likely originated from the fact that the introduced Cl promotes the increase of sp3 -hybridized carbon, while the sp3 -hybridized carbon and Cl together modify the electronic structure of the N-adjacent carbons, as the active sites, while NaCl molten-salt etching provides abundant paths for the transport of electrons/protons. Furthermore, the liquid rechargeable ZAB using the mf-pClNC electrocatalyst as the cathode shows a fulfilling performance with a peak power density of 276.88 mW cm-2 . Flexible quasi-solid-state rechargeable ZAB constructed with the mf-pClNC electrocatalyst as the cathode exhibits an exciting performance both at low, high and room temperatures.
Collapse
Affiliation(s)
- Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ziang Shang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
41
|
Zhang X, Han G, Zhu S. Flash Nitrogen-Doped Carbon Nanotubes for Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305406. [PMID: 37702139 DOI: 10.1002/smll.202305406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Indexed: 09/14/2023]
Abstract
In recent years, nitrogen-doped carbons show great application potentials in the fields of electrochemical energy storage and conversion. Here, the ultrafast and green preparation of nitrogen-doped carbon nanotubes (N-CNTs) via an efficient flash Joule heating method is reported. The precursor of 1D core-shell structure of CNT@polyaniline is first synthesized using an in situ polymerization method and then rapidly conversed into N-CNTs at ≈1300 K within 1 s. Electrochemical tests reveal the desirable capacitive property and oxygen catalytic activity of the optimized N-CNT material. It delivers an improved area capacitance of 101.7 mF cm-2 at 5 mV s-1 in 1 m KOH electrolyte, and the assembled symmetrical supercapacitor shows an energy density of 1.03 µWh cm-2 and excellent cycle stability over 10 000 cycles. In addition, the flash N-CNTs exhibit impressive catalytic performance toward oxygen reduction reaction with a half-wave potential of 0.8 V in alkaline medium, comparable to the sample prepared by the conventional long-time pyrolysis method. The Zn-air battery presents superior charge-discharge ability and long-term durability relative to commercial Pt/C catalyst. These remarkable electrochemical performances validate the superiorities of the Joule heating method in preparing the heteroatom-doped carbon materials for wide applications.
Collapse
Affiliation(s)
- Xuehuan Zhang
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Gaoyi Han
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan, 030012, P. R. China
| | - Sheng Zhu
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan, 030012, P. R. China
- Institute of Advanced Functional Materials and Devices, Shanxi University, Taiyuan, 030031, P. R. China
| |
Collapse
|
42
|
Persky Y, Yurko Y, Snitkoff-Sol RZ, Zion N, Elbaz L. Tuning the performance of Fe-porphyrin aerogel-based PGM-free oxygen reduction reaction catalysts in proton exchange membrane fuel cells. NANOSCALE 2023; 16:438-446. [PMID: 38083971 DOI: 10.1039/d3nr04315k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Fe-N-C catalysts are currently the leading candidates to replace Pt-based catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. To maximize their activity, it is necessary to optimize their structure to allow high active site density on one hand, and hierarchical porous structure that will allow good mass transport of reactants and products to and from the active sites on the other hand. Hence, the hierarchical structure of the catalyst plays an important role in the balance between the electrochemical active site density and the mass transport resistance. Aerogels were synthesized in this work to study the interplay between these two parameters. Aerogels are covalent organic frameworks with ultra-low density, high porosity, and large surface area. The relative ease of tuning the composition and pore structure of aerogels make them prominent candidates for catalysis. Herein, we report on a tunable Fe-N-C catalyst based on an Fe porphyrin aerogel, which shows high electrocatalytic oxygen reduction reaction activity with tunable hierarchical pore structure and studied the influence of the porous structure on the overall performance in proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Yeela Persky
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Yan Yurko
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Rifael Z Snitkoff-Sol
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Noam Zion
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Lior Elbaz
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
43
|
Lin L, Huang L, Wu C, Gao Y, Miao N, Wu C, Marshall AT, Zhao Y, Wang J, Chen J, Dou S, Wallace GG, Huang W. Lattice Distortion and H-passivation in Pure Carbon Electrocatalysts for Efficient and Stable Two-electron Oxygen Reduction to H 2 O 2. Angew Chem Int Ed Engl 2023; 62:e202315182. [PMID: 37872352 DOI: 10.1002/anie.202315182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
The exploration of inexpensive and efficient catalysts for oxygen reduction reaction (ORR) is crucial for chemical and energy industries. Carbon materials have been proved promising with different catalysts enabling 2 and 4e- ORR. Nevertheless, their ORR activity and selectivity is still complex and under debate in many cases. Many structures of these active carbon materials are also chemically unstable for practical implementations. Unlike the well-discussed structures, this work presents a strategy to promote efficient and stable 2e- ORR of carbon materials through the synergistic effect of lattice distortion and H-passivation (on the distorted structure). We show how these structures can be formed on carbon cloth, and how the reproducible chemical adsorption can be realized on these structures for efficient and stable H2 O2 production. The work here gives not only new understandings on the 2e- ORR catalysis, but also the robust catalyst which can be directly used in industry.
Collapse
Affiliation(s)
- Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350017, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Chang Wu
- Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Yu Gao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350017, China
| | - Naihua Miao
- Center for Integrated Computational Materials Engineering, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Chao Wu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Aaron T Marshall
- Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Yi Zhao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350017, China
| | - Jiazhao Wang
- Institute for Superconducting & Electronic Materials (ISEM), Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2522, Australia
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute (IPRI), Australia Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2522, Australia
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute (IPRI), Australia Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2522, Australia
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350017, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
44
|
Liu Z, Lan J, Xia X, Ren T, Wang X, Guo R, Xu W, Pan S. Low-cost flexible textile electrocatalyst for overall water splitting. Chem Commun (Camb) 2023; 59:13883-13886. [PMID: 37933571 DOI: 10.1039/d3cc04506d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Through the braidability of cotton fiber and the richness of surface functional groups, cotton fiber can be woven into any shape, and catalytically active centers can be stably anchored on the fibers. During the electrocatalytic overall water splitting (OWS) process, catalyst shedding and activity reduction can be effectively avoided.
Collapse
Affiliation(s)
- Zhen Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jiamin Lan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tong Ren
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xuxu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| | - Weijian Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
45
|
Li W, Wang J, Jia C, Chen J, Wen Z, Huang A. Covalent organic framework-derived fluorine, nitrogen dual-doped carbon as metal-free bifunctional oxygen electrocatalysts. J Colloid Interface Sci 2023; 650:275-283. [PMID: 37413861 DOI: 10.1016/j.jcis.2023.06.210] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
The construction of heteroatom-doped metal-free carbon catalysts with bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is highly desired for Zn-air batteries, but remains a great challenge owing to the sluggish kinetics of OER and ORR. Herein, a self-sacrificing template engineering strategy was employed to fabricate fluorine (F), nitrogen (N) co-doped porous carbon (F-NPC) catalyst by direct pyrolysis of F, N containing covalent organic framework (F-COF). The predesigned F and N elements were integrated into the skeletons of COF precursor, thus achieving uniformly distributed heteroatom active sites. The introduction of F is beneficial for the formation of edge-defects, contributing to the enhancement of the electrocatalytic activity. Attributing to the porous feature, abundant defect sites induced by F doping, as well as the strong synergistic effect between N and F atoms to afford a high intrinsic catalytic activity, the resulting F-NPC catalyst exhibits excellent bifunctional catalytic activities for both ORR and OER in alkaline mediums. Furthermore, the assembled Zn-air battery with F-NPC catalyst shows a high peak power density of 206.3 mW cm-2 and great stability, surpassing the commercial Pt/C + RuO2 catalysts.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jingyun Wang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Chunguang Jia
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002, China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002, China.
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002, China.
| | - Aisheng Huang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Road, Chongming District, Shanghai 202162, China.
| |
Collapse
|
46
|
Li N, Guo K, Li M, Shao X, Du Z, Bao L, Yu Z, Lu X. Fullerene Fragment Restructuring: How Spatial Proximity Shapes Defect-Rich Carbon Electrocatalysts. J Am Chem Soc 2023. [PMID: 37922470 DOI: 10.1021/jacs.3c06456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Fullerene transformation emerges as a powerful route to construct defect-rich carbon electrocatalysts, but the carbon bond breakage and reformation that determine the defect states remain poorly understood. Here, we explicitly reveal that the spatial proximity of disintegrated fullerene imposes a crucial impact on the bond reformation and electrocatalytic properties. A counterintuitive hard-template strategy is adopted to enable the space-tuned fullerene restructuring by calcining impregnated C60 not only before but also after the removal of rigid silica spheres (∼300 nm). When confined in the SiO2 nanovoids, the adjacent C60 fragments form sp3 bonding with adverse electron transfer and active site exposure. In contrast, the unrestricted fragments without SiO2 confinement reconnect at the edges to form sp2-hybridized nanosheets while retaining high-density intrinsic defects. The optimized catalyst exhibits robust alkaline oxygen reduction performance with a half-wave potential of 0.82 V via the 4e- pathway. Copper poisoning affirms the intrinsic defects as the authentic active sites. Density functional theory calculations further substantiate that pentagons in the basal plane lead to localized structural distortion and thus exhibit significantly reduced energy barriers for the first O2 dissociation step. Such space-regulated fullerene restructuring is also verified by heating C60 crystals confined in gallium liquid and a quartz tube.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Xiudi Shao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiling Du
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
47
|
Yu J, Su C, Shang L, Zhang T. Single-Atom-Based Oxygen Reduction Reaction Catalysts for Proton Exchange Membrane Fuel Cells: Progress and Perspective. ACS NANO 2023; 17:19514-19525. [PMID: 37812403 DOI: 10.1021/acsnano.3c06522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Single-atom catalysts (SACs) are regarded as promising non-noble-metal alternatives for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells due to their high atom utilization efficiency and excellent catalytic properties. However, the insufficient long-term stability issues of SACs under the working conditions seriously hinder their practical application. In this perspective, the recent progress of SACs with optimized ORR catalytic activity is first reviewed. Then, the possible degradation mechanisms of SACs in the ORR process and effective strategies for improving their ORR durability are summarized. Finally, some challenges and opportunities are proposed to develop stable single-atom-based ORR electrocatalysts in the future.
Collapse
Affiliation(s)
- Jianmin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, People's Republic of China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, People's Republic of China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
48
|
Zhang Q, Chen Y, Pan J, Daiyan R, Lovell EC, Yun J, Amal R, Lu X. Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302338. [PMID: 37267930 DOI: 10.1002/smll.202302338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Indexed: 06/04/2023]
Abstract
Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.
Collapse
Affiliation(s)
- Qingran Zhang
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jian Pan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jimmy Yun
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
- Qingdao International Academician Park Research Institute, Qingdao, Shandong, 266000, China
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
49
|
Seselj N, Alfaro SM, Bompolaki E, Cleemann LN, Torres T, Azizi K. Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302207. [PMID: 37151102 DOI: 10.1002/adma.202302207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Indexed: 05/09/2023]
Abstract
A constant increase in global emission standard is causing fuel cell (FC) technology to gain importance. Over the last two decades, a great deal of research has been focused on developing more active catalysts to boost the performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC), as well as their durability. Due to material degradation at high-temperature conditions, catalyst design becomes challenging. Two main approaches are suggested: (i) alloying platinum (Pt) with low-cost transition metals to reduce Pt usage, and (ii) developing novel catalyst support that anchor metal particles more efficiently while inhibiting corrosion phenomena. In this comprehensive review, the most recent platinum group metal (PGM) and platinum group metal free (PGM-free) catalyst development is detailed, as well as the development of alternative carbon (C) supports for HT-PEMFCs.
Collapse
Affiliation(s)
- Nedjeljko Seselj
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Silvia M Alfaro
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | | | - Lars N Cleemann
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Tomas Torres
- Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, 28049, Spain
- IMDEA-Nanociencia, c/Faraday, 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| | - Kobra Azizi
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| |
Collapse
|
50
|
Aarimuthu G, Sathiasivan K, Varadharajan S, Balakrishnan M, Albeshr MF, Alrefaei AF, Kim W. Enhanced membraneless fuel cells by electrooxidation of ethylene glycol with a nanostructured cobalt metal catalyst. ENVIRONMENTAL RESEARCH 2023; 233:115601. [PMID: 36863657 DOI: 10.1016/j.envres.2023.115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 07/03/2023]
Abstract
The advancement of effective and long-lasting electrocatalysts for energy storage devices is crucial to reduce the impact of the energy crisis. In this study, a two-stage reduction process was used to synthesize carbon-supported cobalt alloy nanocatalysts with varying atomic ratios of cobalt, nickel and iron. The formed alloy nanocatalysts were investigated using energy-dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscopy to determine their physicochemical characterization. According to XRD results, Cobalt-based alloy nanocatalysts form a face-centered cubic solid solution pattern, illustrating thoroughly mixed ternary metal solid solutions. Transmission electron micrographs also demonstrated that samples of carbon-based cobalt alloys displayed homogeneous dispersion at particle sizes ranging from 18 to 37 nm. Measurements of cyclic voltammetry, linear sweep voltammetry, and chronoamperometry revealed that iron alloy samples exhibited much greater electrochemical activity than non-iron alloy samples. The alloy nanocatalysts were evaluated as anodes for the electrooxidation of ethylene glycol in a single membraneless fuel cell to assess their robustness and efficiency at ambient temperature. Remarkably, in line with the results of cyclic voltammetry and chronoamperometry, the single-cell test showed that the ternary anode works better than its counterparts. The significantly higher electrochemical activity was observed for alloy nanocatalysts containing iron than for non-iron alloy catalysts. Iron stimulates nickel sites to oxidize cobalt to cobalt oxyhydroxides at lower over-potentials, which contributes to the improved performance of ternary alloy catalysts containing iron.
Collapse
Affiliation(s)
- Gayathri Aarimuthu
- Department of Chemistry, Presidency College (Autonomous), University of Madras, Chennai, 600 005, India
| | - Kiruthika Sathiasivan
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Selvarani Varadharajan
- Department of Chemistry, St. Joseph's Institute of Technology, Old Mamallapuram Road, Chennai, 600 119, India
| | - Muthukumaran Balakrishnan
- Department of Chemistry, Presidency College (Autonomous), University of Madras, Chennai, 600 005, India.
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, South Korea
| |
Collapse
|